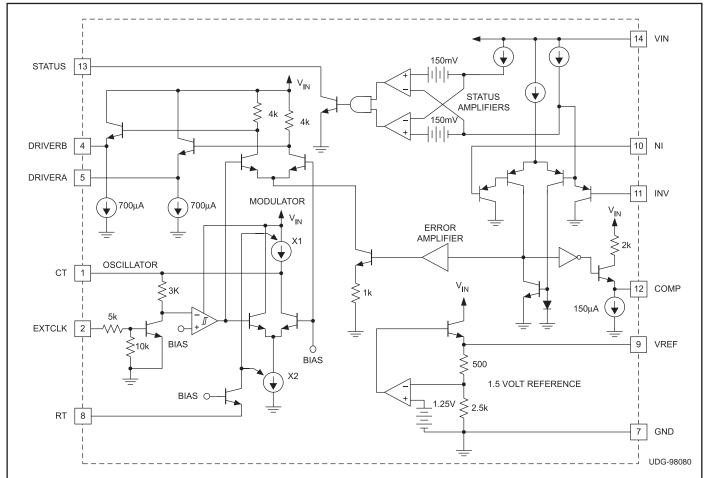


Isolated Feedback Generator

FEATURES

- An Amplitude-Modulation System for Transformer Coupling an Isolated Feedback Error Signal
- Low-Cost Alternative to Optical Couplers
- Internal 1% Reference and Error Amplifier
- Internal Carrier Oscillator Usable to 5MHz
- Modulator Synchronizable to an External Clock
- Loop Status Monitor

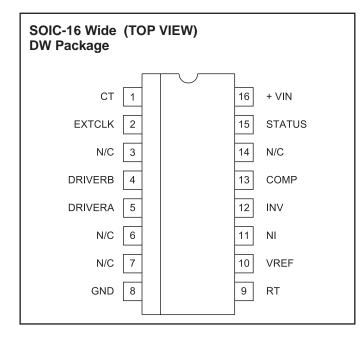

DESCRIPTION

The UC1901 family is designed to solve many of the problems associated with closing a feedback control loop across a voltage isolation boundary. As a stable and reliable alternative to an optical coupler, these devices feature an amplitude modulation system which allows a loop error signal to be coupled with a small RF transformer or capacitor.

The programmable, high-frequency oscillator within the UC1901 series permits the use of smaller, less expensive transformers which can readily be built to meet the isolation requirements of today's line-operated power systems. As an alternative to RF operation, the external clock input to these devices allows synchronization to a system clock or to the switching frequency of a SMPS.

An additional feature is a status monitoring circuit which provides an activelow output when the sensed error voltage is within $\pm 10\%$ of the reference. The DRIVERA output, DRIVERB output, and STATUS output are disabled until the input supply has reached a sufficient level to allow proper operation of the device.

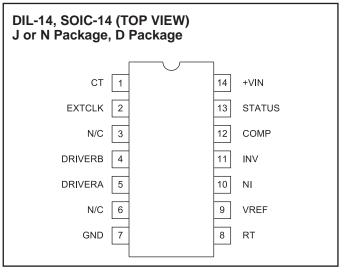
Since these devices can also be used as a DC driver for optical couplers, the benefits of 4.5 to 40V supply operation, a 1% accurate reference, and a high gain general purpose amplifier offer advantages even though an AC system may not be desired.

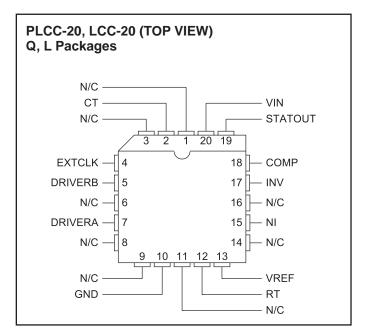

UC1901 SIMPLIFIED SCHEMATIC

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Supply Voltage, VIN 40V
Reference Output Current10mA
Driver Output Currents35mA
Status Indicator Voltage
Status Indicator Current
Ext. Clock Input 40V
Error Amplifier Inputs0.5V to +35V
Power Dissipation at TA = 25°C 1000mW
Power Dissipation at Tc = 25°C 2000mW
Operating Junction Temperature55°C to +150°C
Storage Temperature
Lead Temperature (Soldering, 10 seconds)

Note 1: Voltages are referenced to ground, Pin 7. Currents are positive into, negative out of the specified terminal.


Note 2: Consult Packaging section of Databook for thermal limitations and considerations of package.



TEMPERATURE AND PACKAGE SELECTION GUIDE

	TEMPERATURE AVAILABLE			
	RANGE	PACKAGES		
UC1901	–55°C to +125°C	J, L		
UC2901	-40°C to +85°C	D, DW, J, N, Q		
UC3901	0°C to +70°C	D, DW, J, N, Q		

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS Unless otherwise stated, these specifications apply for $V_{IN} = 10V$, $R_T = 10k\Omega$, $C_T = 820$ pF, $T_A = T_J$.

PARAMETER	TEST CONDITIONS	UC1	UC1901/UC2901			UC3901		
		MIN	TYP	MAX	MIN	TYP	MAX	
Reference Section								
Output Voltage	$T_J = 25^{\circ}C$	1.485	1.5	1.515	1.47	1.5	1.53	V
	$T_{MIN} \le T_J \le T_{MAX}$	1.470	1.5	1.530	1.455	1.5	1.545	
Line Regulation	V _{IN} = 4.5 to 35V		2	10		2	15	mV
Load Regulation	I _{OUT} = 0 to 5mA		4	10		4	15	mV
Short Circuit Current	$T_J = 25^{\circ}C$		-35	-55		-35	-55	mV
Error Amplifier Section (To Com	pensation Terminal)							
Input Offset Voltage	$V_{CM} = 1.5V$		1	4		1	8	mV
Input Bias Current	$V_{CM} = 1.5V$		-1	-3		-1	-6	μΑ
Input Offset Current	$V_{CM} = 1.5V$		0.1	1		0.1	2	μA
Small Signal Open Loop Gain		40	60		40	60		dB
CMRR	V _{CM} = 0.5 to 7.5V	60	80		60	80		dB
PSRR	V _{IN} = 2 to 25V	80	100		80	100		dB
Output Swing, Δ Vo		0.4	0.7		0.4	0.7		V
Maximum Sink Current		90	150		90	150		μA
Maximum Source Current		-2	-3		-2	-3		mA
Gain Band Width Product			1			1		MHz
Slew Rate			0.3			0.3		V/µS
Modulators/Drivers Section (Fro	om Compensation Terminal)							
Voltage Gain		11	12	13	10	12	14	dB
Output Swing		±1.6	±2.8		±1.6	±2.8		V
Driver Sink Current		500	700		500	700		μA
Driver Source Current		-15	-35		-15	-35		mA
Gain Band Width Product			25			25		MHz
Oscillator Section		•						•
Initial Accuracy	$T_J = 25^{\circ}C$	140	150	160	130	150	170	kHz
5	$T_{MIN} \le T_J \le T_{MAX}$	130		170	120		180	kHz
Line Sensitivity	$V_{IN} = 5 \text{ to } 35 \text{V}$.15	.35		.15	.60	%/V
Maximum Frequency	$R_{T} = 10k, C_{T} = 10pF$		5			5		MHz
Ext. Clock Low Threshold	$Pin 1 (C_T) = V_{IN}$	0.5			0.5			V
Ext. Clock High Threshold	$Pin 1 (C_T) = V_{IN}$			1.6			1.6	V
Status Indicator Section		•						•
Input Voltage Window	@ E/A Inputs, V _{CM} = 1.5V	±135	±150	±165	±130	±150	±170	mV
Saturation Voltage	$E/A \Delta$ Input = 0V, I_{SINK} = 1.6mA			0.45			0.45	V
Max. Output Current	Pin 13 = 3V, E/A \triangle Input = 0.0V	8	15		8	15		mA
Leakage Current	Pin 13 = 40V, E/A ∆Input = 0.2V		.05	1		.05	5	μA
Supply Current	$V_{\rm IN} = 35V$		5	8		5	10	mA
UVLO Section							-	
Drivers Enabled Threshold	At Input Supply V _{IN}		3.9	4.5		3.9	4.5	V
Status Output Enabled Threshold	At Input Supply VIN		3.9	4.5		3.9	4.5	V
Change in Reference Output	When V _{IN} Reaches UVLO Threshold		-2	-30		-2	-30	mV

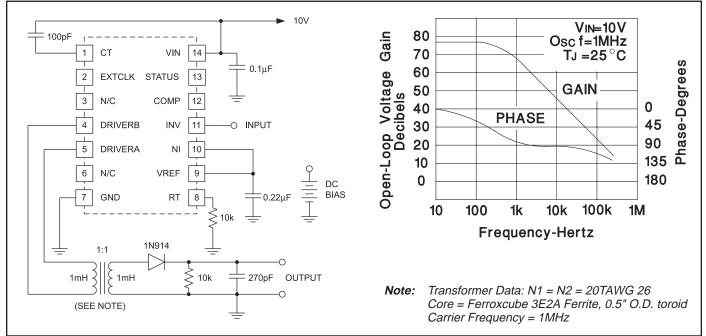


Figure 1. Transformer Coupled Open Loop Transfer Function

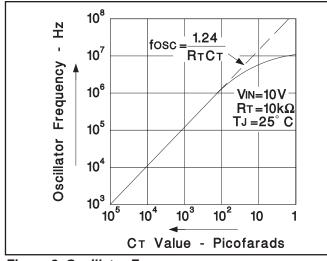
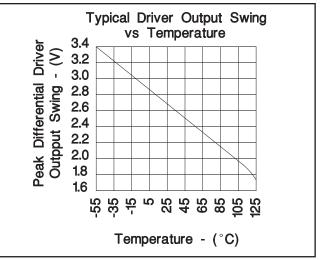



Figure 2. Oscillator Frequency

APPLICATION INFORMATION

The error amplifier compensation terminal, Pin 12, is intended as a source of feedback to the amplifier's inverting input at Pin 11. For most applications, a series DC blocking capacitor should be part of the feedback network. The amplifier is internally compensated for unity feedback.

The waveform at the driver outputs is a squarewave with an amplitude that is proportional to the error amplifier input signal. There is a fixed 12dB of gain from the error amplifier compensation pin to the modulator driver outputs. The frequency of the output waveform is controlled by either the internal oscillator or an external clock signal.

Figure 3. Typical Driver Output Swing vs Temperature

With the internal oscillator the squarewave will have a fixed 50% duty cycle. If the internal oscillator is disabled by connecting Pin 1, C_R , to V_{IN} then the frequency and duty cycle of the output will be determined by the input clock waveform at Pin 2. If the oscillator remains disabled and there is not clock input at Pin 2, there will be a linear 12dB of signal gain to one or the other of the driver outputs depending on the DC state of Pin 2.

The driver outputs are emitter followers which will source a minimum of 15mA of current. The sink current, internally limited at 700 μ A, can be increased by adding resistors to ground at the driver outputs.

APPLICATION INFORMATION (continued)

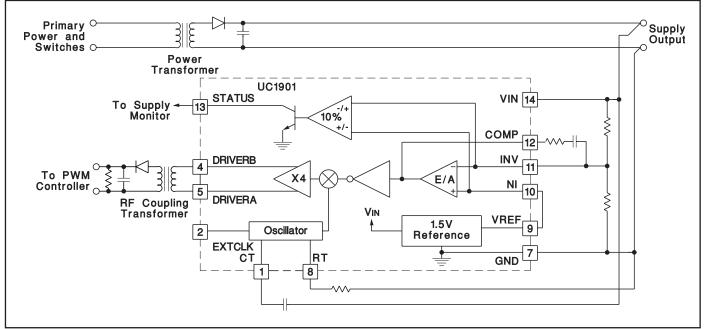


Figure 4. R.F. Transformer Coupled Feedback

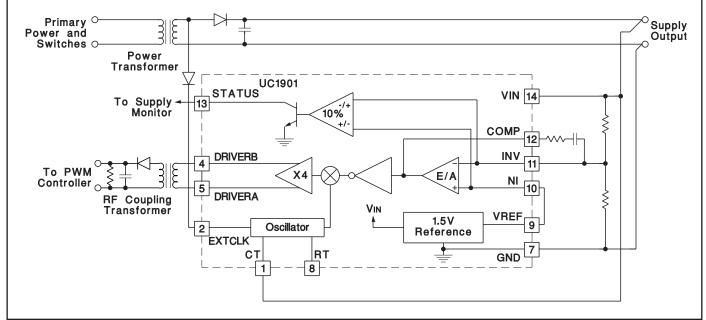


Figure 5. Feedback Coupled at Switching Frequency

TYPICAL APPLICATION

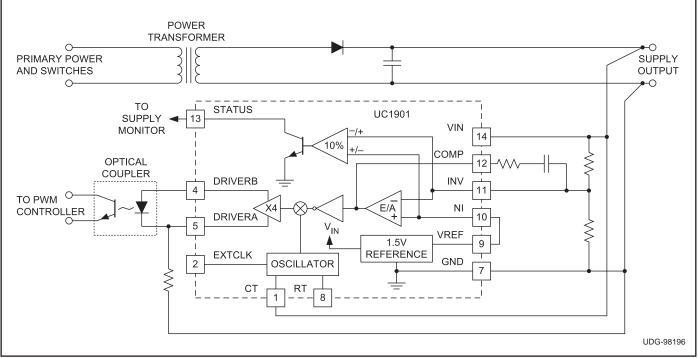


Figure 6. Optically Coupled DC Feedback

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated