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APPENDIX

1.1 VECTOR OPERATIONS

A vector is a quantity which possesses magnitude and direction. In order to describe
a vector mathematically, a coordinate system having orthogonal axes is usually cho-
sen. In this text, use is made of the Cartesian, circular cylindrical, and spherical
coordinate systems. In these three-dimensional systems, any vector is completely
described by three scalar quantities. For example, in Cartesian coordinates, a vec-
tor is described with reference to mutually orthogonal coordinate axes. Then the
magnitude and orientation of the vector are described by specifying the three pro-
jections of the vector onto the three coordinate axes.

In representing a vector1 A mathematically, its direction along the three or-
thogonal coordinate axes must be given. The direction of each axis is represented
by a unit vector i, that is, a vector of unit magnitude directed along the axis. In
Cartesian coordinates, the three unit vectors are denoted ix, iy, iz. In cylindrical
coordinates, they are ir, iφ, iz, and in spherical coordinates, ir, iθ, iφ. A, then, has
three vector components, each component corresponding to the projection of A onto
the three axes. Expressed in Cartesian coordinates, a vector is defined in terms of
its components by

A = Axix + Ayiy + Aziz (1)

These components are shown in Fig. A.1.1.

1 Vectors are usually indicated either with boldface characters, such as A, or by drawing a

line (or an arrow) above a character to indicate its vector nature, as in Ā or ~A.
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Fig. A.1.1 Vector A represented by its components in Cartesian coordinates
and unit vectors i.

Fig. A.1.2 (a) Graphical representation of vector addition in terms of spe-
cific coordinates. (b) Representation of vector addition independent of specific
coordinates.

Vector Addition. The sum of two vectors A = Axix + Ayiy + Aziz and B =
Bxix +Byiy +Bziz is effected by adding the coefficients of each of the components,
as shown in two dimensions in Fig. A.1.2a.

A + B = (Ax + Bx)ix + (Ay + By)iy + (Az + Bz)iz (2)

From (2), then, it should be clear that vector addition is both commutative, A+B =
B + A, and associative, (A + B) + C = A + (B + C).

Graphically, vector summation can be performed without regard to the coor-
dinate system, as shown in Fig. A.1.2b, by noticing that the sum A+B is a vector
directed along the diagonal of a parallelogram formed by A and B.

It should be noted that the representation of a vector in terms of its com-
ponents is dependent on the coordinate system in which it is carried out. That is,
changes of coordinate system will require an appropriate vector transformation. Fur-
ther, the variables used must also be transformed. The transformation of variables
and vectors from one coordinate system to another is illustrated by considering a
transformation from Cartesian to spherical coordinates.

Example 1.1.1. Transformation of Variables and Vectors

We are given variables in terms of x, y, and z and vectors such as A = Axix +
Ayiy + Aziz. We wish to obtain variables in terms of r, θ, and φ and vectors ex-
pressed as A = Arir + Aθiθ + Aφiφ. In Fig. A.1.3a, we see that the point P has two
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Fig. A.1.3 Specification of a point P in Cartesian and spherical co-
ordinates. (b) Transformation from Cartesian coordinate x to spherical
coordinates. (c) Transformation of unit vector in x direction into spher-
ical coordinate coordinates.

representations, one involving the variables x, y and z and the other, r, θ and φ. In
particular, from Fig. A.1.3b, x is related to the spherical coordinates by

x = r sin θ cos φ (3)

In a similar way, the variables y and z evaluated in spherical coordinates can
be shown to be

y = r sin θ sin φ (4)

z = r cos θ (5)

The vector A is transformed by resolving each of the unit vectors ix, iy, iz
in terms of the unit vectors in spherical coordinates. For example, ix can first be
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Fig. A.1.4 Illustration for definition of dot product.

resolved into components in the orthogonal coordinates (x′, y′, z) shown in Fig.
A.1.3c. By definition, y′ is along the intersection of the φ = constant and the x− y
planes. Also in the x−y plane is x′, which is perpendicular to the y′−z plane. Thus,
sin φ, cos φ, and 0 are the components of ix along the x′, y′, and z axes respectively.
These components are in turn resolved into components along the spherical coordi-
nate directions by recognizing that the component sin φ along the x′ axis is in the
−iφ direction while the component of cos φ along the y′ axis resolves into components
cos φ cos θ in the direction of iθ, and cos φ sin θ in the ir direction. Thus,

ix = sin θ cos φir + cos θ cos φiθ − sin φiφ (6)

Similarly,
iy = sin θ sin φir + cos θ sin φiθ + cos φiφ (7)

iz = cos θir − sin θiθ (8)

It must be emphasized that the concept of a vector is independent of the
coordinate system. (In the same sense, in Chaps. 2 and 4, vector operations are
defined independently of the coordinate system in which they are expressed.) A
vector can be visualized as having the direction and magnitude of an arrow-tipped
line element. This picture makes it possible to deal with vectors in a geometrical
language that is independent of the choice of a particular coordinate system, one
that will now be used to define the most important vector operations.

For analytical or numerical purposes, the operations are usually carried out
in coordinate notation. Then, as illustrated, either in the text that follows or in the
problems, each operation will be evaluated in a Cartesian coordinate system.

Definition of Scalar Product. Given vectors A and B as illustrated in Fig.
A.1.4, the scalar, or dot product, between the two vectors is defined as

A ·B = |A||B| cos θ (9)

where θ is the angle between the two vectors.
It follows directly from its definition that the scalar product is commutative.

A ·B = B ·A (10)

The scalar product is also distributive.

(A + B) ·C = A ·C + B ·C (11)
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Fig. A.1.5 Illustration for definition of vector-product.

To see this, note that A ·C is the projection of A onto C times the magnitude of
C, |C|, and B ·C is the projection of B onto C times |C|. Because projections are
additive, (11) follows.

These two properties can be used to define the scalar product in terms of the
vector components in Cartesian coordinates. According to the definition of the unit
vectors,

ix · ix = iy · iy = iz · iz = 1

ix · iy = ix · iz = iy · iz = 0 (12)

With A and B expressed in terms of these components, it follows from the dis-
tributive and commutative properties that

A ·B = AxBx + AyBy + AzBz (13)

Thus, in agreement with (9), the square of the magnitude of a vector is

A ·A = |A|2 = A2
x + A2

y + A2
z (14)

Definition of Vector Product. The cross-product of vectors A and B is a
vector C having a magnitude

|C| = |A||B| sin θ (15)

and having a direction perpendicular to both A and B. Geometrically, the mag-
nitude of C is the area of the parallelogram formed by the vectors A and B. The
vector C has the direction of advance of a right-hand screw, as though driven by
rotating A into B. Put another way, a right-handed coordinate system is formed
by A−B−C, as is shown in Fig. A.1.5. The commonly accepted notation for the
cross-product is

C = A×B (16)

It is useful to note that if the vector A is resolved into two mutually per-
pendicular vectors, A = A⊥ + A‖, where A⊥ lies in the plane of A and B and is
perpendicular to B and A‖ is parallel to B, then

A×B = A⊥ ×B (17)
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Fig. A.1.6 Graphical representation showing that the vector-product is dis-
tributive.

This equality follows from the fact that both cross-products have equal magnitude
(since |A⊥ ×B| = |A⊥||B| and |A|⊥| = |A| sin θ) and direction (perpendicular to
both A and B).

The distributive property for the cross-product,

(A + B)×D = A×D + B×D (18)

can be shown using (17) and the geometrical construction in Fig. A.1.6 as follows.
First, note that (A + B)⊥ = (A⊥ + B⊥), where ⊥ denotes a component in the
planes of A and D or B and D, respectively, and perpendicular to D. Thus,

(A + B)×D = (A + B)⊥ ×D = (A⊥ + B⊥)×D (19)

Now, we need only show that

(A⊥ + B⊥)×D = A⊥ ×D + B⊥ ×D (20)

This equation is given graphical expression in Fig. A.1.6 by the vectors A⊥, B⊥,
and their sum. To within a factor of |D|, the three vectors A⊥ × D, B⊥ × D,
and their sum, are, respectively, the vectors A⊥, B⊥, and their sum, rotated by
90 degrees. Thus, the vector addition property already shown for A⊥ + B⊥ also
applies to A⊥ ×D + B⊥ ×D.

Because interchanging the order of two vectors calls for a reassignment of the
direction of the product vector (the direction of C in Fig. A.1.5), the commutative
property does not hold. Rather,

A×B = −B×A (21)

Using the distributive law, the vector product of two vectors can be con-
structed in terms of their Cartesian coordinates by using the following properties
of the vector products of the unit vectors.

ix × ix = 0 ix × iy = iz

iy × iy = 0 iy × iz = −iz × iy = ix

iz × iz = 0 ix × iz = −iz × ix = −iy (22)
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Fig. A.1.7 Graphical representation of scalar triple product.

Thus,
A×B =ix(AyBz −AzBy) + iy(AzBx −AxBz)

+ iz(AxBy −AyBx)
(23)

A useful mnemonic for finding the cross-product in Cartesian coordinates is
realized by noting that the right-hand side of (23) is the determinant of a matrix:

A×B =

∣∣∣∣∣
ix iy iz
Ax Ay Az

Bx By Bz

∣∣∣∣∣ (24)

The Scalar Triple Product. The definition of the scalar triple product of
vectors A, B, and C follows from Fig. A.1.7, and the definition of the scalar and
vector products.

A · (B×C) = [|A| cos(A,B×C)][|B||C| sin(B,C)] (25)

The scalar triple product is equal to the volume of the parallelepiped having
the three vectors for its three bases. That is, in (25) the second term in square
brackets is the area of the base parallelogram in Fig. A.1.7 while the first is the
height of the parallelopiped. The scalar triple product is positive if the three vectors
form a right-handed coordinate system in the order in which they are written;
otherwise it is negative. Hence, a cyclic rearrangement in the order of the vectors
leaves the value of the product unchanged.

A · (B×C) = B · (C×A) = C · (A×B) (26)

It follows that the placing of the cross and the dot in a scalar triple product is
arbitrary. The cross and dot can be interchanged without affecting the product.

Using the rules for evaluating the dot product and the cross-product in Carte-
sian coordinates, we have

A · (B×C) = Ax(ByCz −BzCy) + Ay(BzCx −BxCz) + Az(BxCy −ByCx) (27)

The Double Cross-Product. Consider the vector product A × (B ×C). Is
there another, sometimes more useful, way of expressing this double cross-product?
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Fig. A.1.8 Graphical representation of double cross-product.

Since the product B ×C is perpendicular to the plane defined by B and C, then
the final product A× (B×C) must lie in the plane of B and C. Hence, the vector
product must be expressible as a linear combination of the vectors B and C. One
way to find the coefficients of this linear combination is to evaluate the product in
Cartesian coordinates. Here we prefer to use a geometric derivation.

Because the vector B×C is perpendicular to the plane defined by the vectors
B and C, it follows from Fig. A.1.7 that

A× (B×C) = A′ × (B×C) (28)

where A′ is the projection of A onto the plane defined by B and C. Next, we
separate the vector C into a component parallel to B, C‖, and a component per-
pendicular to B, C⊥, as shown by Fig. A.1.8, so that

A× (B×C) = A′ × (B×C⊥) (29)

Then, according to the properties of the cross-product, the magnitude of the
vector product is given by

|A× (B×C)| = |A′||B||C⊥| (30)

and the direction of the vector product is orthogonal to A′ and lies in the plane
defined by the vectors B and C, as shown in Fig. A.1.8

A rule for constructing a vector perpendicular to a given vector, A′, in an
x− y plane is as follows. First, the two components of A′ with respect to any two
orthogonal axes (x, y) are determined. Here these are the directions of C⊥ and B
with components A′ ·C⊥, and A′ ·B, respectively. Then, a new vector is constructed
by interchanging the x and y components and changing the sign of one of them.
According to this rule, Fig. A.1.8 shows that the vector A× (B×C) is given by

A× (B×C) = (A′ ·C⊥)B− (A′ ·B)C⊥ (31)

Now, because C‖ has the same direction as B,

(A′ ·B)C‖ = (A′ ·C‖)B, (32)

and addition of (31) gives

A× (B×C) = A′ · (C⊥ + C‖)B− (A′ ·B)(C⊥ + C‖) (33)
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Now observe that A′ ·C = A·C and A′ ·B = A·B (which follow from the definition
of A′ as the projection of A into the B −C plane), and the double cross-product
becomes

A× (B×C) = (A ·C)B− (A ·B)C (34)

This result is particularly convenient because it does not contain any special nota-
tion or projections.

The vector identities found in this Appendix are summarized in Table III at
the end of the text.


