
2

APPENDIX

2.1 LINE AND SURFACE INTEGRALS

Consider a path connecting points (a) and (b) as shown in Fig. A.2.1. Assume that
a vector field A(r) exists in the space in which the path is situated. Then the line
integral of A(r) is defined by

∫ (b)

(a)

A · ds (1)

To interpret (1), think of the path between (a) and (b) as subdivided into differential
vector segments ds. At every vector segment, the vector A(r) is evaluated and the
dot product is formed. The line integral is then defined as the sum of these dot
products in the limit as ds approaches zero. A line integral over a path that closes
on itself is denoted by the symbol

∮
A · ds.

Fig. A.2.1 Configuration for integration of vector field A along line having
differential length ds between points (a) and (b).
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Fig. A.2.2 Integration line having shape of quarter segment of a circle
with radius R and differential element ds.

To perform a line integration, the integral must first be reduced to a form
that can be evaluated using the rules of integral calculus. This is done with the aid
of a coordinate system. The following example illustrates this process.

Example 2.1.1. Line Integral

Given the two-dimensional vector field

A = xix + axy iy (2)

find the line integral along a quarter circle of radius R as shown in Fig. A.2.2.
Using a Cartesian coordinate system, the differential line segment ds has the

components dx and dy.
ds = ixdx + iydy (3)

Now x and y are not independent but are constrained by the fact that the integration
path follows a circle defined by the equation

x2 + y2 = R2 (4)

Differentiation of (4) gives

2xdx + 2ydy = 0 (5)

and therefore
dy = −x

y
dx (6)

Thus, the dot product A · ds can be written as a function of the variable x alone.

A · ds = xdx + a xydy = (x− ax2)dx (7)

When the path is described in the sense shown in Fig. A.2.4, x decreases from R to
zero. Therefore,

∫
A · ds =

∫ 0

R

(x− ax2)dx =
(x2

2
− ax3

3

)∣∣∣∣
0

R

=
aR3

3
− R2

2
(8)

If the path is not expressible in terms of an analytic function, the evaluation of the
line integral becomes difficult. If everything else fails, numerical methods can be
employed.
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Surface Integrals. Given a vector field A(r) in a region of space containing
a specified (open or closed) surface S, an important form of the surface integral of
A over S is ∫

S

A · da (9)

The vector da has a magnitude that represents the differential area of a surface
element and a direction that is normal to that area. To interpret (9), think of
the surface S as subdivided into these differential area elements da. At each area
element, the differential scalar A ·da is evaluated and the surface integral is defined
as the sum of these dot products over S in the limit as da approaches zero. The
surface integral

∫
S
A·da is also called the “flux” of the vector A through the surface

S.
To evaluate a surface integral, a coordinate system is introduced in which

the integration can be performed according to the methods of integral calculus.
Then the surface integral is transformed into a double integral in two independent
variables. This is best illustrated with the aid of a specific example.

Example 2.1.2. Surface Integral

Given the vector field
A = ixx (10)

find the surface integral
∫

S
A · da, where S is one eighth of a spherical surface of

radius R in the first octant of a sphere (0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2).
Because the surface lies on a sphere, it is best to carry out the integration in

spherical coordinates. To transform coordinates from Cartesian to spherical, recall
from (A.1.3) that the x coordinate is related to r, θ, and φ by

x = r sin θ cos φ (11)

and from (A.1.6), the unit vector ix is

ix = sin θ cos φ ir + cos θ cos φ iθ − sin φ iφ (12)

Therefore, because the area element da is

da = irR
2 sin θdθdφ (13)

the surface integral becomes

∫

S

A · da =

∫ π/2

0

dθ

∫ π/2

0

dφR3 sin3 θ cos2 φ

=
πR3

4

∫ π/2

0

dθ sin3 θ =
πR3

6

(14)

A surface integral of a vector A over a closed surface is indicated by
∮

S

A · da (15)
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Note also that we use a single integral sign for a surface integral, even though, in
fact, two integrations are involved when the integral is actually evaluated in terms
of a coordinate system.

2.2 PROOF THAT THE CURL OPERATION
RESULTS IN A VECTOR

The definition
[curl A]n = lim

a→0

1
a

∮
A · ds (1)

assigns a scalar, [curl A]n, to each direction n at the point P under consideration.
The limit must be independent of the shape of the contour C (as long as all its
points approach the point P in the limit as the area a of the contour goes to zero).
The identification of curl A as a vector also implies a proper dependence of this
limit upon the orientation of the normal n of a. The purpose of this appendix is
to show that these two requirements are indeed satisfied by (1). We shall prove the
following facts:

1. At a particular point (x, y, z) lying in the plane specified by its normal vector
n, the quantity on the right in (1) is independent of the shape of the con-
tour. (The notation [curl A]n, is introduced at this stage only as a convenient
abbreviation for the expression on the right.)

2. If [curl A]n is indeed the component of a vector [curl A] in the n direction
and n is a unit normal in the n direction, then

[curl A]n = [curlA] · n (2)

where [curl A] is a vector defined at the point (x, y, z).

The proof of (1) follows from the fact that any closed contour integral can
be built up from a superposition of contour integrals around a large number of
rectangular contours Ci, as shown in Fig. A.2.3. All rectangles have sides ∆ξ, ∆η.
If the entire contour containing the rectangles is small (a → 0), then the contour
integral around each rectangle differs from that for the contour Co at the origin
only by a term on the order of the linear dimension of the contour, a1/2, times the
area ∆ξ∆η. This is true provided that the distance from the origin to any point
on the contour does not exceed a1/2 by an order of magnitude and that A is once
differentiable in the neighborhood of the origin. We have

1
∆ξ∆η

∮

Ci

A · ds =
1

∆ξ∆η

∮

Co

A · ds + O(a1/2) (3)

Therefore,

1
a

∮

C

A · ds =
∑

i

1
a

∮

Ci

A · ds =
∆ξ∆η

a

∑

i

1
∆ξ∆η

∮

Ci

A · ds

= N
∆ξ∆η

a

[
1

∆ξ∆η

∮

Co

A · ds + O(a1/2)
] (4)
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Fig. A.2.3 Separation of closed contour integral into large number of inte-
grals over rectangular contours.

Fig. A.2.4 Arbitrary incremental contour integral having normal n analyzed
into integration contours enclosing surface, having normals in the directions of
the Cartesian coordinates.

where N is the number of rectangles into which the contour C has been subdivided.
However, N = a/(∆ξ∆η), and therefore we find

lim
a→0

∑

i

1
a

∮

Ci

A · ds = lim
a→0

1
∆ξ∆η

∮

Co

A · ds (5)

The expression on the left refers to the original contour, while the expression on the
right refers to the rectangular contour at the origin. Since a contour of arbitrary
shape can be constructed by a proper arrangement of rectangular contours, we
have proven that the expression lima→0

∫
A · ds/a is independent of the shape of

the contour as long as (3) holds.
Turning to the proof that (1) defines the component of a vector, we recognize

that the shape of the contour is arbitrary when evaluating
∫

A · ds/a. We displace
the plane in which the contour lies by a differential amount away from the point
P (x, y, z), as shown in Fig. A.2.4 which does not affect the value of [curl A]n as
defined in (1). The intersection of the plane with the three coordinate planes through
P is a triangle. We pick the triangle for the contour C in (1).

It follows from Fig. A.2.4 that the contour integral around the triangular
contour in the plane perpendicular to n can also be written as the sum of three
integrals around the three triangular contours in the respective coordinate planes.
Indeed, each of the added sections of line are traversed in one contour integration
in the opposite direction, so that the integrals over the added sections of the line
cancel upon summation and we have∮

n

A · ds =
∮

x

A · ds +
∮

y

A · ds +
∮

z

A · ds (6)
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where each contour integral is denoted by the subscript taken from the unit vector
normal to the plane of the contour.

We further note that the areas ax, ay, az of the three triangles in the respec-
tive coordinate planes are the projections of the area a onto the corresponding
coordinate plane.

ax = aix · n (7)

ay = aiy · n (8)

az = aiz · n (9)

Thus, by dividing (6) by a and making use of (7), (8), and (9), we have:

1
a

∮

n

A · ds =
1
ax

∮

x

A · dsix · n +
1
ay

∮

y

A · dsiy · n

+
1
az

∮

z

A · dsiz · n
(10)

Now, since the contours are already taken around differential area elements, the
limit a → 0 is already implied in (10). Thus, we have the quantities

[curl A]x = lim
ax→0

∮

x

A · ds/ax . . . (11)

But (10) is the definition of the component in the n direction of a vector:

curl A = [curl A]xix + [curl A]yiy + [curl A]ziz (12)

It is therefore legitimate to define at every point x, y, z in space a vector quantity,
curl A, whose x-, y-, and z-components are evaluated as the limiting expressions
of (1).


