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MAGNETIZATION

9.0 INTRODUCTION

The sources of the magnetic fields considered in Chap. 8 were conduction currents
associated with the motion of unpaired charge carriers through materials. Typically,
the current was in a metal and the carriers were conduction electrons. In this
chapter, we recognize that materials provide still other magnetic field sources. These
account for the fields of permanent magnets and for the increase in inductance
produced in a coil by insertion of a magnetizable material.

Magnetization effects are due to the propensity of the atomic constituents of
matter to behave as magnetic dipoles. It is natural to think of electrons circulating
around a nucleus as comprising a circulating current, and hence giving rise to a
magnetic moment similar to that for a current loop, as discussed in Example 8.3.2.

More surprising is the magnetic dipole moment found for individual electrons.
This moment, associated with the electronic property of spin, is defined as the Bohr
magneton

me = ± e

m

1
2
h̄ (1)

where e/m is the electronic charge-to-mass ratio, 1.76× 1011 coulomb/kg, and 2πh̄
is Planck’s constant, h̄ = 1.05 × 10−34 joule-sec so that me has the units A −m2.
The quantum mechanics of atoms and molecules dictates that, whether due to the
orbits or to the spins, the electronic contributions to their net dipole moments tend
to cancel. Those that do make a contribution are typically in unfilled shells.

An estimate of the moment that would result if each atom or molecule of
a material contributed only one Bohr magneton shows that the orbital and spin
contributions from all the electrons comprising a typical solid had better tend to
cancel or the resulting field effects would be prodigious indeed. Even if each atom
or molecule is made to contribute only one Bohr magneton of magnetic moment, a
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magnetic field results comparable to that produced by extremely large conduction
currents. To make this apparent, compare the magnetic field induced by a current
loop having a radius R and carrying a current i (Fig. 9.0.la) to that from a spherical
collection of dipoles (Fig. 9.0.1b), each having the magnetic moment of only one
electron.

Fig. 9.0.1 (a) Current i in loop of radius R gives dipole moment m. (b)
Spherical material of radius R has dipole moment approximated as the sum of
atomic dipole moments.

In the case of the spherical material, we consider the net dipole moment to be
simply the moment me of a single molecule multiplied by the number of molecules.
The number of molecules per unit mass is Avogadro’s number (A0 = 6.023× 1026

molecules/kg-mole) divided by the molecular weight, Mo. The mass is the volume
multiplied by the mass density ρ (kg/m3). Thus, for a sphere having radius R, the
sum of the dipole moments is

m = me

(4
3
πR3ρ

)( Ao

Mo

)
(2)

Suppose that the current loop shown in Fig. 9.0.1a has the same radius R as the
sphere. What current i would give rise to a magnetic moment equal to that from
the sphere of hypothetical material? If the moment of the loop, given by (8.3.19)
as being m = iπR2, is set equal to that of the sphere, (2), it follows that i must be

i = me
4
3
Rρ

Ao

Mo
(3)

Hence, for iron (where ρ = 7.86 × 103 and Mo = 56) and a radius of 10 cm, the
current required to produce the same magnetic moment is 105A.

Material magnetization can either be permanent or be induced by the appli-
cation of a field, much as for the polarizable materials considered in Chap. 6. In
most materials, the average moment per molecule that can be brought into play is
much less than one Bohr magneton. However, highly magnetizable materials can
produce net magnetic moments comparable to that estimated in (2).

The development of magnetization in this chapter parallels that for polariza-
tion in Chap. 6. Just as the polarization density was used in Sec. 6.1 to represent
the effect of electric dipoles on the electric field intensity, the magnetization density
introduced in Sec. 9.1 will account for the contributions of magnetic dipoles to the
magnetic field intensity. The MQS laws and continuity conditions then collected in
Sec. 9.2 are the basis for the remaining sections, and for Chap. 10 as well.

Because permanent magnets are so common, the permanent magnetization
fields considered in Sec. 9.3 are more familiar than the permanent polarization
electric fields of Sec. 6.3. Similarly, the force experienced as a piece of iron is brought
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into a magnetic field is common evidence of the induced magnetization described
by the constitutive laws of Sec. 9.4.

The extensive analogy between polarization and magnetization makes most of
the examples from Chap. 6 analogous to magnetization examples. This is especially
true in Secs. 9.5 and 9.6, where materials are considered that have a magnetization
that is linearly related to the magnetic field intensity. Thus, these sections not only
build on the insights gained in the earlier sections on polarization, but give the
opportunity to expand on both topics as well. The magnetic circuits considered in
Sec. 9.7 are of great practical interest and exemplify an approximate way for the
evaluation of fields in the presence of strongly magnetized materials. The saturation
of magnetizable materials is of primary practical concern. The problems for Secs. 9.6
and 9.7 are an introduction to fields in materials that are magnetically nonlinear.

We generalize Faraday’s law in Sec. 9.2 so that it can be used in this chapter to
predict the voltage at the terminals of coils in systems that include magnetization.
This generalization is used to determine terminal relations that include magneti-
zation in Sec. 9.5. The examples in the subsequent sections study the implications
of Faraday’s law with magnetization included. As in Chap. 8, we confine ourselves
in this chapter to examples that can be modeled using the terminal variables of
perfectly conducting circuits. The MQS laws, generalized in Sec. 9.2 to include
magnetization, form the basis for the discussion of electric fields in MQS systems
that is the theme of Chap. 10.

9.1 MAGNETIZATION DENSITY

The sources of magnetic field in matter are the (more or less) aligned magnetic
dipoles of individual electrons or currents caused by circulating electrons.1 We now
describe the effect on the magnetic field of a distribution of magnetic dipoles rep-
resenting the material.

In Sec. 8.3, we defined the magnitude of the magnetic moment m of a cir-
culating current loop of current i and area a as m = ia. The moment vector, m,
was defined as normal to the surface spanning the contour of the loop and pointing
in the direction determined by the right-hand rule. In Sec. 8.3, where the moment
was in the z direction in spherical coordinates, the loop was found to produce the
magnetic field intensity

H =
µom

4πµor3
[2 cos θir + sin θiθ] (1)

This field is analogous to the electric field associated with a dipole having the
moment p. With p directed along the z axis, the electric dipole field is given by
taking the gradient of (4.4.10).

E =
p

4πεor3
[2 cos θir + sin θiθ] (2)

1 Magnetic monopoles, which would play a role with respect to magnetic fields analogous
to that of the charge with respect to electric fields, may in fact exist, but are certainly not of
engineering significance. See Science, Research News, “In search of magnetic monopoles,” Vol.
216, p. 1086 (June 4, 1982).
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Thus, the dipole fields are obtained from each other by making the identifications

p ↔ µom (3)

In Sec. 6.1, a spatial distribution of electric dipoles is represented by the polarization
density P = Np, where N is the number density of dipoles. Similarly, here we define
a magnetization density as

M = Nm (4)

where again N is the number of dipoles per unit volume. Note that just as the
analog of the dipole moment p is µom, the analog of the polarization density P is
µoM.

9.2 LAWS AND CONTINUITY CONDITIONS WITH
MAGNETIZATION

Recall that the effect of a spatial distribution of electric dipoles upon the electric
field is described by a generalization of Gauss’ law for electric fields, (6.2.1) and
(6.2.2),

∇ · εoE = −∇ ·P + ρu (1)

The effect of the spatial distribution of magnetic dipoles upon the magnetic field
intensity is now similarly taken into account by generalizing the magnetic flux
continuity law.

∇ · µoH = −∇ · µoM (2)

In this law, there is no analog to an unpaired electric charge density.
The continuity condition found by integrating (2) over an incremental volume

enclosing a section of an interface having a normal n is

n · µo(Ha −Hb) = −n · µo(Ma −Mb) (3)

Suggested by the analogy to the description of polarization is the definition
of the quantities on the right in (2) and (3), respectively, as the magnetic charge
density ρm and the magnetic surface charge density σsm.

ρm ≡ −∇ · µoM (4)

σsm ≡ −n · µo(Ma −Mb) (5)
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Faraday’s Law Including Magnetization. The modification of the magnetic
flux continuity law implies that another of Maxwell’s equations must be generalized.
In introducing the flux continuity law in Sec. 1.7, we observed that it was almost
inherent in Faraday’s law. Because the divergence of the curl is zero, the divergence
of the free space form of Faraday’s law reduces to

∇ · (∇×E) = 0 = − ∂

∂t
∇ · µoH (6)

Thus, in free space, µoH must have a divergence that is at least constant in time.
The magnetic flux continuity law adds the information that this constant is zero.
In the presence of magnetizable material, (2) shows that the quantity µo(H + M)
is solenoidal. To make Faraday’s law consistent with this requirement, the law is
now written as

∇×E = − ∂

∂t
µo(H + M)

(7)

Magnetic Flux Density. The grouping of H and M in Faraday’s law and
the flux continuity law makes it natural to define a new variable, the magnetic flux
density B.

B ≡ µo(H + M) (8)

This quantity plays a role that is analogous to that of the electric displacement
flux density D defined by (6.2.14). Because there are no macroscopic quantities of
monopoles of magnetic charge, its divergence is zero. That is, the flux continuity
law, (2), becomes simply

∇ ·B = 0 (9)

and the corresponding continuity condition, (3), becomes simply

n · (Ba −Bb) = 0 (10)

A similar simplification is obtained by writing Faraday’s law in terms of the
magnetic flux density. Equation (7) becomes

∇×E = −∂B
∂t (11)

If the magnetization is specified independent of H, it is usually best to have it
entered explicitly in the formulation by not introducing B. However, if M is given
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as a function of H, especially if it is linear in H, it is most convenient to remove
M from the formulation by using B as a variable.

Terminal Voltage with Magnetization. In Sec. 8.4, where we discussed the
terminal voltage of a perfectly conducting coil, there was no magnetization. The
generalization of Faraday’s law to include magnetization requires a generalization
of the terminal relation.

The starting point in deriving the terminal relation was Faraday’s integral
law, (8.4.9). This law is generalized to included magnetization effects by replacing
µoH with B. Otherwise, the derivation of the terminal relation, (8.4.11), is the
same as before. Thus, the terminal voltage is again

v =
dλ

dt (12)

but now the flux linkage is

λ ≡
∫

S

B · da
(13)

In Sec. 9.4 we will see that Faraday’s law of induction, as reflected in these
last two relations, is the basis for measuring B.

9.3 PERMANENT MAGNETIZATION

As the modern-day versions of the lodestone, which made the existence of magnetic
fields apparent in ancient times, permanent magnets are now so cheaply manufac-
tured that they are used at home to pin notes on the refrigerator and so reliable
that they are at the heart of motors, transducers, and information storage systems.
To a first approximation, a permanent magnet can be modeled by a material hav-
ing a specified distribution of magnetization density M. Thus, in this section we
consider the magnetic field intensity generated by prescribed distributions of M.

In a region where there is no current density J, Ampère’s law requires that H
be irrotational. It is then often convenient to represent the magnetic field intensity
in terms of the scalar magnetic potential Ψ introduced in Sec. 8.3.

H = −∇Ψ (1)
From the flux continuity law, (9.2.2), it then follows that Ψ satisfies Poisson’s
equation.

∇2Ψ = −ρm

µo
; ρm ≡ −∇ · µoM (2)

A specified magnetization density leads to a prescribed magnetic charge density ρm.
The situation is analogous to that considered in Sec. 6.3, where the polarization
density was prescribed and, as a result, where ρp was known.
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Fig. 9.3.1 (a) Cylinder of circular cross-section uniformly magnetized
in the direction of its axis. (b) Axial distribution of scalar magnetic
potential and (c) axial magnetic field intensity. For these distributions,
the cylinder length is assumed to be equal to its diameter.

Of course, the net magnetic charge of a magnetizable body is always zero,
because ∫

V

ρmdv =
∮

S

µoH · da = 0 (3)

if the integral is taken over the entire volume containing the body. Techniques for
solving Poisson’s equation for a prescribed charge distribution developed in Chaps.
4 and 5 are directly applicable here. For example, if the magnetization is given
throughout all space and there are no other sources, the magnetic scalar potential
is given by a superposition integral. Just as the integral of (4.2.2) is (4.5.3), so the
integral of (2) is

Ψ =
∫

V ′

ρm(r′)dv
4πµo|r− r′| (4)

If the region of interest is bounded by material on which boundary conditions are
specified, (4) provides the particular solution.

Example 9.3.1. Magnetic Field Intensity of a Uniformly Magnetized
Cylinder

The cylinder shown in Fig. 9.3.1 is uniformly magnetized in the z direction, M =
Moiz. The first step toward finding the resulting H within the cylinder and in the
surrounding free space is an evaluation of the distribution of magnetic charge density.
The uniform M has no divergence, so ρm = 0 throughout the volume. Thus, the
source of H is on the surfaces where M originates and terminates. In view of (9.2.3),
it takes the form of the surface charge density

σsm = −n · µo(M
a −Mb) = ±µoMo (5)

The upper and lower signs refer to the upper and lower surfaces.
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In principle, we could use the superposition integral to find the potential ev-
erywhere. To keep the integration simple, we confine ourselves here to finding it on
the z axis. The integration of (4) then reduces to integrations over the endfaces of
the cylinder.

Ψ =

∫ R

0

µoMo2πρ
′dρ′

4πµo

√
ρ′2 +

(
z − d

2

)2
−

∫ R

0

µoMo2πρ
′dρ′

4πµo

√
ρ′2 +

(
z + d

2

)2
(6)

With absolute magnitudes used to make the expressions valid regardless of position
along the z axis, these integrals become

Ψ =
dMo

2

[√(R
d

)2
+

(z
d
− 1

2

)2 −
∣∣z
d
− 1

2

∣∣

−
√(R

d

)2
+

(z
d

+
1

2

)2
+

∣∣z
d

+
1

2

∣∣
] (7)

The field intensity follows from (1)

Hz = −dMo

2

[ (
z
d
− 1

2

)
√(

R
d

)2
+

(
z
d
− 1

2

)2
−

(
z
d

+ 1
2

)
√(

R
d

)2
+

(
z
d

+ 1
2

)2
+ u

]
(8)

where u ≡ 0 for |z| > d/2 and u ≡ 2 for −d/2 < z < d/2. Here, from top to bottom,
respectively, the signs correspond to evaluating the field above the upper surface,
within the magnet, and below the bottom surface.

The axial distributions of Ψ and Hz shown in Fig. 9.3.1 are consistent with
a three-dimensional picture of a field that originates on the top face of the magnet
and terminates on the bottom face. As for the spherical magnet (the analogue of
the permanently polarized sphere shown in Fig. 6.3.1), the magnetic field intensity
inside the magnet has a direction opposite to that of M.

In practice, M would most likely be determined by making measurements of
the external field and then deducing M from this field.

If the magnetic field intensity is generated by a combination of prescribed
currents and permanent magnetization, it can be evaluated by superimposing the
field due to the current and the magnetization. For example, suppose that the
uniformly magnetized circular cylinder of Fig. 9.3.1 were surrounded by the N -
turn solenoid of Fig. 8.2.3. Then the axial field intensity would be the sum of that
for the current [predicted by the Biot-Savart law, (8.2.7)], and for the magnetization
[predicted by the negative gradient of (4)].

Example 9.3.2. Retrieval of Signals Stored on Magnetizable Tape

Permanent magnetization is used for a permanent record in the tape recorder.
Currents in an electromagnet are used to induce the permanent magnetization, ex-
ploiting the hysteresis in the magnetization of certain materials, as will be discussed
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Fig. 9.3.2 Permanently magnetized tape has distribution of M rep-
resenting a Fourier component of a recorded signal. From a frame of
reference attached to the tape, the magnetization is static.

Fig. 9.3.3 From the frame of reference of a sensing coil, the tape is
seen to move in the x′ direction with the velocity U .

in Sec. 9.4. Here we look at a model of perpendicular magnetization, an actively pur-
sued research field. The conventional recording is done by producing magnetization
M parallel to the tape.

In a thin tape at rest, the magnetization density shown in Fig. 9.3.2 is assumed
to be uniform over the thickness and to be of the simple form

M = Mo cosβxiy (9)

The magnetic field is first determined in a frame of reference attached to the tape,
denoted by (x, y, z) as defined in Fig. 9.3.2. The tape moves with a velocity U with
respect to a fixed sensing “head,” and so our second step will be to represent this
field in terms of fixed coordinates. With Fig. 9.3.3 in view, it is clear that these
coordinates, denoted by (x′, y′, z′), are related to the moving coordinates by

x′ = x+ Ut→ x = x′ − Ut; y = y′ (10)

Thus, from the fixed reference frame, the magnetization takes the form of a traveling
wave.

M = Mo cosβ(x′ − Ut)iy (11)

If M is observed at a fixed location x′, it has a sinusoidal temporal variation with
the frequency ω = βU . This relationship between the fixed frame frequency and the
spatial periodicity suggests how the distribution of magnetization is established by
“recording” a signal having the frequency ω.

The magnetization density has no divergence in the volume of the tape, so
the field source is a surface charge density. With upper and lower signs denoting the
upper and lower tape surfaces, it follows that

σm = ±µoMo cosβx (12)

The continuity conditions to be satisfied at the upper and lower surfaces represent
the continuity of magnetic flux (9.2.3)

µoH
a
y − µoH

o
y = µoMo cosβx at y =

d

2

µoH
o
y − µoH

b
y = −µoMo cosβx at y = −d

2

(13)
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and the continuity of tangential H

Ψa = Ψo at y =
d

2

Ψo = Ψb at y = −d
2

(14)

In addition, the field should go to zero as y → ±∞.
Because the field sources are confined to surfaces, the magnetic scalar potential

must satisfy Laplace’s equation, (2) with ρm = 0, in the bulk regions delimited by
the interfaces. Motivated by the “odd” symmetry of the source with respect to the
y = 0 plane and its periodicity in x, we pick solutions to Laplace’s equation for the
magnetic potential above (a), inside (o), and below (b) the tape that also satisfy the
odd symmetry condition of having Ψ(y) = −Ψ(−y).

ψa = A e−βy cosβx

ψo = C sinhβy cosβx (15)

ψb = −A eβy cosβx

Subject to the requirement that β > 0, the exterior potentials go to zero at y = ±∞.
The interior function is made an odd function of y by excluding the cosh(βy) cos(βx)
solution to Laplace’s equation, while the exterior functions are made odd by making
the coefficients equal in magnitude and opposite in sign. Thus, only two coefficients
remain to be determined. These follow from substituting the assumed solution into
either of (13) and either of (14), and then solving the two equations to obtain

A =
Mo

β
eβd/2

(
1 + coth

βd

2

)−1

C =
Mo

β

[(
1 + coth

βd

2

)
sinh

βd

2

]−1
(16)

The conditions at one interface are automatically satisfied if those at the other are
met. This is a proof that the assumed solutions have indeed been correct. Our fore-
sight in defining the origin of the y axis to be at the symmetry plane and exploiting
the resulting odd dependence of Ψ on y has reduced the number of undetermined
coefficients from four to two.

This field is now expressed in the fixed frame coordinates. With A defined
by (16a) and x and y given in terms of the fixed frame coordinates by (10), the
magnetic potential above the tape has been determined to be

Ψa =
Mo

β

e−β(y′− d
2 )

(
1 + coth βd

2

) cosβ(x′ − Ut) (17)

Next, we determine the output voltage of a fixed coil, positioned at a height h above
the tape, as shown in Fig. 9.3.3. This detecting “head” has N turns, a length l in the
x′ direction, and width w in the z direction. With the objective of finding the flux
linkage, we use (17) to determine the y-directed flux density in the neighborhood of
the coil.

By = −µo
∂Ψa

∂y′
=
µoMoe

−β(y′− d
2 )

(
1 + coth βd

2

) cosβ(x′ − Ut) (18)
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Fig. 9.3.4 Magnitude of sensing coil output voltage as a function of
βl = 2πl/Λ, where Λ is the wavelength of the magnetization. If the mag-
netization is produced by a fixed coil driven at the angular frequency ω,
the horizontal axis, which is then ωl/U , is proportional to the recording
frequency.

The flux linkage follows by multiplying the number of turns N times By integrated
over the surface in the plane y = h+ 1

2
d spanned by the coil.

λ = wN

∫ l/2

−l/2

By

(
y′ = h+

d

2

)
dx′

=
µoMowNe

−βh

β
(
1 + coth βd

2

)[
sinβ

( l
2
− Ut

)
+ sinβ

( l
2

+ Ut
)] (19)

The dependence on l is clarified by using a trigonometric identity to simplify the
last term in this expression.

λ =
2µoMowNe

−βh

β
(
1 + coth βd

2

) sin
βl

2
cosβUt (20)

Finally, the output voltage follows from (9.2.12).

vo =
dλ

dt
= − 2µoMowUN(

1 + coth βd
2

)e−βh sin
βl

2
sinβUt (21)

The strong dependence of this expression on the wavelength of the magnetization,
2π/β, reflects the nature of fields predicted using Laplace’s equation. It follows from
(21) that the output voltage has the angular frequency ω = βU . Thus, (21) can also
be regarded as giving the frequency response of the sensor. The magnitude of vo has
the dependence on either the normalized β or ω shown in Fig. 9.3.4.

Two phenomena underlie the voltage response. The periodic dependence re-
flects the relationship between the length l of the coil and the wavelength 2π/β of
the magnetization. When the coil length is equal to the wavelength, there is as much
positive as negative flux linking the coil at a given instant, and the signal falls to
zero. This is also the condition when l is any multiple of a wavelength and accounts
for the sin( 1

2
βl) term in (21).



12 Magnetization Chapter 9

Fig. 9.4.1 Toroidal coil with donut-shaped magnetizable core.

The strong decay of the envelope of the output signal as the frequency is
increased, and hence the wavelength decreased, reflects a property of Laplace’s
equation that frequently comes into play in engineering electromagnetic fields. The
shorter the wavelength, the more rapid the decay of the field in the direction per-
pendicular to the tape. With the sensing coil at a fixed height above the tape, this
means that once the wavelength is on the order of 2πh, there is an essentially expo-
nential decrease in signal with increasing frequency. Thus, there is a strong incentive
to place the coil as close to the tape as possible.

We should expect that if the tape is very thin compared to the wavelength,
the field induced by magnetic surface charges on the top surface would tend to be
canceled by those of opposite sign on the surface just below. This effect is accounted
for by the term [1 + coth( 1

2
βd)] in the denominator of (21).

In a practical recording device, the sensing head of the previous example would
incorporate magnetizable materials. To predict how these affect the fields, we need
a law relating the field to the magnetization it induces. This is the subject of the
next section.

9.4 MAGNETIZATION CONSTITUTIVE LAWS

The permanent magnetization model of Sec. 9.3 is a somewhat artificial example of
the magnetization density M specified, independent of the magnetic field intensity.
Even in the best of permanent magnets, there is actually some dependence of M
on H.

Constitutive laws relate the magnetization density M or the magnetic flux
density B to the macroscopic H within a material. Before discussing some of the
more common relations and their underlying physics, it is well to have in view an
experiment giving direct evidence of the constitutive law of magnetization. The
objective is to observe the establishment of H by a current in accordance with
Ampère’s law, and deduce B from the voltage it induces in accordance with Fara-
day’s law.

Example 9.4.1. Toroidal Coil

A coil of toroidal geometry is shown in Fig. 9.4.1. It consists of a donut-shaped core
filled with magnetizable material with N1 turns tightly wound on its periphery. By
means of a source driving its terminals, this coil carries a current i. The resulting
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Fig. 9.4.2 Surface S enclosed by contour C used with Ampère’s inte-
gral law to determine H in the coil shown in Fig. 9.4.1.

current distribution can be assumed to be so smooth that the fine structure of
the field, caused by the finite size of the wires, can be disregarded. We will ignore
the slight pitch of the coil and the associated small current component circulating
around the axis of the toroid.

Because of the toroidal geometry, the H field in the magnetizable material
is determined by Ampère’s law and symmetry considerations. Symmetry about the
toroidal axis suggests that H is φ directed. The integral MQS form of Ampère’s law
is written for a contour C circulating about the toroidal axis within the core and at
a radius r. Because the major radius R of the torus is large compared to the minor
radius 1

2
w, we will ignore the variation of r over the cross-section of the torus and

approximate r by an average radius R. The surface S spanned by this contour and
shown in Fig. 9.4.2 is pierced N1 times by the current i, giving a total current of
N1i. Thus, the azimuthal field inside the core is essentially

2πrHφ = N1i→ Hφ ≡ H =
N1i

2πr
' N1i

2πR
(1)

Note that the same argument shows that the magnetic field intensity outside the
core is zero.

In general, if we are given the current distribution and wish to determine H,
recourse must be made not only to Ampère’s law but to the flux continuity condition
as well. In the idealized toroidal geometry, where the flux lines automatically close
on themselves without leaving the magnetized material, the flux continuity condition
is automatically satisfied. Thus, in the toroidal configuration, the H imposed on the
core is determined by a measurement of the current i and the geometry.

How can we measure the magnetic flux density in the core? Because B appears
in Faraday’s law of induction, the measurement of the terminal voltage of an addi-
tional coil, having N2 turns also wound on the donut-shaped core, gives information
on B. The terminals of this coil are terminated in a high enough impedance so that
there is a negligible current in this second winding. Thus, the H field established by
the current i remains unaltered.

The flux linked by each turn of the sensing coil is essentially the flux density
multiplied by the cross-sectional area πw2/4 of the core. Thus, the flux linked by
the terminals of the sensing coil is

λ2 =
πw2

4
N2B (2)

and flux density in the core material is directly reflected in the terminal flux-linkage.
The following demonstration shows how (1) and (2) can be used to infer the

magnetization characteristic of the core material from measurement of the terminal
current and voltage of the first and second coils.

Demonstration 9.4.1. Measurement of B −H Characteristic
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Fig. 9.4.3 Demonstration in which the B −H curve is traced out in
the sinusoidal steady state.

The experiment shown in Fig. 9.4.3 displays the magnetization characteristic on the
oscilloscope. The magnetizable material is in the donut-shaped toroidal configuration
of Example 9.4.1 with the N1-turn coil driven by a current i from a Variac. The
voltage across a series resistance then gives a horizontal deflection of the oscilloscope
proportional to H, in accordance with (1).

The terminals of the N2 turn-coil are connected through an integrating net-
work to the vertical deflection terminals of the oscilloscope. Thus, the vertical deflec-
tion is proportional to the integral of the terminal voltage, to λ, and hence through
(2), to B.

In the discussions of magnetization characteristics which follow, it is helpful
to think of the material as comprising the core of the torus in this experiment. Then
the magnetic field intensity H is proportional to the current i, while the magnetic
flux density B is reflected in the voltage induced in a coil linking this flux.

Many materials are magnetically linear in the sense that

M = χmH (3)

Here χm is the magnetic susceptibility. More commonly, the constitutive law for a
magnetically linear material is written in terms of the magnetic flux density, defined
by (9.2.8).

B = µH; µ ≡ µo(1 + χm) (4)

According to this law, the magnetization is taken into account by replacing the
permeability of free space µo by the permeability µ of the material. For purposes of
comparing the magnetizability of materials, the relative permeability µ/µo is often
used.

Typical susceptibilities for certain elements, compounds, and common materi-
als are given in Table 9.4.1. Most common materials are only slightly magnetizable.
Some substances that are readily polarized, such as water, are not easily magne-
tized. Note that the magnetic susceptibility can be either positive or negative and
that there are some materials, notably iron and its compounds, in which it can be
enormous. In establishing an appreciation for the degree of magnetizability that
can be expected of a material, it is helpful to have a qualitative picture of its mi-
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TABLE 9.4.1

RELATIVE SUSCEPTIBILITIES OF COMMON MATERIALS

Material χm

PARAMAGNETIC Mg 1.2× 10−5

Al 2.2× 10−5

Pt 3.6× 10−4

air 3.6× 10−7

O2 2.1× 10−6

DIAMAGNETIC Na −0.24× 10−5

Cu −1.0× 10−5

diamond −2.2× 10−5

Hg −3.2× 10−5

H2O −0.9× 10−5

FERROMAGNETIC Fe (dynamo sheets) 5.5× 103

Fe (lab specimens) 8.8× 104

Fe (crystals) 1.4× 106

Si-Fe transformer sheets 7× 104

Si-Fe crystals 3.8× 106

µ-metal 105

FERRIMAGNETIC Fe3O4 100

ferrites 5000

croscopic origins, beginning at the atomic level but including the collective effects
of groups of atoms or molecules that result when they become as densely packed as
they are in solids. These latter effects are prominent in the most easily magnetized
materials.

The magnetic moment of an atom (or molecule) is the sum of the orbital and
spin contributions. Especially in a gas, where the atoms are dilute, the magnetic
susceptibility results from the (partial) alignment of the individual magnetic mo-
ments by a magnetic field. Although the spin contributions to the moment tend to
cancel, many atoms have net moments of one or more Bohr magnetons. At room
temperature, the orientations of the moments are mostly randomized by thermal
agitation, even under the most intense fields. As a result, an applied field can give
rise to a significant magnetization only at very low temperatures. A paramagnetic
material displays an appreciable susceptibility only at low temperatures.

If, in the absence of an applied field, the spin contributions to the moment
of an atom very nearly cancel, the material can be diamagnetic, in the sense that
it displays a slightly negative susceptibility. With the application of a field, the
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Fig. 9.4.4 Typical magnetization curve without hysteresis. For typical fer-
romagnetic solids, the saturation flux density is in the range of 1–2 Tesla. For
ferromagnetic domains suspended in a liquid, it is .02–.04 Tesla.

orbiting electrons are slightly altered in their circulations, giving rise to changes in
moment in a direction opposite to that of the applied field. Again, thermal energy
tends to disorient these moments. At room temperature, this effect is even smaller
than that for paramagnetic materials.

At very low temperatures, it is possible to raise the applied field to such a
level that essentially all the moments are aligned. This is reflected in the saturation
of the flux density B, as shown in Fig. 9.4.4. At low field intensity, the slope of the
magnetization curve is µ, while at high field strengths, there are no more moments
to be aligned and the slope is µo. As long as the field is raised and lowered at a rate
slow enough so that there is time for the thermal energy to reach an equilibrium with
the magnetic field, the B-H curve is single valued in the sense that the same curve
is followed whether the magnetic field is increasing or decreasing, and regardless of
its rate of change.

Until now, we have been considering the magnetization of materials that are
sufficiently dilute so that the atomic moments do not interact with each other. In
solids, atoms can be so closely spaced that the magnetic field due to the moment of
one atom can have a significant effect on the orientation of another. In ferromagnetic
materials, this mutual interaction is all important.

To appreciate what makes certain materials ferromagnetic rather than simply
paramagnetic, we need to remember that the electrons which surround the nuclei
of atoms are assigned by quantum mechanical principles to layers or “shells.” Each
shell has a particular maximum number of electrons. The electron behaves as if it
possessed a net angular momentum, or spin, and hence a magnetic moment. A filled
shell always contains an even number of electrons which are distributed spatially
in such a manner that the total spin, and likewise the magnetic moment, is zero.

For the majority of atoms, the outermost shell is unfilled, and so it is the outer-
most electrons that play the major role in determining the net magnetic moment of
the atom. This picture of the atom is consistent with paramagnetic and diamagnetic
behavior. However, the transition elements form a special class. They have unfilled
inner shells, so that the electrons responsible for the net moment of the atom are
surrounded by the electrons that interact most intimately with the electrons of a
neighboring atom. When such atoms are as closely packed as they are in solids,
the combination of the interaction between magnetic moments and of electrostatic
coupling results in the spontaneous alignment of dipoles, or ferromagnetism. The
underlying interaction between atoms is both magnetic and electrostatic, and can
be understood only by invoking quantum mechanical arguments.

In a ferromagnetic material, atoms naturally establish an array of moments
that reinforce. Nevertheless, on a macroscopic scale, ferromagnetic materials are
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Fig. 9.4.5 Polycrystalline ferromagnetic material viewed at the domain level.
In the absence of an applied magnetic field, the domain moments tend to
cancel. (This presumes that the material has not been left in a magnetized
state by a previously applied field.) As a field is applied, the domain walls
shift, giving rise to a net magnetization. In ideal materials, saturation results
as all of the domains combine into one. In materials used for bulk fabrication
of transformers, imperfections prevent the realization of this state.

not necessarily permanently magnetized. The spontaneous alignment of dipoles is
commonly confined to microscopic regions, called domains. The moments of the
individual domains are randomly oriented and cancel on a macroscopic scale.

Macroscopic magnetization occurs when a field is applied to a solid, because
those domains that have a magnetic dipole moment nearly aligned with the applied
field grow at the expense of domains whose magnetic dipole moments are less aligned
with the applied field. The shift in domain structure caused by raising the applied
field from one level to another is illustrated in Fig. 9.4.5. The domain walls encounter
a resistance to propagation that balances the effect of the field.

A typical trajectory traced out in the B−H plane as the field is applied to a
typical ferromagnetic material is shown in Fig. 9.4.6. If the magnetization is zero at
the outset, the initial trajectory followed as the field is turned up starts at the origin.
If the field is then turned down, the domains require a certain degree of coercion
to reduce their average magnetization. In fact, with the applied field turned off,
there generally remains a flux density, and the field must be reversed to reduce the
flux density to zero. The trajectory traced out if the applied field is slowly cycled
between positive and negative values many times is the one shown in the figure,
with the remanence flux density Br when H = 0 and a coercive field intensity
Hc required to make the flux density zero. Some values of these parameters, for
materials used to make permanent magnets, are given in Table 9.4.2.

In the toroidal geometry of Example 9.4.1, H is proportional to the terminal
current i. Thus, imposition of a sinusoidally varying current results in a sinusoidally
varying H, as illustrated in Fig. 9.4.6b. As the i and hence H increases, the trajec-
tory in the B −H plane is the one of increasing H. With decreasing H, a different
trajectory is followed. In general, it is not possible to specify B simply by giving
H (or even the time derivatives of H). When the magnetization state reflects the
previous states of magnetization, the material is said to be hysteretic. The B −H
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TABLE 9.4.2

MAGNETIZATION PARAMETERS FOR
PERMANENT MAGNET

From American Institute of Physics Handbook,
McGraw-Hill, p. 5–188.

Material Hc (A/m) Br (Tesla)

Carbon steel 4000 1.00

Alnico 2 43,000 0.72

Alnico 7 83,500 0.70

Ferroxdur 2 143,000 .34

Fig. 9.4.6 Magnetization characteristic for material showing hysteresis with
typical values of Br and Hc given in Table 9.4.2. The curve is obtained after
many cycles of sinusoidal excitation in apparatus such as that of Fig. 9.4.3.
The trajectory is traced out in response to a sinusoidal current, as shown by
the inset.

trajectory representing the response to a sinusoidal H is then called the hysteresis
loop.

Hysteresis can be both harmful and useful. Permanent magnetization is one
result of hysteresis, and as we illustrated in Example 9.3.2, this can be the basis for
the storage of information on tapes. When we develop a picture of energy dissipation
in Chap. 11, it will be clear that hysteresis also implies the generation of heat, and
this can impose limits on the use of magnetizable materials.

Liquids having significant magnetizabilities have been synthesized by perma-
nently suspending macroscopic particles composed of single ferromagnetic domains.
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Here also the relatively high magnetizability comes from the ferromagnetic charac-
ter of the individual domains. However, the very different way in which the domains
interact with each other helps in gaining an appreciation for the magnetization of
ferromagnetic polycrystalline solids.

In the absence of a field imposed on the synthesized liquid, the thermal molec-
ular energy randomizes the dipole moments and there is no residual magnetization.
With the application of a low frequency H field, the suspended particles assume
an average alignment with the field and a single-valued B −H curve is traced out,
typically as shown in Fig. 9.4.4. However, as the frequency is raised, the reorien-
tation of the domains lags behind the applied field, and the B − H curve shows
hysteresis, much as for solids.

Although both the solid and the liquid can show hysteresis, the two differ
in an important way. In the solid, the magnetization shows hysteresis even in the
limit of zero frequency. In the liquid, hysteresis results only if there is a finite rate
of change of the applied field.

Ferromagnetic materials such as iron are metallic solids and hence tend to be
relatively good electrical conductors. As we will see in Chap. 10, this means that
unless care is taken to interrupt conduction paths in the material, currents will be
induced by a time-varying magnetic flux density. Often, these eddy currents are un-
desired. With the objective of obtaining a highly magnetizable insulating material,
iron atoms can be combined into an oxide crystal. Although the spontaneous inter-
action between molecules that characterizes ferromagnetism is indeed observed, the
alignment of neighbors is antiparallel rather than parallel. As a result, such pure
oxides do not show strong magnetic properties. However, a mixed-oxide material
like Fe3O4 (magnetite) is composed of sublattice oxides of differing moments. The
spontaneous antiparallel alignment results in a net moment. The class of relatively
magnetizable but electrically insulating materials are called ferrimagnetic.

Our discussion of the origins of magnetization began at the atomic level, where
electronic orbits and spins are fundamental. However, it ends with a discussion of
constitutive laws that can only be explained by bringing in additional effects that
occur on scales much greater than atomic or molecular. Thus, the macroscopic B
and H used to describe magnetizable materials can represent averages with respect
to scales of domains or of macroscopic particles. In Sec. 9.5 we will make an artificial
diamagnetic material from a matrix of “perfectly” conducting particles. In a time-
varying magnetic field, a magnetic moment is induced in each particle that tends
to cancel that being imposed, as was shown in Example 8.4.3. In fact, the currents
induced in the particles and responsible for this induced moment are analogous
to the induced changes in electronic orbits responsible on the atomic scale for
diamagnetism[1].

9.5 FIELDS IN THE PRESENCE OF MAGNETICALLY
LINEAR INSULATING MATERIALS

In this and the next two sections, we study materials with the linear magnetization
characteristic of (9.4.4). With the understanding that µ is a prescribed function of
position, B = µH, the MQS forms of Ampère’s law and the flux continuity law are
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∇×H = J (1)

∇ · µH = 0 (2)

In this chapter, we assume that the current density J is confined to perfect conduc-
tors. We will find in Chap. 10 that a time-varying magnetic flux implies an electric
field. Thus, wherever a conducting material finds itself in a time-varying field, there
is the possibility that eddy currents will be induced. It is for this reason that the
magnetizable materials considered in this and the next sections are presumed to be
insulating. If the fields of interest vary slowly enough, these induced currents can
be negligible.

Ferromagnetic materials are often metallic, and hence also conductors. How-
ever, materials can be made both readily magnetizable and insulating by breaking
up the conduction paths. By engineering at the molecular or domain scale, or even
introducing laminations of magnetizable materials, the material is rendered essen-
tially free of a current density J. The considerations that determine the thickness
of laminations used in transformers to prevent eddy currents will be taken up in
Chap. 10.

In the regions outside the perfect conductors carrying the current J of (1),
H is irrotational and B is solenoidal. Thus, we have a choice of representations.
Either, as in Sec. 8.3, we can use the scalar magnetic potential and let H = −∇Ψ,
or we can follow the lead from Sec. 8.6 and use the vector potential to represent
the flux density by letting B = ∇×A.

Where there are discontinuities in the permeability and/or thin coils modeled
by surface currents, the continuity conditions associated with Ampère’s law and
the flux continuity law are used. With B expressed using the linear magnetization
constitutive law, (1.4.16) and (9.2.10) become

n× (Ha −Hb) = K (3)

n · (µaHa − µbHb) = 0 (4)

The classification of physical configurations given in Sec. 6.5 for linearly polariz-
able materials is equally useful here. In the first of these, the region of interest is
of uniform permeability. The laws summarized by (1) and (2) are the same as for
free space except that µo is replaced by µ, so the results of Chap. 6 apply directly.
Configurations made up of materials having essentially uniform permeabilities are
of the greatest practical interest by far. Thus, piece-wise uniform systems are the
theme of Secs. 9.6 and 9.7. The smoothly inhomogeneous systems that are the last
category in Fig. 9.5.1 are of limited practical interest. However, it is sometimes use-
ful, perhaps in numerical simulations, to regard the uniform and piece-wise uniform
systems as special cases of the smoothly nonuniform systems.
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Fig. 9.5.1 (a) Uniform permeability, (b) piece-wise uniform permeability,
and (c) smoothly inhomogeneous configurations involving linearly magnetiz-
able material.

Inductance in the Presence of Linearly Magnetizable Materials. In the
presence of linearly magnetizable materials, the magnetic flux density is again pro-
portional to the excitation currents. If fields are produced by a single perfectly
conducting coil, its inductance is the generalization of that introduced with (8.4.13).

L ≡ λ

i
=

∫
S
µH · da
i

(5)

The surface S spanning a contour defined by the perfectly conducting wire is the
same as that shown in Figs. 8.4.3 and 8.4.4. The effect of having magnetizable
material is, of course, represented in (5) by the effect of this material on the intensity,
direction, and distribution of B = µH.

For systems in the first category of Fig. 9.5.1, where the entire region occupied
by the field is filled by a material of uniform permeability µ, the effect of the
magnetization on the inductance is clear. The solutions to (1) and (2) for H are
not altered in the presence of the permeable material. It then follows from (5) that
the inductance is simply proportional to µ.

Because it imposes a magnetic field intensity that never leaves the core mate-
rial, the toroid of Example 9.4.1 is a special case of a piece-wise uniform magnetic
material that acts as if all of space were filled with the magnetizable material.
As shown by the following example, the inductance of the toroid is therefore also
proportional to µ.

Example 9.5.1. Inductance of a Toroid

If the toroidal core of the winding shown in Fig. 9.4.1 and used in the experiment
of Fig. 9.4.3 were made a linearly magnetizable material, what would be the voltage
needed to supply the driving current i? If we define the flux linkage of the driving
coil as λ1,

v =
dλ1

dt
(6)
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Fig. 9.5.2 (a) Solenoid of length d and radius a filled with material
of uniform permeability µ. (b) Solenoid of (a) filled with artificial dia-
magnetic material composed of an array of metal spheres having radius
R and spacing s.

We now find the inductance L, where λ1 = Li, and hence determine the required
input voltage.

The flux linked by one turn of the driving coil is essentially the cross-sectional
area of the toroid multiplied by the flux density. The total flux linked is this quantity
multiplied by the total turns N1.

λ1 = N1

(1

4
πw2

)
B (7)

According to the linear constitutive law, the flux density follows from the field
intensity as B = µH. For the toroid, H is related to the driving current i by (9.4.1),
so

B = µH = µ
( N1

2πR

)
i (8)

The desired relation is the combination of these last two expressions.

λ1 = Li; L ≡ 1

8
µ
w2

R
N2

1 (9)

As predicted, the inductance is proportional to µ. Although inductances are gen-
erally increased by bringing paramagnetic and especially ferromagnetic materials
into their fields, the effect of introducing ferromagnetic materials into coils can be
less dramatic than in the toroidal geometry for reasons discussed in Sec. 9.6. The
dependence of the inductance on the square of the turns results because not only is
the field induced by the current i proportional to the number of turns, but so too is
the amount of the resulting flux that is linked by the coil.

Example 9.5.2. An Artificial Diamagnetic Material

The cross-section of a long (ideally “infinite”) solenoid filled with material of uniform
permeability is shown in Fig. 9.5.2a. The azimuthal surface current Kφ results in
an axial magnetic field intensity Hz = Kφ. We presume that the axial length d is
very large compared to the radius a of the coil. Thus, the field inside the coil is
uniform while that outside is zero. To see that this simple field solution is indeed
correct, note that it is both irrotational and solenoidal everywhere except at the
surface r = a, and that there the boundary conditions, (3) and (4), are satisfied.

For an n-turn coil carrying a current i, the surface current density Kφ = ni/d.
Thus, the magnetic field intensity is related to the terminal current by

Hz =
ni

d
(10)
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Fig. 9.5.3 Inductance of the coil in Fig. 9.5.2b is decreased because
perfectly conducting spheres tend to reduce its effective cross-sectional
area.

In the linearly magnetized core region, the flux density is Bz = µHz, and so it is
also uniform. As a result, the flux linked by each turn is simply πa2Bz and the total
flux linked by the coil is

λ = nπa2µHz (11)

Substitution from (1) then gives

λ = Li, L ≡ πµa2n2

d
(12)

where L is the inductance of the coil. Because the coil is assumed to be very long,
its inductance is increased by a factor µ/µo over that of a coil in free space, much
as for the toroid of Example 9.5.1.

Now suppose that the permeable material is actually a cubic array of metal
spheres, each having a radius R, as shown in Fig. 9.5.2b. The frequency of the
current i is presumably high enough so that each sphere can be regarded as perfectly
conducting in the MQS sense discussed in Sec. 8.4. The spacing s of the spheres is
large compared to their radius, so that the field of one sphere does not produce
an appreciable field at the positions of its neighbors. Each sphere finds itself in an
essentially uniform magnetic field.

The dipole moment of the currents induced in a sphere by a magnetic field
that is uniform at infinity was calculated in Example 8.4.3, (8.4.21).

m = −2πHoR
3 (13)

Because the induced currents must produce a field that bucks out the imposed field,
a negative moment is induced by a positive field.

By definition, the magnetization density is the number of magnetic moments
per unit volume. For a cubic array with spacing s between the sphere centers, the
number per unit volume is s−3. Thus, the magnetization density is simply

M = Nm = −2πHo

(R
s

)3
(14)

Comparison of this expression to (9.4.3), which defines the susceptibility χm, shows
that

χm = −2π
(R
s

)3
(15)

As we might have expected from the antiparallel moment induced in a sphere by
an imposed field, the susceptibility is negative. The permeability, related to χm by
(9.4.4), is therefore less than 1.

µ = µo(1 + χm) = µo

[
1− 2π

(R
s

)3]
(16)

The perfectly conducting spheres effectively reduce the cross-sectional area
of the flux, as suggested by Fig. 9.5.3, and hence reduce the inductance. With the
introduction of the array of metal spheres, the inductance goes from a value given
by (12) with µ = µo to one with µ given by (16).
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Fig. 9.5.4 Experiment to measure the decrease of inductance that
results when the artificial diamagnetic array of Fig. 9.5.2b is inserted
into a solenoid.

Faraday’s law of induction is also responsible for diamagnetism due to atomic
moments. Instead of inducing circulating conduction currents in a metal sphere, as
in this example, the time-varying field induces changes in the orbits of electrons
about the nucleus that, on the average, contribute an antiparallel magnetic moment
to the atom.

The following demonstration is the MQS analog of the EQS Demonstration
6.6.1. In the latter, a measurement was made of the change in capacitance caused
by inserting an artificial dielectric between capacitor plates. Here the change in in-
ductance is observed as an artificial diamagnetic material is inserted into a solenoid.
Although the spheres are modeled as perfectly conducting in both demonstrations,
we will find in Chap. 10 that the requirements to justify this assumption in this
MQS example are very different from those for its EQS counterpart.

Demonstration 9.5.1. Artificial Diamagnetic Material

The experiment shown in Fig. 9.5.4 measures the change in solenoid inductance
when an array of conducting spheres is inserted. The coil is driven at the angular
frequency ω by an oscillator-amplifier. Over the length d shown in the figure, the
field tends to be uniform. The circuit shown schematically in Fig. 9.5.5 takes the
form of a bridge with the inductive reactance of L2 used to balance the reactance
of the central part of the empty solenoid.

The input resistances of the oscilloscope’s balanced amplifiers, represented by
Rs, are large compared to the inductor reactances. These branches dominate over
the inductive reactances in determining the current through the inductors and, as
a result, the inductor currents remain essentially constant as the inductances are
varied. With the reactance of the inductor L2 balancing that of the empty solenoid,
these currents are equal and the balanced amplifier voltage vo = 0. When the array of
spheres is inserted into the solenoid, the currents through both legs remain essentially
constant. Thus, the resulting voltage vo is the change in voltage across the solenoid
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Fig. 9.5.5 Bridge used to measure the change in inductance in the
experiment of Fig. 9.5.4.

caused by its change in inductance ∆L.

vo = (∆L)
di

dt
→ |v̂o| = ω(∆L)|̂i| (17)

In the latter expression, the current and voltage indicated by a circumflex are either
peak or rms sinusoidal steady state amplitudes. In view of (12), this expression
becomes

|v̂o| = ω(µ− µo)
πa2n2

d
|̂i| (18)

In terms of the sphere radius and spacing, the change in permeability is given
by (16), so the voltage measured by the balanced amplifiers is

|v̂o| = 2π2ωa2n2

d

(R
s

)3 |̂i| (19)

To evaluate this expression, we need only the frequency and amplitude of the coil
current, the number of turns in the length d, and other dimensions of the system.

Induced Magnetic Charge: Demagnetization. The complete analogy be-
tween linearly polarized and linearly magnetized materials is profitably carried yet
another step. Magnetic charge is induced where µ is spatially varying, and hence
the magnetizable material can introduce sources that revise the free space field dis-
tribution. In the linearly magnetizable material, the distribution of these sources is
not known until after the fields have been determined. However, it is often helpful
in qualitatively predicting the field effects of magnetizable materials to picture the
distribution of induced magnetic charges.

Using a vector identity, (2) can be written

µ∇ ·H + H · ∇µ = 0 (20)

Rearrangement of this expression shows that the source of µoH, the magnetic charge
density, is

∇ · µoH = −µo

µ
H · ∇µ ≡ ρm (21)
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Most often we deal with piece-wise uniform systems where variations in µ are con-
fined to interfaces. In that case, it is appropriate to write the continuity of flux
density condition in the form

n · µo(Ha −Hb) = n · µoHa
(
1− µa

µb

) ≡ σsm (22)

where σsm is the magnetic surface charge density. The following illustrates the use
of this relation.

Illustration. The Demagnetization Field

A sphere of material having uniform permeability µ is placed in an initially uniform
upward-directed field. It is clear from (21) that there are no distortions of the uniform
field from magnetic charge induced in the volume of the material. Rather, the sources
of induced field are located on the surface where the imposed field has a component
normal to the permeability discontinuity. It follows from (22) that positive and
negative magnetic surface charges are induced on the top and bottom parts of the
surface, respectively.

The H field caused by the induced magnetic surface charges originates at the
positive charge at the top and terminates on the negative charge at the bottom.
This is illustrated by the magnetization analog of the permanently polarized sphere,
considered in Example 6.3.1. Our point here is that the field resulting from these
induced magnetic surface charges tends to cancel the one imposed. Thus, the field
intensity available to magnetize the material is reduced.

The remarks following (6.5.11) apply equally well here. The roles of E, D, and
ε are taken by H, B, and µ. In regions of uniform permeability, (1) and (2) are the
same laws considered in Chap. 8, and where the current density is zero, Laplace’s
equation governs. As we now consider piece-wise nonuniform systems, the effect of
the material is accounted for by the continuity conditions.

9.6 FIELDS IN PIECE-WISE UNIFORM MAGNETICALLY
LINEAR MATERIALS

Whether we choose to represent the magnetic field in terms of the magnetic scalar
potential Ψ or the vector potential A, in a current-free region having uniform
permeability it assumes a distribution governed by Laplace’s equation. That is,
where µ is constant and J = 0, (9.5.1) and (9.5.2) require that H is both solenoidal
and irrotational. If we let H = −∇Ψ, the field is automatically irrotational and

∇2Ψ = 0 (1)

is the condition that it be solenoidal. If we let µH = ∇×A, the field is automatically
solenoidal. The condition that it also be irrotational (together with the requirement
that A be solenoidal) is then2

2 ∇×∇×A = ∇(∇ ·A)−∇2A
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∇2A = 0 (2)

Thus, in Cartesian coordinates, each component of A satisfies the same equation
as does Ψ.

The methods illustrated for representing piece-wise uniform dielectrics in Sec.
6.6 are applicable here as well. The major difference is that here, currents are used
to excite the field whereas there, unpaired charges were responsible for inducing the
polarization. The sources are now the current density and surface current density
rather than unpaired volume and surface charges. Thus, the external excitations
drive the curl of the field, in accordance with (9.5.1) and (9.5.3), rather than its
divergence.

The boundary conditions needed at interfaces between magnetically linear
materials are

n · (µaHa − µbHb) = 0 (3)

for the normal component of the magnetic field intensity, and

n× (Ha −Hb) = K (4)

for the tangential component, in the presence of a surface current. As before, we
shall find it convenient to represent windings by equivalent surface currents.

Example 9.6.1. The Spherical Coil with a Permeable Core

The spherical coil developed in Example 8.5.1 is now filled with a uniform core
having the permeability µ. With the field intensity again represented in terms of the
magnetic scalar potential, H = −∇Ψ, the analysis differs only slightly from that
already carried out. Laplace’s equation, (1), again prevails inside and outside the
coil. At the coil surface, the tangential H again suffers a discontinuity equal to the
surface current density in accordance with Ampère’s continuity condition, (4). The
effect of the permeable material is only felt through the flux continuity condition,
(3), which requires that

µoH
a
r − µHb

r = 0 (5)

Thus, the normal flux continuity condition of (8.5.12) is generalized to include the
effect of the permeable material by

−µC
R

=
2µoA

R
(6)

and it follows that the coefficients needed to evaluate Ψ, and hence H, are now

A =
Ni

2
(
1 + 2µo

µ

) ; C = −µo

µ

Ni(
1 + 2µo

µ

) (7)
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Substitution of these coefficients into (8.5.10) and (8.5.11) gives the field inside and
outside the spherical coil.

H =





µo
µ

Ni(
1+

2µo
µ

)
R

(ir cos θ − iθ sin θ) = µo
µ+2µo

Ni
R

iz; r < R

Ni

2

(
1+

2µo
µ

)
R

(
R
r

)3
(ir2 cos θ + iθ sin θ); r > R

(8)

If the coil is highly permeable, these expressions show that the field intensity inside is
much less than that outside. In the limit of “infinite permeability,” where µo/µ→ 0,
the field inside is zero while that outside becomes

Hθ(r = R) =
Ni

2R
sin θ (9)

This is the surface current density, (8.5.6). A surface current density backed by a
highly permeable material terminates the tangential magnetic field. Thus, Ampère’s
continuity condition relating the fields to each side of the surface is replaced by a
boundary condition on the field on the low permeability side of the interface. Using
this boundary condition, that Ha

θ be equal to the given Kθ, (8.5.6), the solution for
the exterior Ψ and H can be written by inspection in the limit when µ→∞.

Ψa =
Ni

2

(R
r

)2
cos θ; H =

Ni

2R

(R
r

)3
(ir2 cos θ + iθ sin θ) (10)

The interior magnetic flux density can in turn be approximated by using this exterior
field to compute the flux density normal to the surface. Because this flux density
must be the same inside, finding the interior field reduces to solving Laplace’s equa-
tion for Ψ subject to the boundary condition that

−µ∂Ψb

∂r
(r = R) = µo

Ni

R
cos θ (11)

Again, the solution represents a uniform field and can be written by inspection.

Ψb = −µo

µ
Ni

r

R
cos θ (12)

The H field, the gradient of the above expression, is indeed that given by (8a) in the
limit where µo/µ is small. Note that the interior H goes to zero as the permeability
goes to infinity, but the interior flux density B remains finite. This fact makes it
clear that the inductance of the coil must remain finite, even in the limit where
µ→∞.

To determine an expression for the inductance that is valid regardless of the
core permeability, (8a) can be used to evaluate (8.5.18). Note that the internal flux
density B that replaces µoHz is 3µ/[µ+2µo] times larger than the flux density in the
absence of the magnetic material. This enhancement factor increases monotonically
with the ratio µ/µo but reaches a maximum of only 3 in the limit where this ratio
goes to infinity. Once again, we have evidence of the core demagnetization caused
by the surface magnetic charge induced on the surface of the sphere.

With the uniformity of the field inside the sphere known in advance, a much
simpler derivation of (8a) gives further insight into the role of the magnetization.
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Fig. 9.6.1 Sphere of material having uniform permeability with N -
turn coil of radius R at its center. Because R ¿ b, the coil can be
modeled as a dipole. The surrounding region has permeability µa.

Thus, in the core, the H-field is the superposition of two fields. The first is caused
by the surface current, and given by (8a) with µ = µo.

Hi =
Ni

3R
iz (13)

The second is due to the uniform magnetization M = M iz, which is given by the
magnetization analog to (6.3.15) (E → H, P → µoM, εo → µo).

HM = −Mo

3
iz (14)

The net internal magnetic field intensity is the sum of these.

H =
(Ni
3R

− Mo

3

)
iz (15)

Only now do we introduce the constitutive law relating Mo to Hz, Mo = χmHz. [In
Sec. 9.8 we will exploit the fact that the relation could be nonlinear.] If this law is
introduced into (15), and that expression solved for Hz, a result is obtained that is
familiar from from (8a).

Hz =
Ni/3R

1 + 1
3
χm

=
µo

µ

Ni/R(
1 + 2µo

µ

) (16)

This last calculation again demonstrates how the field Ni/3R is reduced by the
magnetization through the “feedback factor” 1/[1 + (χm/3)].

Magnetic circuit models, introduced in the next section, exploit the capacity
of highly permeable materials to guide the magnetic flux. The example considered
next uses familiar solutions to Laplace’s equation to illustrate how this guiding
takes place. We will make reference to this case study when the subject of magnetic
circuits is initiated.

Example 9.6.2. Field Model for a Magnetic Circuit

A small coil with N turns and excited by a current i is used to make a magnetic
field in a spherically shaped material of permeability µb. As shown in Fig. 9.6.1, the
coil has radius R, while the µ sphere has radius b and is surrounded by a magnetic
medium of permeability µa.
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Because the coil radius is small compared to that of the sphere, it will be
modeled as a dipole having its moment m = πR2i in the z direction. It follows from
(8.3.13) that the magnetic scalar potential for this dipole is

Ψdipole =
R2Ni

4

cos θ

r2
(17)

No surface current density exists at the surface of the sphere. Thus, Ampère’s con-
tinuity law requires that

Ha
θ −Hb

θ = 0 → Ψa = Ψb at r = b (18)

Also, at the interface, the flux continuity condition is

µaH
a
r − µbH

b
r = 0 at r = b (19)

Finally, the only excitation of the field is the coil at the origin, so we require that
the field decay to zero far from the sphere.

Ψa → 0 as r →∞ (20)

Given that the scalar potential has the θ dependence cos(θ), we look for solu-
tions having this same θ dependence. In the exterior region, the solution representing
a uniform field is ruled out because there is no field at infinity. In the neighborhood
of the origin, we know that Ψ must approach the dipole field. These two conditions
are implicit in the assumed solutions

Ψa = A
cos θ

r2
; Ψb =

R2Ni

4

cos θ

r2
+ Cr cos θ (21)

while the coefficients A and C are available to satisfy the two remaining continuity
conditions, (18) and (19). Substitution gives two expressions which are linear in A
and C and which can be solved to give

A =
3

4

µbNiR
2

(µb + 2µa)
; C =

Ni

b3
R2(µb − µa)

2(µb + 2µa)
(22)

We thus conclude that the scalar magnetic potential outside the sphere is that of a
dipole

Ψa =
3

4

µbNi

(µb + 2µa)

(R
r

)2
cos θ (23)

while inside it is that of a dipole plus that of a uniform field.

Ψb =
Ni

4

[(R
r

)2
cos θ +

2(µb − µa)

(µb + 2µa)

(R
b

)2 r

b
cos θ

]
(24)

For increasing values of the relative permeability, the equipotentials and field
lines are shown in Fig. 9.6.2. With µb/µa = 1, the field is simply that of the dipole
at the origin. In the opposite extreme, where the ratio of permeabilities is 100, it has
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Fig. 9.6.2 Magnetic potential and lines of field intensity in and around
the magnetizable sphere of Fig. 9.6.1. (a) With the ratio of permeabilities
equal to 1, the dipole field extends into the surrounding free space region
without modification. (b) With µb/µa = 3, field lines tend to be more
confined to the sphere. (c) With µb/µa = 100, the field lines (and hence
the flux lines) tend to remain inside the sphere.

become clear that the interior field lines tend to become tangential to the spherical
surface.

The results of Fig. 9.6.2 can be elaborated by taking the limit of µb/µa going
to infinity. In this limit, the scalar potentials are

Ψa =
3

4
Ni

(R
r

)2
cos θ (25)

Ψb =
Ni

r

(R
b

)2[( b
r

)2
+ 2

(r
b

)]
cos θ (26)

In the limit of a large permeability of the medium in which the coil is imbedded
relative to that of the surrounding medium, guidance of the magnetic flux occurs
by the highly permeable medium. Indeed, in this limit, the flux produced by the
coil goes to infinity, whereas the flux of the field

∫
H · da escaping from the sphere

(the so-called “fringing”) stays finite, because the exterior potential stays finite. The
magnetic flux

∫
B · da is guided within the sphere, and practically no magnetic flux

escapes. The flux lines on the inside surface of the highly permeable sphere can be
practically tangential as indeed predicted by (26).

Another limit of interest is when the outside medium is highly permeable and
the coil is situated in a medium of low permeability (like free space). In this limit,
one obtains

Ψa = 0 (27)

Ψb =
Ni

4

(R
b

)2[( b
r

)2 − r

b

]
cos θ (28)

The surface at r = b becomes an equipotential of Ψ. The magnetic field is perpen-
dicular to the surface. The highly permeable medium behaves in a way analogous
to a perfect conductor in the electroquasistatic case.



32 Magnetization Chapter 9

Fig. 9.6.3 Graphical representation of the relations between components of
H at an interface between a medium of permeability µa and a material having
permeability µb.

In order to gain physical insight, two types of approximate boundary condi-
tions have been illustrated in the previous example. These apply when one region
is of much greater permeability than another. In the limit of infinite permeability
of one of the regions, the two continuity conditions at the interface between these
regions reduce to one boundary condition on the fields in one of the regions. We
conclude this section with a summary of these boundary conditions.

At a boundary between regions (a) and (b), having permeabilities µa and µb,
respectively, the normal flux density µHn is continuous. If there is no surface current
density, the tangential components Ht are also continuous. Thus, the magnetic field
intensity to either side of the interface is as shown in Fig. 9.6.3. With the angles
between H and the normal on each side of the interface denoted by α and β,
respectively,

tanα =
Ha

t

Ha
n

; tanβ =
Hb

t

Hb
n

(29)

The continuity conditions can be used to express tan(α) in terms of the fields on
the (b) side of the interface, so it follows that

tanα
tanβ

=
µa

µb
(30)

In the limit where µa/µb → 0, there are therefore two possibilities. Either tan(α) →
0, so that α → 0 and H in region (a) becomes perpendicular to the boundary, or
tan(β) → ∞ so that β → 90 degrees and H in region (b) becomes tangential to
the boundary. Which of these two possibilities pertains depends on the excitation
configuration.

Excitation in Region of High Permeability. In these configurations, a closed
contour can be found within the highly permeable material that encircles current-
carrying wires. For the coil at the center of the highly permeable sphere considered
in Example 9.6.2, such a contour is as shown in Fig. 9.6.4. As µb → ∞, the flux
density B also goes to infinity. In this limit, the flux escaping from the body can
be ignored compared to that guided by the body. The boundary is therefore one at
which the interior flux density is essentially tangential.

n ·B = 0 (31)
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Fig. 9.6.4 Typical contour in configuration of Fig. 9.6.1 encircling current
without leaving highly permeable material.

Fig. 9.6.5 (a) With coil in the low permeability region, the contour encircling
the current must pass through low permeability material. (b) With coil on the
surface between regions, contours encircling current must still leave highly
permeable region.

Once the field has been determined in the infinitely permeable material, continuity
of tangential H is used to provide a boundary condition on the free space side of
the interface.

Excitation in Region of Low Permeability. In this second class of con-
figurations, there is no closed contour within the highly permeable material that
encircles a current-carrying wire. If the current-carrying wires are within the free
space region, as in Fig. 9.6.5a, a contour must leave the highly permeable material
to encircle the wire. In the limit where µb →∞, the magnetic field intensity in the
highly permeable material approaches zero, and thus H on the interior side of the
interface becomes perpendicular to the boundary.

n×H = 0 (32)

With wires on the interface between regions comprising a surface current den-
sity, as illustrated in Fig. 9.6.5b, it is still not possible to encircle the current without
following a contour that leaves the highly permeable material. Thus, the case of a
surface current is also in this second category. The tangential H is terminated by
the surface current density. Thus, the boundary condition on H on the interior side
of the interface carrying the surface current K is

n×H = K (33)

This boundary condition was illustrated in Example 9.6.1.
Once the fields in the interior region have been found, continuity of normal

flux density provides a boundary condition for determining the flux distribution in
the highly permeable region.
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Fig. 9.7.1 Highly magnetizable core in which flux induced by winding can
circulate in two paths.

Fig. 9.7.2 Cross-section of highly permeable core showing contour C1 spanned
by surface S1, used with Ampére’s integral law, and closed surface S2, used
with the integral flux continuity law.

9.7 MAGNETIC CIRCUITS

The availability of relatively inexpensive magnetic materials, with magnetic suscep-
tibilities of the order of 1000 or more, allows the production of high magnetic flux
densities with relatively small currents. Devices designed to exploit these materials
include compact inductors, transformers, and rotating machines. Many of these are
modeled as the magnetic circuits that are the theme of this section.

A magnetic circuit typical of transformer cores is shown in Fig. 9.7.1. A core of
high permeability material has a pair of rectangular windows cut through its center.
Wires passing through these windows are wrapped around the central column. The
flux generated by this coil tends to be guided by the magnetizable material. It
passes upward through the center leg of the material, and splits into parts that
circulate through the legs to left and right.

Example 9.6.2, with its highly permeable sphere excited by a small coil, offered
the opportunity to study the trapping of magnetic flux. Here, as in that case with
µb/µa À 1, the flux density inside the core tends to be tangential to the surface.
Thus, the magnetic flux density is guided by the material and the field distribution
within the core tends to be independent of the exterior configuration.

In situations of this type, where the ducting of the magnetic flux makes it
possible to approximate the distribution of magnetic field, the MQS integral laws
serve much the same purpose as do Kirchhoff’s laws for electrical circuits.
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Fig. 9.7.3 Cross-section of magnetic circuit used to produce a mag-
netic field intensity Hg in an air gap.

The MQS form of Ampère’s integral law applies to a contour, such as C1 in
Fig. 9.7.2, following a path of circulating magnetic flux.

∮

C1

H · ds =
∫

S1

J · da (1)

The surface enclosed by this contour in Fig. 9.7.2 is pierced N times by the current
carried by the wire, so the surface integral of the current density on the right in (1)
is, in this case, Ni. The same equation could be written for a contour circulating
through the left leg, or for one circulating around through the outer legs. Note that
the latter would enclose a surface S through which the net current would be zero.

If Ampère’s integral law plays a role analogous to Kirchhoff’s voltage law, then
the integral law expressing continuity of magnetic flux is analogous to Kirchhoff’s
current law. It requires that through a closed surface, such as S2 in Fig. 9.7.2, the
net magnetic flux is zero. ∮

S2

B · da = 0 (2)

As a result, the flux entering the closed surface S2 in Fig. 9.7.2 through the central
leg must be equal to that leaving to left and right through the upper legs of the
magnetic circuit. We will return to this particular magnetic circuit when we discuss
transformers.

Example 9.7.1. The Air Gap Field of an Electromagnet

The magnetic circuit of Fig. 9.7.3 might be used to produce a high magnetic field
intensity in the narrow air gap. An N -turn coil is wrapped around the left leg of
the highly permeable core. Provided that the length g of the air gap is not too
large, the flux resulting from the current i in this winding is largely guided along
the magnetizable material.

By approximating the fields in sections of the circuit as being essentially uni-
form, it is possible to use the integral laws to determine the field intensity in the
gap. In the left leg, the field is approximated by the constant H1 over the length
l1 and cross-sectional area A1. Similarly, over the lengths l2, which have the cross-
sectional areas A2, the field intensity is approximated by H2. Finally, under the
assumption that the gap width g is small compared to the cross-sectional dimen-
sions of the gap, the field in the gap is represented by the constant Hg. The line
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integral of H in Ampère’s integral law, (1), is then applied to the contour C that
follows the magnetic field intensity around the circuit to obtain the left-hand side
of the expression

H1ll + 2H2l2 + gHg = Ni (3)

The right-hand side of this equation represents the surface integral of J · da for a
surface S having this contour as its edge. The total current through the surface is
simply the current through one wire multiplied by the number of times it pierces
the surface S.

We presume that the magnetizable material is operated under conditions of
magnetic linearity. The constitutive law then relates the flux density and field in-
tensity in each of the regions.

B1 = µH1; B2 = µH2; Bg = µoHg (4)

Continuity of magnetic flux, (2), requires that the total flux through each section
of the circuit be the same. With the flux densities expressed using (4), this requires
that

A1µH1 = A2µH2 = A2µoHg (5)

Our objective is to determine Hg. To that end, (5) is used to write

H2 =
µo

µ
Hg; H1 =

µo

µ

A2

A1
Hg (6)

and these relations used to eliminate H1 and H2 in favor of Hg in (3). From the
resulting expression, it follows that

Hg =
Ni(

µo
µ

A2
A1
l1 + 2µo

µ
l2 + g

) (7)

Note that in the limit of infinite core permeability, the gap field intensity is simply
Ni/g.

If the magnetic circuit can be broken into sections in which the field intensity
is essentially uniform, then the fields may be determined from the integral laws.
The previous example is a case in point. A more general approach is required if the
core is of complex geometry or if a more accurate model is required.

We presume throughout this chapter that the magnetizable material is suf-
ficiently insulating so that even if the fields are time varying, there is no current
density in the core. As a result, the magnetic field intensity in the core can be
represented in terms of the scalar magnetic potential introduced in Sec. 8.3.

H = −∇Ψ (8)

According to Ampère’s integral law, (1), integration of H · ds around a closed
contour must be equal to the “Ampère turns” Ni passing through the surface
spanning the contour. With H expressed in terms of Ψ, integration from (a) to (b)
around a contour such as C in Fig. 9.7.4, which encircles a net current equal to the
product of the turns N and the current per turn i, gives Ψa − Ψb ≡ ∆Ψ = Ni.
With (a) and (b) adjacent to each other, it is clear that Ψ is multiple-valued. To
specify the principal value of this multiple-valued function we must introduce a
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Fig. 9.7.4 Typical magnetic circuit configuration in which the magnetic
scalar potential is first determined inside the highly magnetizable material.
The principal value of the multivalued scalar potential inside the core is taken
by not crossing the surface Sd.

discontinuity in Ψ somewhere along the contour. In the circuit of Fig. 9.7.4, this
discontinuity is defined to occur across the surface Sd.

To make the line integral of H · ds from any point just above the surface
Sd around the circuit to a point just below the surface equal to Ni, the potential
is required to suffer a discontinuity ∆Ψ = Ni across Sd. Everywhere inside the
magnetic material, Ψ satisfies Laplace’s equation. If, in addition, the normal flux
density on the walls of the magnetizable material is required to vanish, the distribu-
tion of Ψ within the core is uniquely determined. Note that only the discontinuity
in Ψ is specified on the surface Sd. The magnitude of Ψ on one side or the other is
not specified. Also, the normal derivative of Ψ, which is proportional to the normal
component of H, must be continuous across Sd.

The following simple example shows how the scalar magnetic potential can
be used to determine the field inside a magnetic circuit.

Example 9.7.2. The Magnetic Potential inside a Magnetizable Core

The core of the magnetic circuit shown in Fig. 9.7.5 has outer and inner radii
a and b, respectively, and a length d in the z direction that is large compared to
a. A current i is carried in the z direction through the center hole and returned
on the outer periphery by N turns. Thus, the integral of H · ds over a contour
circulating around the magnetic circuit must be Ni, and a surface of discontinuity
Sd is arbitrarily introduced as shown in Fig. 9.7.5. With the boundary condition of
no flux leakage, ∂Ψ/∂r = 0 at r = a and at r = b, the solution to Laplace’s equation
within the core is uniquely specified.

In principle, the boundary value problem can be solved even if the geometry is
complicated. For the configuration shown in Fig. 9.7.5, the requirement of no radial
derivative suggests that Ψ is independent of r. Thus, with A an arbitrary coefficient,
a reasonable guess is

Ψ = Aφ = −Ni
( φ
2π

)
(9)

The coefficient A has been selected so that there is indeed a discontinuity Ni in Ψ
between φ = 2π and φ = 0.

The magnetic field intensity given by substituting (9) into (8) is

H =
A

r
iφ =

Ni

2πr
iφ (10)

Note that H is continuous, as it should be.
Now that the inside field has been determined, it is possible, in turn, to find the

fields in the surrounding free space regions. The solution for the inside field, together
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Fig. 9.7.5 Magnetic circuit consisting of a core having the shape of
a circular cylindrical annulus with an N-turn winding wrapped around
half of its circumferential length. The length of the system into the paper
is very long compared to the outer radius a.

with the given surface current distribution at the boundary between regions, provides
the tangential field at the boundaries of the outside regions. Within an arbitrary
constant, a boundary condition on Ψ is therefore specified. In the outside regions,
there is no closed contour that both stays within the region and encircles current.
In these regions, Ψ is continuous. Thus, the problem of finding the “leakage” fields
is reduced to finding the boundary value solution to Laplace’s equation.

This inside-outside approach gives an approximate field distribution that is
justified only if the relative permeability of the core is very large. Once the outside
field is approximated in this way, it can be used to predict how much flux has left
the magnetic circuit and hence how much error there is in the calculation. Generally,
the error will be found to depend not only on the relative permeability but also on
the geometry. If the magnetic circuit is composed of legs that are long and thin,
then we would expect the leakage of flux to be large and the approximation of the
inside-outside approach to become invalid.

Electrical Terminal Relations and Characteristics. Practical inductors
(chokes) often take the form of magnetic circuits. With more than one winding on
the same magnetic circuit, the magnetic circuit serves as the core of a transformer.
Figure 9.7.6 gives the schematic representation of a transformer. Each winding is
modeled as perfectly conducting, so its terminal voltage is given by (9.2.12).

v1 =
dλ1

dt
; v2 =

dλ2

dt
(11)

However, the flux linked by one winding is due to two currents. If the core
is magnetically linear, we have a flux linked by the first coil that is the sum of a
flux linkage L11i1 due to its own current and a flux linkage L12 due to the current
in the second winding. The situation for the second coil is similar. Thus, the flux
linkages are related to the terminal currents by an inductance matrix.[

λ1

λ2

]
=

[
L11 L12

L21 L22

] [
i1
i2

]
(12)
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Fig. 9.7.6 Circuit representation of a transformer as defined by the terminal
relations of (12) or of an ideal transformer as defined by (13).

The coefficients Lij are functions of the core and coil geometries and properties
of the material, with L11 and L22 the familiar self-inductances and L12 and L21 the
mutual inductances.

The word “transformer” is commonly used in two ways, each often represented
schematically, as in Fig. 9.7.6. In the first, the implication is only that the terminal
relations are as summarized by (12). In the second usage, where the device is said
to be an ideal transformer, the terminal relations are given as voltage and current
ratios. For an ideal transformer,

i2
i1

= −N1

N2
;

v2
v1

=
N2

N1
(13)

Presumably, such a device can serve to step up the voltage while stepping down the
current. The relationships between terminal voltages and between terminal currents
is linear, so that such a device is “ideal” for processing signals.

The magnetic circuit developed in the next example is that of a typical trans-
former. We have two objectives. First, we determine the inductances needed to
complete (12). Second, we define the conditions under which such a transformer
operates as an ideal transformer.

Example 9.7.3. A Transformer

The core shown in Fig. 9.7.7 is familiar from the introduction to this section, Fig.
9.7.1. The “windows” have been filled up by a pair of windings, having the turns N1

and N2, respectively. They share the center leg of the magnetic circuit as a common
core and generate a flux that circulates through the branches to either side.

The relation between the terminal voltages for an ideal transformer depends
only on unity coupling between the two windings. That is, if we call Φλ the magnetic
flux through the center leg, the flux linking the respective coils is

λ1 = N1Φλ; λ2 = N2Φλ (14)

These statements presume that there is no leakage flux which would link one coil
but bypass the other.

In terms of the magnetic flux through the center leg, the terminal voltages
follow from (14) as

v1 = N1
dΦλ

dt
; v2 = N2

dΦλ

dt
(15)

From these expressions, without further restrictions on the mode of operation, fol-
lows the relation between the terminal voltages of (13).
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Fig. 9.7.7 In a typical transformer, coupling is optimized by wrapping
the primary and secondary on the same core. The inset shows how full
use is made of the magnetizable material in the core manufacture.

We now use the integral laws to determine the flux linkages in terms of the
currents. Because it is desirable to minimize the peak magnetic flux density at each
point throughout the core, and because the flux through the center leg divides evenly
between the two circuits, the cross-sectional areas of the return legs are made half
as large as that of the center leg.3 As a result, the magnitude of B, and hence H,
can be approximated as constant throughout the core. [Note that we have now used
the flux continuity condition of (2).]

With the average length of a circulating magnetic field line taken as l, Ampère’s
integral law, (1), gives

Hl = N1i1 +N2i2 (16)

In view of the presumed magnetic linearity of the core, the flux through the cross-
sectional area A of the center leg is

Φλ = AB = AµH (17)

and it follows from these last two expressions that

Φλ =
AµN1

l
i1 +

AµN2

l
i2. (18)

Multiplication by the turns N1 and then N2, respectively, gives the flux linkages λ1

and λ2.

λ1 =

(
AµN2

1

l

)
i1 +

(
AµN1N2

l

)
i2

λ2 =

(
AµN1N2

l

)
i1 +

(
AµN2

2

l

)
i2 (19)

3 To optimize the usage of core material, the relative dimensions are often taken as in the
inset to Fig. 9.7.7. Two cores are cut from rectangular sections measuring 6h × 8h. Once the
windows have been removed, the rectangle is cut in two, forming two “E” cores which can then
be combined with the “I’s” to form two complete cores. To reduce eddy currents, the core is often
made from varnished laminations. This will be discussed in Chap. 10.
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Fig. 9.7.8 Transformer with a load resistance R that includes the
internal resistance of the secondary winding.

Comparison of this expression with (12) identifies the self- and mutual inductances
as

L11 =
AµN2

1

l
; L22 =

AµN2
2

l
; L12 = L21 =

AµN1N2

l
(20)

Note that the mutual inductances are equal. In Sec. 11.7, we shall see that this is a
consequence of energy conservation. Also, the self-inductances are related to either
mutual inductance by √

L11L22 = L12 (21)

Under what conditions do the terminal currents obey the relations for an
“ideal transformer”?

Suppose that the (1) terminals are selected as the “primary” terminals of the
transformer and driven by a current source I(t), and that the terminals of the (2)
winding, the “secondary,” are connected to a resistive load R. To recognize that the
winding in fact has an internal resistance, this load includes the winding resistance
as well. The electrical circuit is as shown in Fig. 9.7.8.

The secondary circuit equation is

−i2R =
dλ2

dt
(22)

and using (12) with i1 = I, it follows that the secondary current i2 is governed by

L22
di2
dt

+ i2R = −L21
dI

dt
(23)

For purposes of illustration, consider the response to a drive that is in the sinusoidal
steady state. With the drive angular frequency equal to ω, the response has the
same time dependence in the steady state.

I = Re Îejωt ⇒ i2 = Re î2e
jωt (24)

Substitution into (23) then shows that the complex amplitude of the response is

î2 = − jωL21Î

jωL22 +R
= −N1

N2
î1

1

1 + R
jωL22

(25)

The ideal transformer-current relation is obtained if

ωL22

R
À 1 (26)

In that case, (25) reduces to

î2 = −N1

N2
î1 (27)
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When the ideal transformer condition, (26), holds, the first term on the left in (23)
overwhelms the second. What remains if the resistance term is neglected is the
statement

d

dt
(L21i1 + L22i2) =

dλ2

dt
= 0 (28)

We conclude that for ideal transformer operation, the flux linkages are negligible.
This is crucial to having a transformer behave as a linear device. Whether repre-
sented by the inductance matrix of (12) or by the ideal relations of (13), linear
operation hinges on having a linear relation between B and H in the core, (17). By
operating in the regime of (26) so that B is small enough to avoid saturation, (17)
tends to remain valid.

9.8 SUMMARY

The magnetization density M represents the density of magnetic dipoles. The mo-
ment m of a single microscopic magnetic dipole was defined in Sec. 8.2. With
µom ↔ p where p is the moment of an electric dipole, the magnetic and electric
dipoles play analogous roles, and so do the H and E fields. In Sec. 9.1, it was there-
fore natural to define the magnetization density so that it played a role analogous
to the polarization density, µoM ↔ P. As a result, the magnetic charge density
ρm was considered to be a source of ∇ · µoH. The relations of these sources to
the magnetization density are the first expressions summarized in Table 9.8.1. The
second set of relations are different forms of the flux continuity law, including the
effect of magnetization. If the magnetization density is given, (9.2.2) and (9.2.3)
are most useful. However, if M is induced by H, then it is convenient to introduce
the magnetic flux density B as a variable. The correspondence between the fields
due to magnetization and those due to polarization is B ↔ D.

The third set of relations pertains to linearly magnetizable materials. There
is no magnetic analog to the unpaired electric charge density.

In this chapter, the MQS form of Ampère’s law was also required to determine
H.

∇×H = J (1)

In regions where J=0, H is indeed analogous to E in the polarized EQS systems of
Chap. 6. In any case, if J is given, or if it is on perfectly conducting surfaces, its
contribution to the magnetic field intensity is determined as in Chap. 8.

In Chap. 10, we introduce the additional laws required to determine J self-
consistently in materials of finite conductivity. To do this, it is necessary to give
careful attention to the electric field associated with MQS fields. In this chapter,
we have generalized Faraday’s law, (9.2.11),

∇×E = −∂B
∂t

(2)

so that it can be used to determine E in the presence of magnetizable materials.
Chapter 10 brings this law to the fore as it plays a key role in determining the
self-consistent J.
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TABLE 9.8.1

SUMMARY OF MAGNETIZATION RELATIONS AND LAWS

Magnetization Charge Density and Magnetization Density

ρm ≡ −∇ · µoM (9.2.4) σsm = −n · µo(M
a −Mb) (9.2.5)

Magnetic Flux Continuity with Magnetization

∇ · µoH = ρm (9.2.2) n · µo(H
a −Hb) = σsm (9.2.3)

∇ ·B = 0 (9.2.9) n · (Ba −Bb) = 0 (9.2.10)

where

B ≡ µo(H + M) (9.2.8)

Magnetically Linear Magnetization

Constitutive law

M = χmH;χm ≡ µ

µo
− 1 (9.4.3)

B = µH (9.4.4)

Magnetization source
distribution

ρm = −µo

µ
H · ∇µ (9.5.21) σsm = n · µoH

a
(
1− µa

µb

)
(9.5.22)

R E F E R E N C E S

[1] Purcell, E. M., Electricity and Magnetism, McGraw-Hill Book Co., N. Y.,
2nd Ed., (1985), p. 413.
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P R O B L E M S

9.2 Laws and Continuity Conditions with Magnetization

9.2.1 Return to Prob. 6.1.1 and replace P → M. Find ρm and σsm.

9.2.2∗ A circular cylindrical rod of material is uniformly magnetized in the y′
direction transverse to its axis, as shown in Fig. P9.2.2. Thus, for r <
R, M = Mo[ix sin γ + iy cos γ]. In the surrounding region, the material
forces H to be zero. (In Sec. 9.6, it will be seen that such a material is one
of infinite permeability.)

Fig. P9.2.2

(a) Show that if H = 0 everywhere, both Ampère’s law and (9.2.2) are
satisfied.

(b) Suppose that the cylinder rotates with the angular velocity Ω so that
γ = Ωt. Then, B is time varying even though there is no H. A one-
turn rectangular coil having depth d in the z direction has legs running
parallel to the z axis in the +z direction at x = −R, y = 0 and in
the −z direction at x = R, y = 0. The other legs of the coil are
perpendicular to the z axis. Show that the voltage induced at the
terminals of this coil by the time-varying magnetization density is
v = −µo2RdMoΩsin Ωt.

Fig. P9.2.3
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Fig. P9.3.1

9.2.3 In a region between the planes y = a and y = 0, a material that moves
in the x direction with velocity U has the magnetization density M =
Moiy cosβ(x− Ut), as shown in Fig. P9.2.2. The regions above and below
are constrained so that H = 0 there and so that the integral of H · ds
between y = 0 and y = a is zero. (In Sec. 9.7, it will be clear that these
materials could be the pole faces of a highly permeable magnetic circuit.)

(a) Show that Ampère’s law and (9.2.2) are satisfied if H = 0 throughout
the magnetizable layer of material.

(b) A one-turn rectangular coil is located in the y = 0 plane, one leg
running in the +z direction at x = −d (from z = 0 to z = l) and
another running in the −z direction at x = d (from z = l to z = 0).
What is the voltage induced at the terminals of this coil by the motion
of the layer?

9.3 Permanent Magnetization

9.3.1∗ The magnet shown in Fig. P9.3.1 is much longer in the ±z directions than
either of its cross-sectional dimensions 2a and 2b. Show that the scalar
magnetic potential is

Ψ =
Mo

2π

{
(x− a)ln

√
(x− a)2 + (y − b)2√
(x− a)2 + (y + b)2

− (x+ a)ln

√
(x+ a)2 + (y − b)2√
(x+ a)2 + (y + b)2

+ (y − b)
[

tan−1
(x− a

y − b

)− tan−1
(x+ a

y − b

)]

− (y + b)
[

tan−1
(x− a

y + b

)− tan−1
(x+ a

y + b

)]}

(a)

(Note Example 4.5.3.)
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9.3.2∗ In the half-space y > 0, M = Mo cos(βx) exp(−αy)iy, where α and β are
given positive constants. The half-space y < 0 is free space. Show that

Ψ =
Mo

2





[
−2α

α2−β2 e
−αy + e−βy

α−β

]
cosβx; y > 0

− eβy

α+β cosβx; y < 0
(a)

9.3.3 In the half-space y < 0, M = Mo sin(βx) exp(αy)ix, where α and β are
positive constants. The half-space y > 0 is free space. Find the scalar
magnetic potential.

Fig. P9.3.4

9.3.4 For storage of information, the cylinder shown in Fig. P9.3.4 has the mag-
netization density

M = Mo(r/R)p−1[ir cos p(φ− γ)− iφ sin p(φ− γ)] (a)

where p is a given integer. The surrounding region is free space.

(a) Determine the magnetic potential Ψ.
(b) A magnetic pickup is comprised of an N -turn coil located at φ =

π/2. This coil has a dimension a in the φ direction that is small
compared to the periodicity length 2πR/p in that direction. Every
turn is essentially at the radius d+R. Determine the output voltage
vout when the cylinder rotates, γ = Ωt.

(c) Show that if the density of information on the cylinder is to be high
(p is to be high), then the spacing between the coil and the cylinder,
d, must be small.

9.4 Magnetization Constitutive Laws

9.4.1∗ The toroidal core of Example 9.4.1 and Demonstration 9.4.1 is filled by
a material having the single-valued magnetization characteristic M = Mo

tanh (αH), where M and H are collinear.

(a) Show that the B −H characteristic is of the type illustrated in Fig.
9.4.4.
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Fig. P9.5.1

(b) Show that if i = io cosωt, the output voltage is

v =
µoπw

2N2

4
d

dt

[
N1io
2πR

cosωt+Mo tanh
(
αN1io
2πR

cosωt
)]

(a)

(c) Show that the characteristic is essentially linear, provided that
αN1io/2πR¿ 1.

9.4.2 The toroidal core of Demonstration 9.4.1 is driven by a sinusoidal current
i(t) and responds with the hysteresis characteristic of Fig. 9.4.6. Make
qualitative sketches of the time dependence of

(a) B(t)
(b) the output voltage v(t).

9.5 Fields in the Presence of Magnetically Linear Insulating Materials

9.5.1∗ A perfectly conducting sheet is bent into a ⊃ shape to make a one-turn
inductor, as shown in Fig. P9.5.1. The width w is much larger than the
dimensions in the x − y plane. The region inside the inductor is filled
with two linearly magnetizable materials having permeabilities µa and µb,
respectively. The cross-section of the system in any x−y plane is the same.
The cross-sectional areas of the magnetizable materials are Aa and Ab,
respectively. Given that the current i(t) is uniformly distributed over the
width w of the inductor, show that H = (i/w)iz in both of the magnetizable
materials. Show that the inductance L = (µaAa + µbAb)/w.

9.5.2 Perfectly conducting coaxial cylinders, shorted at one end, form the one-
turn inductor shown in Fig. P9.5.2. The total current i flowing on the
surface at r = b of the inner cylinder is returned through the short and
the outer conductor at r = a. The annulus is filled by materials of uniform
permeability with an interface at r = R, as shown.

(a) Determine H in the annulus. (A simple solution can be shown to
satisfy all the laws and continuity conditions.)
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Fig. P9.5.2

(b) Find the inductance.

9.5.3∗ The piece-wise uniform material in the one-turn inductor of Fig. P9.5.1 is
replaced by a smoothly inhomogeneous material having the permeability
µ = −µmx/l, where µm is a given constant. Show that the inductance is
L = dµml/2w.

9.5.4 The piece-wise uniform material in the one-turn inductor of Fig. P9.5.2 is
replaced by one having the permeability µ = µm(r/b), where µm is a given
constant. Determine the inductance.

9.5.5∗ Perfectly conducting coaxial cylinders, shorted at one end, form a one-turn
inductor as shown in Fig. P9.5.5. Current flowing on the surface at r = b
of the inner cylinder is returned on the inner surface of the outer cylinder
at r = a. The annulus is filled by sectors of linearly magnetizable material,
as shown.

(a) Assume that in the regions (a) and (b), respectively, H = iφA/r
and H = iφC/r, and show that with A and C functions of time,
these fields satisfy Ampère’s law and the flux continuity law in the
respective regions.

(b) Use the flux continuity condition at the interfaces between regions to
show that C = (µa/µb)A.

(c) Use Ampère’s integral law to relate C and A to the total current i in
the inner conductor.

(d) Show that the inductance is L = lµa ln(a/b)/[α+ (2π − α)µa/µb].
(e) Show that the surface current densities at r = b adjacent to regions

(a) and (b), respectively, are Kz = A/b and Kz = C/b.

9.5.6 In the one-turn inductor of Fig. P9.5.1, the material of piece-wise uniform
permeability is replaced by another such material. Now the region between
the plates in the range 0 < z < a is filled by material having uniform
permeability µa, while µ = µb in the range a < z < w. Determine the
inductance.



Sec. 9.6 Problems 49

Fig. P9.5.5

9.6 Fields in Piece-Wise Uniform Magnetically Linear Materials

9.6.1∗ A winding in the y = 0 plane is used to produce the surface current density
K = Ko cosβzix. Region (a), where y > 0, is free space, while region (b),
where y < 0, has permeability µ.

(a) Show that

Ψ =
Ko sinβz
β(1 + µ/µo)

{− µ
µo
e−βy; y > 0

eβy; y < 0
(a)

(b) Now consider the same problem, but assume at the outset that the
material in region (b) has infinite permeability. Show that it agrees
with the limit µ→∞ of the first expression of part (a).

(c) In turn, use the result of part (b) as a starting point in finding an
approximation to Ψ in the highly permeable material. Show that this
result agrees with the limit of the second result of part (a) where
µÀ µo.

9.6.2 The planar region −d < y < d is bounded from above and below by
infinitely permeable materials, as shown in Fig. P9.6.2. Region (a) to the
right and region (b) to the left are separated by a current sheet in the plane
x = 0 with the distribution K = izKo sin(πy/2d). The system extends to
infinity in the ±x directions and is two dimensional.

(a) In terms of Ψ, what are the boundary conditions at y = ±d.
(b) What continuity conditions relate Ψ in regions (a) and (b) where they

meet at x = 0?
(c) Determine Ψ.

9.6.3∗ The cross-section of a two-dimensional cylindrical system is shown in Fig.
P9.6.3. A region of free space having radius R is surrounded by material
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Fig. P9.6.2

Fig. P9.6.3

having permeability µ which can be considered as extending to infinity.
A winding at r = R is driven by the current i and has turns density
(N/2R) sinφ (turns per unit length in the φ direction). Thus, at r = R,
there is a current density K = (N/2R)i sinφiz.

(a) Show that

Ψ =
(N/2)i cosφ
(1 + µ/µo)

{
R
r ; r > R
−(µ/µo)(r/R); r < R

(a)

(b) An n-turn coil having a spacing between conductors of 2a is now
placed at the center. The magnetic axis of this coil is inclined at the
angle α relative to the x axis. This coil has length l in the z direction.
Show that the mutual inductance between this coil and the one at
r = R is Lm = µoa lnN cosα/R[1 + (µo/µ)].

9.6.4 The cross-section of a motor or generator is shown in Fig. 11.7.7. The two
coils comprising the stator and rotor windings and giving rise to the surface
current densities of (11.7.24) and (11.7.25) have flux linkages having the
forms given by (11.7.26).

(a) Assume that the permeabilities of the rotor and stator are infinite,
and determine the vector potential in the air gap.

(b) Determine the self-inductances Ls and Lr and magnitude of the peak
mutual inductance, M , in (11.7.26). Assume that the current in the
+z direction at φ is returned at φ+ π.
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Fig. P9.6.5

9.6.5 A wire carrying a current i in the z direction is suspended a height h above
the surface of a magnetizable material, as shown in Fig. P9.6.5. The wire
extends to “infinity” in the ±z directions. Region (a), where y > 0, is free
space. In region (b), where y < 0, the material has uniform permeability
µ.

(a) Use the method of images to determine the fields in the two regions.
(b) Now assume that µ À µo and find H in the upper region, assuming

at the outset that µ→∞.
(c) In turn, use this approximate result to find the field in the permeable

material.
(d) Show that the results of (b) and (c) are consistent with those from

the exact analysis in the limit where µÀ µo.

9.6.6∗ A conductor carries the current i(t) at a height h above the upper surface
of a material, as shown in Fig. P9.6.5. The force per unit length on the
conductor is f = i × µoH, where i is a vector having the direction and
magnitude of the current i(t), and H does not include the self-field of the
line current.

(a) Show that if the material is a perfect conductor, f = µoiyi2/4πh.
(b) Show that if the material is infinitely permeable, f = −µoiyi2/4πh.

9.6.7∗ Material having uniform permeability µ is bounded from above and below
by regions of infinite permeability, as shown in Fig. P9.6.7. With its center
at the origin and on the surface of the lower infinitely permeable material is
a hemispherical cavity of free space having radius a that is much less than
d. A field that has the uniform intensity Ho far from the hemispherical
surface is imposed in the z direction.

(a) Assume µ À µo and show that the approximate magnetic potential
in the magnetizable material is Ψ = −Hoa[(r/a) + (a/r)2/2] cos θ.

(b) In turn, show that the approximate magnetic potential inside the
hemisphere is Ψ = −3Hoz/2.

9.6.8 In the magnetic tape configuration of Example 9.3.2, the system is as shown
in Fig. 9.3.2 except that just below the tape, in the plane y = −d/2, there
is an infinitely permeable material, and in the plane y = a > d/2 above the
tape, there is a second infinitely permeable material. Find the voltage vo.
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Fig. P9.6.7

Fig. P9.6.9

9.6.9∗ A cylindrical region of free space of rectangular cross-section is surrounded
by infinitely permeable material, as shown in Fig. P9.6.9. Surface currents
are imposed by means of windings in the planes x = 0 and x = b. Show
that

Ψ =
Koa

π
sin

πy

a

cosh π
a

(
x− b

2

)

cosh
(

πb
2a

) (a)

9.6.10∗ A circular cylindrical hole having radius R is cut through a material having
permeability µa. A conductor passing through this hole has permeability µb

and carries the uniform current density J = Joiz, as shown in Fig. P9.6.10.
A field that is uniform far from the hole, where it is given by H = Hoix, is
applied by external means. Show that for r < R, and R < r, respectively,

Az =

{ −µbJor2

4 − 2µbHoR
(1+µb/µa)

r
R sinφ

−µaJoR2

2

[
ln(r/R) + 1

2
µb

µa

]− µaHoR
[

r
R − (µa−µb)

(µa+µb)
R
r

]
sinφ

(a)

9.6.11∗ Although the introduction of a magnetizable sphere into a uniform mag-
netic field results in a distortion of that field, nevertheless, the field within
the sphere is uniform. This fact makes it possible to determine the field dis-
tribution in and around a spherical particle even when its magnetization
characteristic is nonlinear. For example, consider the fields in and around
the sphere of material shown together with its B−H curve in Fig. P9.6.11.
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Fig. P9.6.10

Fig. P9.6.11

(a) Assume that the magnetization density is M = M iz, where M is a
constant to be determined, and show that the magnetic field intensity
inside the sphere is uniform, z directed, and of magnitude H = Ho −
M/3, and hence that the magnetic flux density, B, in the sphere is
related to the magnitude of the magnetic field intensity H by

B = 3µoHo − 2µoH (a)

(b) Draw this load line in the B−H plane, showing that it is a straight line
with intercepts 3Ho/2 and 3µoHo with theH andB axes, respectively.

(c) Show how (B,H) in the sphere are determined, given the applied field
intensity Ho, by graphically finding the point of intersection between
the B −H curve of Fig. P9.6.11 and (a).

(d) Show that if Ho = 4 × 105 A/m, B = 0.75 tesla and H = 3.1 × 105

A/m.

9.6.12 The circular cylinder of magnetizable material shown in Fig. P9.6.12 has
the B − H curve shown in Fig. P9.6.11. Determine B and H inside the
cylinder resulting from the application of a field intensity H = Hoix where
Ho = 4× 105 A/m.
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Fig. P9.6.12

9.6.13 The spherical coil of Example 9.6.1 is wound around a sphere of material
having the B − H curve shown in Fig. P9.6.11. Assume that i = 800 A,
N = 100 turns, and R = 10 cm, and determine B and H in the material.

9.7 Magnetic Circuits

9.7.1∗ The magnetizable core shown in Fig. P9.7.1 extends a distance d into the
paper that is large compared to the radius a. The driving coil, having
N turns, has an extent ∆ in the φ direction that is small compared to
dimensions of interest. Assume that the core has a permeability µ that is
very large compared to µo.

(a) Show that the approximate H and Ψ inside the core (with Ψ defined
to be zero at φ = π) are

H =
Ni

2πr
iφ; Ψ =

Ni

2
(
1− φ

π

)
(a)

(b) Show that the approximate magnetic potential in the central region
is

Ψ =
∞∑

m=1

Ni

mπ
(r/b)m sinmφ (b)

9.7.2 For the configuration of Prob. 9.7.1, determine Ψ in the region outside the
core, r > a.

9.7.3∗ In the magnetic circuit shown in Fig. P9.7.3, an N -turn coil is wrapped
around the center leg of an infinitely permeable core. The sections to right
and left have uniform permeabilities µa and µb, respectively, and the gap
lengths a and b are small compared to the other dimensions of these sec-
tions. Show that the inductance L = N2w[(µbd/b) + (µac/a)].

9.7.4 The magnetic circuit shown in Fig. P9.7.4 is constructed from infinitely
permeable material, as is the hemispherical bump of radius R located on
the surface of the lower pole face. A coil, having N turns, is wound around
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Fig. P9.7.1

Fig. P9.7.3

Fig. P9.7.4
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Fig. P9.7.5

Fig. P9.7.6

the left leg of the magnetic circuit. A second coil is wound around the
hemisphere in a distributed fashion. The turns per unit length, measured
along the periphery of the hemisphere, is (n/R) sinα, where n is the total
number of turns. Given that R ¿ h ¿ w, find the mutual inductance of
the two coils.

9.7.5∗ The materials comprising the magnetic circuit of Fig. P9.7.5 can be re-
garded as having infinite permeability. The air gaps have a length x that is
much less than a or b, and these dimensions, in turn, are much less than w.
The coils to left and right, respectively, have total turns N1 and N2. Show
that the self- and mutual inductances of the coils are

L11 = N2
1Lo, L12 = L21 = N1N2Lo,

L22 = N2
2Lo, Lo ≡ awµo

x(1 + a/b)
(a)

9.7.6 The magnetic circuit shown in Fig. P9.7.6 has rotational symmetry about
the z axis. Both the circular cylindrical plunger and the remainder of the
magnetic circuit can be regarded as infinitely permeable. The air gaps have
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Fig. P9.7.7

widths x and g that are small compared to a and d. Determine the induc-
tance of the coil.

9.7.7 Two cross-sectional views of an axisymmetric magnetic circuit that could
be used as an electromechanical transducer are shown in Fig. P9.7.7. Sur-
rounding an infinitely permeable circular cylindrical rod having a radius
slightly less than a is an infinitely permeable stator having a hole down its
center with a radius slightly greater than a. A pair of coils, having turns N1

and N2 and driven by currents i1 and i2, respectively are wound around the
center rod and positioned in slots in the surrounding stator. The longitudi-
nal position of the rod, denoted by ξ, is limited in range so that the ends of
the rod are always well inside the ends of the stator. Thus, H in each of the
air gaps is essentially uniform. Determine the inductance matrix, (9.7.12).

9.7.8 Fields in and around the magnetic circuit shown in Fig. P9.7.8 are to be
considered as independent of z. The outside walls are infinitely permeable,
while the horizontal central leg has uniform permeability µ that is much
less than that of the sides but nevertheless much greater than µo. Coils
having total turns N1 and N2, respectively, are wound around the center
leg. These have evenly distributed turns in the planes x = l/2 and x = −l/2,
respectively. The regions above and below the center leg are free space.

(a) Define Ψ = 0 at the origin of the given coordinates. As far as Ψ
is concerned inside the center leg, what boundary conditions must
Ψ satisfy if the central leg is treated as the “inside” of an “inside-
outside” problem?

(b) What is Ψ in the center leg?
(c) What boundary conditions must Ψ satisfy in region (a)?
(d) What is Ψ, and hence H, in region (a)? (A simple exact solution is

suggested by Prob. 7.5.3.) For the case where N1i1 = N2i2, sketch ψ
and H in regions (a) and (b).

9.7.9 The magnetic circuit shown in Fig. P9.7.9 is excited by an N -turn coil and
consists of infinitely permeable legs in series with ones of permeability µ,
one to the right of length l2 and the other to the left of length l1. This
second leg has wrapped on its periphery a metal strap having thickness
∆ ¿ w, conductivity σ, and height l1. With a terminal current i = io cosωt,
determine H within the left leg.
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Fig. P9.7.8

Fig. P9.7.9

9.7.10∗ The graphical approach to determining fields in magnetic circuits to be
used in this and the next example is similar to that illustrated by Probs.
9.6.11–9.6.13. The magnetic circuit of a high-field magnet is shown in Fig.
P9.7.10. The two coils each have N turns and carry a current i.

(a) Show that the load line for the circuit is

B = −µo

d
(l2 + l1)H +

2Niµo

d
(a)

(b) For N = 500, d = 1 cm, l1 = 0.8m, l2 = 0.2 m, and i = 10 amps,
find the flux density B in its air gap.

9.7.11 In the magnetic circuit of Fig. P9.7.11, the infinitely permeable core has a
gap with cross-sectional area A and height a+ b, where the latter is much
less than the dimensions of the former. In this gap is a material having
height b and the M − H relation also shown in the figure. Within the
material and in the air gap, H is approximated as being uniform.
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Fig. P9.7.10

Fig. P9.7.11

(a) Determine the load line relation between Hb, the field intensity in the
material, M , and the driving current i.

(b) If Ni/a = 0.5× 106 amps/m and b/a = 1, what is M , and hence B?


