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Abstract— The two best-known methods for calculating high-
frequency winding loss in round-wire windings—the Dowell
method and the Ferreira method—give significantly different
results at high frequency. We apply 2-D finite-element method
(FEM) simulations to evaluate the accuracy of each method for
predicting proximity-effect losses. We find that both methods can
have substantial errors, exceeding 60%. The Ferreira method,
which is based on the exact Bessel-function solution for the eddy
current in an isolated conducting cylinder subjected to a time-
varying magnetic field, is found to be most accurate for loosely
packed windings, whereas the Dowell method, which approximates
winding layers comprising multiple turns of round wire with a
rectangular conducting sheet, is most accurate for closely-packed
windings.

To achieve higher accuracy than is possible with either method
alone, we introduce a new formula, based on modifying the Dowell
method. Parameters in the new formula are chosen based on fitting
our FEM simulation data. By expressing the results in terms of
normalized parameters, we construct a model that can be used to
determine proximity-effect loss for any round-wire winding with
error under 2%.

Index Terms— proximity effect, winding loss

I. I NTRODUCTION

W INDING losses in transformers and inductors increase
dramatically with frequency due to eddy-current effects.

For design and optimization of inductors and transformers, there
is an need for an accurate prediction of the winding losses over
a wide frequency range and for various winding geometries.
In this paper, we examine commonly used approximations for
predicting winding losses in round-wire windings, show that
they can have errors as large as 150%, and introduce a new
method that provides much higher accuracy.

Commonly used methods to predict high-frequency loss in
round-wire windings (reviewed in [1]) use one of two types of
approximations to calculating AC conduction losses in windings
of round conductors. The first approach is to replace the
round conductors with square conductors of the same cross-
sectional area and then substitute a conductor foil for the square
conductors in the same layer, resulting in a one dimensional
(1-D) model that can be solved analytically [2], [3], [4], [5],
[6], [7]. This approach is commonly referred to as the Dowell
method even though Dowell was not the first to employ it.
The second approach is to use the well known Bessel function
solution for the field in a cylindrical conductor [8], [9], [10].
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We call this the Ferreira method because of Ferreira’s work on
practical application of this approach to windings [8], [11], [12].
The field solution used is exact for a single isolated cylinder
placed in a uniform field. The primary approximation involved
is the assumption that the losses remain unchanged when that
cylinder is closely packed among other cylinders in a multi-turn
winding. That approximation is partially overcome in [13], by
considering the modification of the field in a conductor due to
eddy current in adjacent conductors along the direction of the
field. However, the approximation in [13] does not account for
the effect of the distance to conductors in the other direction.

It is also possible to find the losses for any given configuration
to any desired degree of accuracy by using numerical field
solution methods such as the finite element method (FEM). Un-
fortunately, this remains impractical for many windings because
fine wire and small skin depths require high-resolution meshes
that are computationally expensive. In addition, the results of
such a simulation typically provide information about only one
specific design, and a large number of slow simulations would
be required to optimize a design.

Several approaches have been used to overcome the limita-
tions of direct numerical simulations. For situations in which
the wire diameter is small compared to the skin depth (d ¿ δ),
it is simple to perform an exact calculation of the losses in
a wire given the ac field, and the ac field may be calculated
from the terminal currents of the transformer and the inductor
and a simple set of magnetostatic numerical field solutions
[14]. This approach, called the squared-field-derivative (SFD)
method, drastically reduces computation time, but it is only
accurate for relatively low frequencies or for fine wire such
as litz wire.

The idea of separating the analysis of the overall field shape
from the analysis of the local interaction producing eddy cur-
rents is also applied in [15], but instead of the simple analytical
calculation of eddy currents, [15] removes the limitation to
(d ¿ δ) by performing a FEM simulation of the local field
and eddy currents, using symmetry boundary conditions to
approximate the periodic array of wires in a winding.

In this paper, we use a similar approach to [15], simulating
a single wire with symmetry boundary conditions to find its
behavior in a winding. However, instead of developing a system
that repeats this simulation for each winding to be analyzed as
in [15], we collect data for a range of wire spacings in two
directions and for ratios of wire diameter to skin depth ranging
from 0.6 to 60. We compare this data to calculations based
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on the Dowell method and the Ferreira method to evaluate the
accuracy and application range of these methods. We find that
they both lead to error as large as or larger than 60% in some
regions. Based on these results, we modify the Dowell method
to provide a function that approximates the simulation results
much better—to within 2%.

Section II reviews the Dowell method and the Ferreira method
and shows normalized expressions for power loss with each
of these two methods. Section III explains the setup of the
model we used for 2-D FEM simulation. Section IV analyzes
our results from the FEM simulation, and compares them with
the results from the Dowell method and the Ferreira method.
Section V provides a discussion of the use of a geometry
factor of the winding called porosity factor included in previous
literature [2], [8], [9], [16]. Section VI gives the form of our
new function based on the 2-D simulation results.

II. T HE DOWELL METHOD AND THE FERREIRA METHOD

There are two kinds of eddy-current effects: Skin effect and
proximity effect. When an ac current flows in a conductor, the
current density tends to decrease from the surface to the center
of the conductor and thus increase the power loss when the
operating frequency gets high. This is called skin effect. The
proximity effect is similar but it is caused by the current carried
by a nearby conductor. The current in the nearby conductor
causes a time-varying field and induces a circulating current
inside the conductor. Both the skin effect and the proximity
effect cause the current density to be nonuniform in the cross-
section of the conductor and cause higher winding loss at higher
frequency [17].

In this paper we focus exclusively on proximity-effect loss,
because, in a multilayer winding, it strongly dominates over
skin effect loss. Thus we examine the effect of an external AC
field applied to a winding.

A. Proximity-Effect Factor

In this paper, proximity-effect losses are normalized and
expressed with a unitless factor̂G:

P = Ĝ
H2

σ
(1)

where P is power loss per unit length;H is the peak value
of the external sinusoidal magnetic field caused by currents
in surrounding conductors; andσ is the conductivity of the
conductor.

This definition (1) differs from some other definitions ofG in
that we normalize to conductor conductivity as well as applied
field, such thatĜ is unitless. This facilitates application of our
results to any design, even with different conductor materials
or temperatures.

B. Proximity Factor from the Dowell Method

In the Dowell method, a round conductor with diameterd
is replaced by a square conductor of the same cross sectional

area, with width equal to
√

πd/2. The expression for proximity
effect loss per length of an infinite foil conductor with thickness√

πd/2, can be obtained as a function of frequency [7]:

Ĝ =
P

H2
σ = ξ

sinh ξ − sin ξ

cosh ξ + cos ξ
(2)

whereξ is defined as:

ξ =
√

π

2
d

δ
(3)

andδ is the skin depth, which is defined as:

δ =
1√

πfµσ
(4)

whereµ andσ are the permeability and the conductivity of the
conductor andf is the frequency of a sinusoidal current.

The skin effect losses of an infinite foil conductor with same
width can be represented by the ratio of AC resistance to DC
resistance as in [7]:

Rac

Rdc
=

ξ

2
sinh ξ + sin ξ

cosh ξ − cos ξ
(5)

Based on Dowell’s assumptions and the general field solu-
tions for the distribution of current density in a single layer
of an infinitely long current sheet, the expression for the AC
resistance of themth layer is derived in [4], and is re-written
in [8] as

Rac,m = Rdc,m
ξ

2
[
sinh ξ + sin ξ

cosh ξ − cos ξ
+ (2m− 1)2

sinh ξ − sin ξ

cosh ξ + cos ξ
]

(6)
whereRdc,m is the DC resistance of a conductor in the winding;
Rac,m is the AC resistance of a conductor in the winding; and
m is the number of the layer under consideration.

Skin effect and proximity effect can be calculated separately
due to the orthogonality existing between them [11]. Equation
(6) can also be obtained from (5), (2) and the field assumption
in [8].

Error is introduced in high frequencies by replacing round
conductors with square conductors because substitution only
results in the same DC resistance, while the approximation with
the rectangular conductor underestimates the AC resistance at
high frequency.

Dowell also introduced a porosity factor (also called layer
factor) when converting the several conductors in a layer into
one equivalent foil conductor to ensure the DC resistance of
the model winding is the same as that of the original one. The
porosity factor will be discussed in detail in Section V.

C. Proximity Factor of a Round Conductor

The exact expression for̂G based on an isolated round
conductor is:

Ĝ = −2πγ

γ

ber2γber′γ + bei2γber′γ
ber2γ + bei2γ

(7)

in which

γ =
1√
2

d

δ
(8)
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Fig. 1. 2-D simulation model for multilayer windings using symmetrical
boundaries to simulate an infinite periodic array of turns.v is the interwire
distance;h is the interlayer distance.

Ferreira applied the analytical field solution of a single
isolated conductor to get an expression for the AC resistance of
the mth layer by assuming a 1-D field inside the winding [8].
However, (7) doesn’t represent how the distances between layers
and conductors in multilayer windings affect power loss. It is
only accurate for widely-spaced winding conductors, only in
which case the interaction between conductors can be neglected.

III. 2-D F INITE-ELEMENT SIMULATIONS FOR

MULTI -LAYER WINDINGS

To evaluate the accuracy of the Dowell method and the
Ferreira method over a wide range of conditions, we performed
FEM simulations for a 2-D model. Fig. 1 shows the model used
to represent an infinite array of windings packed with a certain
spacing defined byh (interlayer distance) andv (interwire
distance).

Symmetric boundaries are used in this model as shown in
Fig. 1. Even symmetric boundaries are set between layers
and adjacent conductors in the same layer because of the
geometry of the infinite array that we assume. Also, due to
the symmetry of the current distribution in a round conductor
in the infinite array with a uniform external field applied to
it, an odd symmetric boundary can be set in the center of the
conductor along the direction of the external field, and an even
symmetric boundary can be set in the direction perpendicular
to the external field. The net current in the conductor is set to

zero so that the only current flowing in the conductor is that
caused by the external field.

After solving the model by FEM with varying dimensions
and frequencies, we found that power loss is a function of both
the frequency and the dimensions. The normalized power loss
Ĝ changes not only with frequency, but also withh/d andv/d,
as shown in Fig. 2 and Fig. 3.

We performed a large number of simulations by sweeping
these three variables: frequency, interlayer distanceh, and
interwire distancev. In our simulation, the frequency range is
from 20 kHz to 2000 MHz with conductor diameter equal to
0.28 mm, corresponding tod/δ from 0.6 to 60. The range of
dimensions ish/d from 0.26 to 1.8 (9 points) andv/d from 0.03
to 1.4 (10 points). A total of 3600 solutions have been acquired
under all different combination of these three variables. The
software we used for FEM simulation is a commercial package
(Maxwell 2-D field simulator of Ansoft Corporation), and the
target error of total field energy was set to 0.01%.

IV. A NALYSIS OF THE SIMULATION RESULT

In Fig. 4, we compare the 2-D FEM simulation results with
the results given by the Dowell method and the Ferreira method.
Some significant conclusions can be drawn: First, in the low fre-
quency range, the results from the Dowell method, the Ferreira
method and the 2-D simulation are very close to each other.
Second, the Dowell method underestimates proximity-effect
loss at high frequency, while the Ferreira method overestimates
it at high frequency. Third, the 2-D simulation results are closer
to the Dowell method results when the conductors are more
closely packed, while the Ferreira method is more accurate
when the conductors are further apart.

Although it appears in Fig. 4 that the two models and the
experimental results are equal in the low frequency region
(d ¿ δ), the predictions of the Dowell and Ferreira methods
differ by a factor ofπ/3, or 4.7%, in this region, due to the
fact that the Dowell method chooses the size of the square
conductor to match DC resistance, not proximity effect losses
[18]. This difference is too small to be visible in the compressed
log scale shown in Fig. 4, but closer examination of that data
shows that the simulation results match the Ferreira method to
about 1% in the region, and the Dowell method’s prediction of
low-frequency proximity effect loss has the expected error of
about 5%.

Fig. 2 and 3 show examples of the relationship between power
loss and geometry. Reducing the distance between conductors
in the same layer or increasing the distance between layers
can both reduce the proximity-effect loss. Proximity-effect loss
at one specific frequency goes to a constant value which is
consistent with that given by the Ferreira method when both
v/d andh/d are well above one.

V. SOME DISCUSSION OF THEPOROSITY FACTOR

In the Dowell method, round-wire windings are converted
into ‘equivalent’ foil conductors for easier analysis. The round
wires are first replaced by square conductors of equal copper
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Fig. 2. Unitless normalized proximity-effect factor̂G versus normalized
interwire spacingv/d with d/δ = 20.7, and h/d = 1.46, whereh is the
interlayer distance andv is the interwire distance.
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Fig. 3. Unitless normalized proximity-effect factor̂G versus normalized
interlayer spacingh/d with d/δ = 20.7, and v/d = 0.9405, where h is
the interlayer distance andv is the interwire distance.

cross-sectional area. These square conductors are then brought
together to form an equivalent foil winding. This foil winding of
copper, which does not extend the entire window breath, is then
“stretched” in the thickness direction to become a foil of equal
height that does extend across the entire window breath. A layer
porosity factor is introduced to match the DC resistance of the
original winding. If N is the number of square conductors per
layer, each having an individual widtha, andb is the window
width,

η =
Na

b
(9)

Layer porosity factor was first introduced by Dowell [2].
In Dowell’s model for porous layers, the current distribution
change caused by the 1-D approximation is considered equiv-
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Fig. 4. 2-D FEM simulation result for unitless normalized proximity-effect
factorĜ compared with results from the Dowell method and the Ferreira method
(Case 1:h/d=1.86,v/d=1.24; Case 2:h/d=0.2698,v/d=0.1865).

alent to a difference in the conductivity, and this difference is
reflected by a

√
η factor in the skin depth and thus inξ. Thus

the AC resistance in a winding ofm layers can be derived from
(6):

Rac = Rdcξ
′[

sinh 2ξ′ + sin 2ξ′

cosh 2ξ′ − cos 2ξ′
+

2
3
(m2 − 1)

sinh 2ξ′ − sin 2ξ′

cosh 2ξ′ + cos 2ξ′
(10)

whereξ′ is defined as:

ξ′ = ξ
√

η (11)

However, it has been pointed out that, at high frequencies,
the porosity factor only gives a good approximation when the
conductors are closely packed [19], [16].

In [8], the magnetic field is compensated by a factor ofη
because the average current along the width of each layer is
reduced by the same factor. Equation (10) becomes:

Rac = Rdcξ
′[

sinh 2ξ′ + sin 2ξ′

cosh 2ξ′ − cos 2ξ′
+

η2 2
3
(m2 − 1)

sinh 2ξ′ − sin 2ξ′

cosh 2ξ′ + cos 2ξ′
(12)

We can derive an expression for̂G from (12) based on the
1-D field approximation in [8]

Ĝ = ξ′
sinh ξ′ − sin ξ′

cosh ξ′ + cos ξ′
(13)

Similarly, another expression for̂G can be derived from (10):

Ĝ =
1
η2

ξ′
sinh ξ′ − sin ξ′

cosh ξ′ + cos ξ′
(14)

In [9], an η2 factor is added to the Ferreira proximity-
effect loss expression derived from the analytical solution of
an isolated round conductor to compensate for the decrease of
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Fig. 5. Comparison of proximity-effect loss in 2-D simulation with various
compensation methods with a porosity factor related to interwire distancev/d
at low frequency whered/δ = 0.8368 Comparison of proximity-effect loss
in 2-D simulation with various compensation methods with a porosity factor
related to interwire distancev/d with d/δ = 20.7 and h/d = 1.8571 in the
6th layer of a multilayer winding.

magnetic field strength in a porous layer. But thisη factor does
not make any improvement to the Ferreira method in the aspect
of taking the interaction between conductors into account since
Ĝ in [9] is the same as in (7).

From our simulation results,̂G becomes smaller whenv/d
is reduced, while total proximity-effect losses become larger
because of the increase of field strength when the conductors
in the same layer comes closer together.

Fig. 5 and 6 compare the total proximity-effect loss from
simulation results to the different compensations byη at dif-
ferent frequencies. From the two figures, we can see that when
skin depth is of the same order as the width of the conductor,
compensation of skin depth in (10) is accurate as stated in [20].
However, at a higher frequency, when the skin depth is much
smaller than conductor width (d/δ = 20.7), (10) is less accurate
than it is at lower frequencies. Nonetheless, it can give better
results than the other compensation methods, even thoughη
is introduced to compensate the 2-D effects without rigorous
justification [16].

From Fig. 7, we can see that the error ofĜ in (14) can be
from -20% to 60% compared with our simulation results. and
in Fig. 8, the error of the Ferreira method can be up to 150%
compared to the simulation result.

VI. CHOOSING THEFUNCTIONAL FORM FOR THE

MODIFIED DOWELL METHOD

Our aim is to create a function based on the data from 2-D
simulations that can be directly used in calculating proximity-
effect loss in multi-layer windings.

A new functional form is chosen based on the Dowell method,
which is more frequently used and has a simpler form than the
Ferreira method. Two coefficientsk1 and k2 are added to the
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Fig. 6. Comparison of proximity-effect loss in 2-D simulation with various
compensation methods with a porosity factor related to interwire distancev/d
with d/δ = 20.7 andh/d = 1.8571 in the 6th layer of a multilayer winding.
This comparison shows that all of the methods in the literature entail substantial
errors at high frequency.
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Fig. 7. Contour lines of error (%) in̂G from the Dowell method with porosity
factor η (as in (14)), compared with simulation results at high frequency when
d/δ=20.7 versus different interlayer distancesh and interwire distancesv.

Dowell function to better fit to the 2-D simulation results.

Ĝ
′
= k1

√
k2X

sinh(
√

k2X)− sin(
√

k2X)
cosh(

√
k2X) + cos(

√
k2X)

(15)

whereX is defined as:

X =
d

δ
(16)

This approach of modifying the Dowell function based on FEM
results, and indeed the form of the function (15), are similar
to those in [21]. However, because we use it to find onlyĜ,
not an expression for AC resistance factor, the application of
this formula is much more general than the modified Dowell
function in [21], and, with the modifications discussed below,
we achieve much higher accuracy.
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When Dowell’s function is modified by varyingk1 and k2,
the curve is scaled, but the shape is unchanged. Our simulation
data, however, has a slightly different shape for different wire
spacings. As shown in Fig. 9, the Dowell solution has a slight
overshoot where the function transitions from the part of the
of the curve that is proportional toξ4 (or f2) to the part of
the curve that is proportional toξ (or f0.5). The simulation
data only exhibits this overshoot for small values ofv/d. To
produce a curve with the same general shape but without the
overshoot, we introduce a new function:

d̂(X) =
KX

(X−3n + b3n)
1
n

. (17)

This function is based on the curve-fit function used in [22],
having two constant-slope portions, but is modified to have
constant slopes of four and one on a log-log scale to fit the
known high- and low-frequency asymptotic behavior of eddy
currents. The constantb controls the point at which the transition
between slopes occurs, and the constantn determines whether
the transition is abrupt (large values ofn) or smooth (small
values ofn). K is chosen to fit (17) to simulation data at low
frequency, and from rough curve-fitting in the low frequency
range, its value can be fixed at 0.0960.

As shown in Fig. 9, (17) provides a better fit for some geome-
tries, whereas (15) provides a better fit for other geometries. To
allow fitting data with either shape, or any intermediate shape,
we used a weighted average of the two functions (15) and (17),
with weightingw:

Ĝ
′
= (1− w)k1

√
k2X

sinh(
√

k2X)− sin(
√

k2X)
cosh(

√
k2X) + cos(

√
k2X)

+ wd̂(X)

(18)
By fitting (18) to the 90 sets of data (in each set of datad/δ

sweeps from 0.6 to 60 with 40 samples evenly distributed on a
log scale), we obtained 90 sets ofw, k1, k2, b, andn values,
defining curves which fit the data from 2-D FEM simulations
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Fig. 9. Depending on geometry, the simulation results may or may not exhibit
the “overshoot” in the Dowell function. In upper plot, simulation results for
h/d = 1.4603 and v/d = 0.1865 are compared to the two curve fitting
equations: the modified Dowell function (15) and the dual-slope function (17).
In this case, the simulation data does not exhibit the overshoot and the dual-
slope function (17) fits better. In the lower plot, data forh/d = 0.2698 and
v/d = 0.1865 can be seen to be fit better by the modified Dowell function
(15), although there is still significant error in the fit.

much better. Each set of values corresponds to a differentv/d
andh/d. Fig. 11 shows the error of our new function compared
with the original 2-D simulation data, which is under 2% in
all solutions for different dimension sets, and the only errors
exceeding 1% occur at dimensional conditions of smallh/d
and largev/d, which are seldom used in practice.

To use the results we report above, one would look up the
values ofw, k1, k2, b, and n in Table I based on the values
of v/d and h/d. We are presently studying different possible
curve-fit functions that would give values ofw, k1, k2, b, and
n based on the values ofv/d andh/d.

VII. C ONCLUSION

In this paper, 2-D symmetrical numerical simulation results
for the conductor loss in windings due to the proximity effect



AN IMPROVED CALCULATION OF PROXIMITY-EFFECT LOSS IN HIGH-FREQUENCY WINDINGS 7

1 5 10 50

0.1

1

10

90

d/δ

P
ro

xi
m

ity
 lo

ss
 fa

ct
or

 

2−D FEM result
Modified Dowell Formula

Fig. 10. Simulation results forh/d = 0.2698 andv/d = 0.1865 are compared
to the combined curve fitting equation (18). The combined equation can be seen
to fit the data better than is possible with either of the individual functions; this
is the same data as in the second plot in Fig. 9.
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Fig. 11. Contour lines of maximum percent error for the curve fit (18) using the
parameters in Table I for different dimensional conditions. The value associated
with each contour line is the maximum percentage error over the frequency
range tested, corresponding to values ofd/δ from 0.6 to 60.

are presented. The result show that the Dowell method can have
up to 60% error even with appropriate compensation by porosity
factor and the Ferreira method can have up to 150% error. A
new function which is based on the Dowell function has been
chosen and it is shown to fit the 2-D simulation data with error
under 2%.

REFERENCES

[1] Audrey M. Urling, Van A. Niemela, Glenn R. Skutt, and Thomas
G.Wilson, “Characterizing high-frequency effects in transformer
windings—a guide to several significant articles”,Journal of Cir-
cuits,Systems,and Computers, vol. 5, no. spec issue, pp. 607–626, Dec.
1996.

[2] P.L. Dowell, “Effects of eddy currents in transformer windings”,Pro-
ceedings of the IEEE, vol. 113, no. 8, pp. 1387–1394, Aug. 1966.

[3] P.S.Venkatraman, “Winding eddy current losses in switch mode power
transformers due to rectangular wave currents”,Proceedings of Powercon
11,Power Concepts Inc., pp. 1–11, 1984.

[4] M.P. Perry, “Multiple layer series connected winding design for minimum
losses”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-
98, pp. 116–123, Jan./Feb. 1979.

[5] E.Bennet and S.C. Larson, “Effective resistance of alternating currents”,
American Institute of Electrical Engineers, vol. 59, pp. 1010–1017, 1940.

[6] Bruce Carsten, “High frequency conductor losses in switchmode magnet-
ics”, in Technical Papers of the First International High Frequency Power
Conversion 1986 Conference., May 1986, pp. 155–176.

[7] Richard L. Stoll,The analysis of eddy currents, Clarendon Press. Oxford,
1974.

[8] J. A. Ferreira, “Improved analytical modeling of conductive losses in
magnetic components”,IEEE Transactions on Power Electronics, vol. 9,
no. 1, pp. 127–131, Jan. 1994.

[9] M.Bartoli, N. Noferi, and A. Reatti, “Modelling winding losses in high-
frequency power inductors”,Journal of Circuits, Systems, and Computers,
vol. 5, no. spec issue, pp. 607–626, Dec. 1996.

[10] William R. Smythe,Static and Dynamic Electricity, McGraw-Hill, 1968,
page 411.

[11] J. A. Ferreira, “Analytical computation of ac resistance of round and
rectangular litz wire windings”, IEEE Proceedings-B Electric Power
Applications, vol. 139, no. 1, pp. 21–25, Jan. 1992.

[12] J. A. Ferreira,Electromagnetic Modelling of Power Electronic Converters,
Kluwer Academic Publishers, 1989.

[13] J.Roudet J.P.Keradec, E. Laveuve, “Multipolar development of vector
potential for parallel wires. application to the study of eddy currents effects
in transformer windings”,IEEE transaction on Magnetics, vol. 27, no. 5,
pp. 4242 4245, 1991.

[14] Charles R. Sullivan, “Computationally efficient winding loss calcula-
tion with multiple windings, arbitrary waveforms, and two- or three-
dimensional field geometry”,IEEE Transactions on Power Electronics,
vol. 16, no. 1, pp. 142–150, Jan. 2001.

[15] Alexander D. Podoltsev, “Analysis of effective resistance and eddy-current
losses in multiturn winding of high-frequency magnetic components”,
IEEE Transactions on Magnetics, vol. 39, no. 1, pp. 539–548, Jan. 2003.

[16] F. Robert, “A theoretical discussion about the layer copper factor used
in winding losses calculation”,IEEE Transactions on Magnetics, vol. 38,
no. 5, pp. 3177–3179, Sept. 2000.

[17] P. N. Murgatroyd, “Calculation of proximity losses in multistranded
conductor bunches”,IEEE Proceedings, Part A, vol. 36, no. 3, pp. 115–
120, 1989.

[18] Charles R. Sullivan, “Optimal choice for number of strands in a litz-wire
transformer winding”,IEEE Transactions on Power Electronics, vol. 14,
no. 2, pp. 283–291, 1999.

[19] E. C. Snelling,Soft Ferrites, Properties and Applications, Butterworths,
second edition, 1988.

[20] J.P Schauwers F. Robert, P. Mathys, “Ohmic losses calculation in SMPS
transformers: Numerical study of Dowell’s approach accuracy”,IEEE
Transactions on Magnetics, vol. 34, no. 4, pp. 1255–1257, July 1998.

[21] J.P Schauwers F. Robert, P. Mathys, “A closed-form formula for 2-d
ohmic losses calculation in smps transformer foils”,IEEE Transactions
on Power Electronics, vol. 16, no. 2, pp. 437–444, May 2001.

[22] S.R. Sanders C.R. Sullivan, “Models for induction machines with
magnetic saturation of the main flux path”,IEEE Transactions on Industry
Applications, vol. 31, no. 4, pp. 907–17, 1995.



8 PESC 2003

TABLE I

VALUES OF k1 , k2 , b, n, w BASED ON NORMALIZED INTERWIRE DISTANCEv/d AND NORMALIZED INTERLAYER DISTANCE h/d

h/d = h/d = h/d = h/d = h/d = h/d = h/d = h/d = h/d =
1.8571 1.6587 1.4603 1.2619 1.0635 0.8651 0.6667 0.4683 0.2698

v/d = 1.3929 k1=2.6428 k1=2.6478 k1=2.6558 k1=2.6695 k1=2.6933 k1=2.7348 k1=2.8092 k1=2.9501 k1=3.2451
k2=0.4701 k2=0.4696 k2=0.4689 k2=0.4677 k2=0.4656 k2=0.4620 k2=0.4558 k2=0.4447 k2=0.4238
b=0.1835 b=0.1831 b=0.1825 b=0.1815 b=0.1799 b=0.1770 b=0.1720 b=0.1628 b=0.1447
n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000
w=0.0405 w=0.0404 w=0.0403 w=0.0402 w=0.0400 w=0.0395 w=0.0387 w=0.0371 w=0.0335

v/d = 1.2421 k1=2.5709 k1=2.5743 k1=2.5805 k1=2.5910 k1=2.6099 k1=2.6440 k1=2.7065 k1=2.8274 k1=3.0852
k2=0.4766 k2=0.4763 k2=0.4757 k2=0.4747 k2=0.4730 k2=0.4699 k2=0.4644 k2=0.4543 k2=0.4346
b=0.1885 b=0.1883 b=0.1877 b=0.1869 b=0.1853 b=0.1825 b=0.1774 b=0.1678 b=0.1485
n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000
w=0.0411 w=0.0410 w=0.0409 w=0.0408 w=0.0405 w=0.0398 w=0.0388 w=0.0367 w=0.0322

v/d = 1.0913 k1=2.4883 k1=2.4900 k1=2.4942 k1=2.5017 k1=2.5164 k1=2.5430 k1=2.5937 k1=2.6950 k1=2.9158
k2=0.4844 k2=0.4843 k2=0.4839 k2=0.4832 k2=0.4817 k2=0.4792 k2=0.4744 k2=0.4653 k2=0.4471
b=0.1951 b=0.1950 b=0.1945 b=0.1938 b=0.1923 b=0.1896 b=0.1843 b=0.1742 b=0.1532
n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000
w=0.0420 w=0.0420 w=0.0419 w=0.0418 w=0.0413 w=0.0406 w=0.0393 w=0.0365 w=0.0309

v/d = 0.9405 k1=2.3905 k1=2.3918 k1=2.3948 k1=2.4002 k1=2.4099 k1=2.4297 k1=2.4697 k1=2.5516 k1=2.7362
k2=0.4943 k2=0.4942 k2=0.4938 k2=0.4933 k2=0.4923 k2=0.4903 k2=0.4862 k2=0.4783 k2=0.4616
b=0.2047 b=0.2046 b=0.2042 b=0.2034 b=0.2020 b=0.1993 b=0.1937 b=0.1825 b=0.1591
n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000
w=0.0441 w=0.0441 w=0.0439 w=0.0437 w=0.0432 w=0.0423 w=0.0404 w=0.0367 w=0.0295

v/d = 0.7897 k1=2.2762 k1=2.2766 k1=2.2785 k1=2.2820 k1=2.2888 k1=2.3029 k1=2.3320 k1=2.3955 k1=2.5452
k2=0.5066 k2=0.5066 k2=0.5064 k2=0.5060 k2=0.5052 k2=0.5036 k2=0.5004 k2=0.4937 k2=0.4787
b=0.2190 b=0.2191 b=0.2187 b=0.2179 b=0.2164 b=0.2134 b=0.2072 b=0.1942 b=0.1667
n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000
w=0.0482 w=0.0483 w=0.0481 w=0.0477 w=0.0470 w=0.0457 w=0.0430 w=0.0377 w=0.0282

v/d = 0.6389 k1=2.1444 k1=2.1446 k1=2.1455 k1=2.1473 k1=2.1511 k1=2.1595 k1=2.1785 k1=2.2241 k1=2.3413
k2=0.5221 k2=0.5221 k2=0.5220 k2=0.5217 k2=0.5213 k2=0.5202 k2=0.5179 k2=0.5124 k2=0.4991
b=0.2424 b=0.2423 b=0.2419 b=0.2413 b=0.2397 b=0.2362 b=0.2287 b=0.2121 b=0.1772
n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000 n=1.0000
w=0.0572 w=0.0572 w=0.0570 w=0.0566 w=0.0557 w=0.0536 w=0.0494 w=0.0408 w=0.0271

v/d = 0.4881 k1=2.0447 k1=2.0450 k1=2.0454 k1=2.0465 k1=2.0489 k1=2.0545 k1=2.0676 k1=2.0993 k1=2.1824
k2=0.5341 k2=0.5340 k2=0.5340 k2=0.5338 k2=0.5335 k2=0.5328 k2=0.5311 k2=0.5270 k2=0.5166
b=0.1700 b=0.1699 b=0.1698 b=0.1696 b=0.1691 b=0.1679 b=0.1650 b=0.1579 b=0.1394
n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000
w=0.0108 w=0.0108 w=0.0107 w=0.0107 w=0.0107 w=0.0106 w=0.0103 w=0.0097 w=0.0081

v/d = 0.3373 k1=1.8443 k1=1.8445 k1=1.8446 k1=1.8451 k1=1.8463 k1=1.8493 k1=1.8569 k1=1.8768 k1=1.9328
k2=0.5624 k2=0.5624 k2=0.5624 k2=0.5623 k2=0.5621 k2=0.5617 k2=0.5605 k2=0.5575 k2=0.5491
b=0.1918 b=0.1918 b=0.1917 b=0.1915 b=0.1909 b=0.1894 b=0.1857 b=0.1760 b=0.1508
n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000
w=0.0109 w=0.0109 w=0.0109 w=0.0109 w=0.0108 w=0.0107 w=0.0103 w=0.0093 w=0.0070

v/d = 0.1865 k1=1.6194 k1=1.6128 k1=1.6127 k1=1.6131 k1=1.6136 k1=1.6151 k1=1.6193 k1=1.6314 k1=1.6669
k2=0.6002 k2=0.6015 k2=0.6015 k2=0.6014 k2=0.6013 k2=0.6010 k2=0.6002 k2=0.5980 k2=0.5914
b=0.2213 b=0.2285 b=0.2285 b=0.2281 b=0.2274 b=0.2253 b=0.2196 b=0.2038 b=0.1646
n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000
w=0.0100 w=0.0117 w=0.0117 w=0.0117 w=0.0116 w=0.0113 w=0.0105 w=0.0087 w=0.0055

v/d = 0.0357 k1=1.3557 k1=1.3556 k1=1.3556 k1=1.3556 k1=1.3556 k1=1.3563 k1=1.3578 k1=1.3639 k1=1.3831
k2=0.6559 k2=0.6559 k2=0.6559 k2=0.6560 k2=0.6559 k2=0.6558 k2=0.6554 k2=0.6539 k2=0.6491
b=0.2529 b=0.2529 b=0.2530 b=0.2529 b=0.2526 b=0.2500 b=0.2435 b=0.2217 b=0.1668
n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000 n=2.0000
w=0.0086 w=0.0086 w=0.0086 w=0.0086 w=0.0086 w=0.0083 w=0.0078 w=0.0060 w=0.0031


