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Abstract { A general model of the multiple-winding

coupled inductor is described, in which all parameters

can be directly measured. This model is employed in

a tutorial explanation of the mechanisms by which

leakage inductances and e�ective turns ratios a�ect

cross regulation and discontinuous conduction mode

boundaries in a multiple-output converter. Three ba-

sic approaches to coupled-inductor design are com-

pared: near-ideal coupling, practical moderate cou-

pling, and the zero-ripple approach. Near-ideal cou-

pling results in good cross-regulation even when some

outputs become discontinuous; however, realization of

near-ideal coupling may be di�cult in practice, and

the resulting circulating currents can also lead to in-

creased output voltage ripples and reduced e�ciency.

The best cross regulation can be obtained via the zero-

ripple approach with relatively loose coupling in appli-

cations where there is at least one output whose load

current variations are relatively small so that all wind-

ings can always operate in the continuous conduction

mode. The conclusions are supported by experimen-

tal results.

1 Introduction

Several mechanisms degrade the cross regulation of multiple-

output converters such as the 3-output forward converter

shown in Fig. 1. Conduction losses of diodes, magnetics wind-

ings, and capacitor esr cause the output voltages to vary with

the load currents. The e�ects of conduction losses on cross reg-

ulation can be predicted using averaged models, as in [1, 2],

for example. Transformer leakage inductances cause varia-

tions in the diode conduction times, which is another factor

that introduces some dependence of the output voltages on

the load currents [3]. When an output enters the discontinu-

ous conduction mode (DCM), its voltage ceases to track the

other output voltages, and wide voltage swings occur. Use of

coupled inductors in multiple-output buck-derived converters

is a well known and conventional method for improvement of

cross regulation [4]. The degree of cross regulation obtained

depends on the coupling between windings and on the e�ective

turns ratios between the windings. These parameters strongly

a�ect the current ripple in each winding, and hence also the
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Figure 1: A three-output forward converter with coupled induc-

tors.

DCM boundaries. Mismatches in the turns ratios, especially

in the case when the windings are tightly coupled, can lead

to large circulating currents, discontinuous conduction mode,

increased output voltage ripple, and degradation of e�ciency

and cross regulation. Since practical coupled inductors con-

tain (possibly distributed) air gaps, near-ideal coupling is also

di�cult to obtain in practice. Complete understanding of the

in
uence of coupled inductor construction on cross regulation

is hampered by lack of a practical and valid model of multiple-

winding coupled inductors, and by the complexity of multiple-

output circuit behavior. The objective of this paper is to de-

scribe a suitable coupled-inductor model, and to explain its

predictions in a tutorial manner.

A valid general model of the n-winding coupled inductor,

in which all parameters can be directly measured, is intro-

duced in Section 2. In Section 3, this model is used to show

how leakage inductances and e�ective turns ratios a�ect DCM

boundaries and cross-regulation. Three approaches to cou-

pled inductor design are compared in Section 4: near-ideal

coupling, practical moderate coupling, and the zero-ripple ap-

proach. The key points are validated by experiments.
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Figure 2: T-model (a) and the cantilever model (b) of a two-

winding transformer.

2 The Extended Cantilever Model

The magnetics of multiple-output converters typically con-

tain several windings having moderate to good coupling. The

well-known general model for multiple-winding coupled in-

ductors includes self-inductances Ljj and mutual inductances

Lij = Lji. The parameters in this model can be measured

directly and the model is also supported by simulation tools

such as Spice. Unfortunately, the model based on self and mu-

tual inductances is not well suited when the windings are well

coupled and when leakage inductances determine behavior of

the magnetic device, which is usually the case. Determination

of the values of leakage inductances from the self and mutual

inductances is practically impossible in the well-coupled case

because of the numerically ill-conditioned nature of the com-

putations. As a result, even small errors in the values of self

and mutual inductances result in large errors in the values of

leakage inductances. In this section, we describe a general cir-

cuit model for multiple-winding coupled inductors where the

leakage inductances are directly exposed and where all param-

eters can be directly measured.

In the general n-winding case, n(n + 1)/2 parameters are

necessary. It is well known that the simple model containing

an ideal transformer and leakage inductances in series with

each winding is insu�cient to describe such devices, and that

leakage inductances which model the coupling of each winding

to every other winding are necessary [1]. Previous authors

([5, 6], and others) have dealt with the complexity of this

general model by developing reduced models based on physical

and geometrical arguments. In general, however, such reduced

models may not be able to predict observed behavior. Also,

physical and geometrical arguments are di�cult to apply to

many cases of interest, such as toriodal geometries, especially

when the magnetic device contains (possibly distributed) air-

gaps.

Consider the basic T model of the two winding transformer

shown in Fig. 2(a). The model contains four parameters: two

leakage inductances, a magnetizing inductance, and a turns

ratio. However, only three parameters are needed to describe

the two winding transformer, and hence one of the T-model

parameters can be chosen arbitrarily [1, 5, 6]. When one of the

leakage inductances is chosen to be zero, then the cantilever

model of Fig. 1(b) is obtained. This simple model contains

three parameters and is well suited to modeling transformers

having moderate or good coupling. We propose to extend the

cantilever model of Fig. 1(b) to n windings. As an example,

Fig. 3 shows the four-winding extended cantilever model. This

model contains the correct number of parameters, and hence

is completely general. It also has the advantage that each
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Figure 3: Extended cantilever model for 4 coupled inductors.

parameter in the model can be measured simply and directly.

The shunt inductance L11 is equal to the self inductance of

winding 1. The e�ective turns ratios nj are found by driving

winding 1 with a voltage source, and measuring the open-

circuit voltages vj at the other windings,

nj =




vj
v1




 : (1)

Each series leakage inductance lij is measured by an experi-

ment involving driving the ith winding with a voltage source of

angular frequency !, shorting all other windings, and measur-

ing the current ij induced in the jth short-circuited winding,

lij =
1

!

1

ninj





viij




 : (2)

The extended cantilever model can be used as a tool to char-

acterize multiple-winding transformers and coupled inductors

in a wide range of applications. In this paper, the model is

used for analysis of cross-regulation in converters that con-

tain coupled inductors. The model has also been applied to

analysis and simulation of power-factor correctors based on

coupled-inductor converters [8].

3 Discontinuous Conduction Mode in Multiple-

Output Converters with Coupled Inductors

Consider a multiple-output converter, such as the forward con-

verter of Fig. 1. If all outputs operate in the continuous con-

duction mode (CCM), steady-state cross-regulation is deter-

mined by conduction losses and by unequal diode conduction

times due to transformer leakages and unequal device turn-

on/turn-o� times. When an output enters the discontinuous

conduction mode (DCM), its voltage ceases to track the other

output voltages, and cross regulation is degraded further be-

cause the output voltage in DCM is strongly load dependent.

In this section, we show how the extended cantilever mod-

els can be used to determine boundaries of operation in the

CCM, and the voltage conversion ratio when one of the out-

puts operates in the DCM. In the analysis that follows, we

assume that conduction losses and the e�ects of unequal diode

conduction times are small. Under these idealized conditions,
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cross-regulation is perfect as long as all outputs operate in the

continuous conduction mode.

Suppose that all outputs operate in the continuous conduc-

tion mode, and that we vary the load only on the jth output.

To determine the CCM/DCM boundary for the jth output,

it is convenient to construct a Thevenin equivalent circuit for

the jth winding of the coupled inductor as shown in Fig. 4.

The Thevenin equivalent circuit consists of an inductance lj
in series with a dependent voltage source ej , which is a linear

combination of all other winding voltages:

ej =
X

k=1;:::;n

k 6=j

ajkvk : (3)

Using the part of the extended cantilever model shown in

Fig. 4(b), the parameters in the Thevenin equivalent can be

obtained in terms of the cantilever parameters:

1

lj
=

1

n2j

X
k=1;:::;n

k 6=j

1

ljk
; (4)

ajk =
1

njnk

lj

ljk
: (5)

It is interesting to note that the parameters of the Thevenin

equivalent have a simple physical interpretation and can also

be measured directly: the series inductance lj is the induc-

tance of the jth winding with all other windings short cir-

cuited, while the coe�cient ajk is equal to the voltage transfer

ratio vj=vk when all windings (other than the jth and the kth)

are short circuited.

Once the parameters in the Thevenin equivalent circuit are

determined, the equivalent circuit for the jth output shown in

Fig. 5 can be used to �nd the CCM/DCM boundary condition.

Under the assumption that all outputs operate in the CCM,

and that conduction losses and the e�ects of transformer leak-

ages can be neglected, the voltage waveforms of all windings

are proportional,

v1

N1

=
v2

N2

= � � � =
vn

Nn

(6)
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Figure 5: Equivalent circuit model of the jth winding and wave-

forms used in the analysis of the discontinuous conduction mode.

As a result, the Thevenin source ej is proportional to the

winding voltage vj ,

ej = �jvj ; (7)

where the constant �j can be found as:

�j =
X

k=1;:::;n

k 6=j

ajk
Nj

Nk

: (8)

In the CCM, the slopes of the current ij are:

lj
dij

dt
=

�
(Vsj � Voj)(1� �j); 0 � t � DTs

�Voj(1� �j); DTs < t � Ts
(9)

which yields the current ripple

�ij =
Vojj1� �j j

2ljfs
(1�D) : (10)

The condition Voj=Rj � �ij for operation of the jth output

in the CCM becomes:

kj � (1�D) ; (11)

where

kj =
2ljfs

Rj

1

j1� �j j
=

Kj

j1� �j j
; (12)

is a constant that plays the same role as the constant K =

2Lfs=R commonly used in DCM analysis of single-output con-

verters.

In the case of uncoupled inductors, �j = 0, lj = Lj , kj =

Kj , and the CCM condition (11) reduces to the well-known

CCM condition for the single-output buck converter. It can

be observed that non-zero �j due to inductor coupling extends

the load range in CCM. In particular, if �j = 1 and lj > 0,
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Figure 6: DC conversion ratio Voj=Vsj for the jth output. The

output operates in the DCM for D < 1� kj = 0:8.

the jth output operates in the CCM for any load, and the

current ripple is ideally zero. If �j > 1, \reverse" ripple (with

negative slope during the time when the main switch is on)

would be observed in the jth winding current.

Typical waveforms for operation of the jth output in DCM

are shown in Fig. 5. The slopes of the current ij are:

lj
dij

dt
=

8<
:

Vsj � �jVsj(1�D)� Voj ; 0 � t � DTs

�(Voj � �jVsjD); DTs < t � (D +D2)Ts

0; (D +D2)Ts � t � Ts
(13)

The charge-balance and the volt-second balance equations ap-

plied to the waveforms shown in Fig. 5 yield the conversion

ratio Voj=Vsj for the case when the jth output operates in the

DCM, 0 � �j � 1, and all other outputs are in the CCM:

Voj

Vsj
=

2 (1� (1�D)�j)

1 �
kj�j

D
+

�
1 +

kj�j

D

�q
1 +

4kj(1��j)

(D+kj�j)
2

: (14)

If the jth inductor is uncoupled, �j = 0, and the expression

(14) for the voltage conversion ratio reduces to the well-known

DCM conversion ratio of buck converters. If �j = 1, Voj=Vsj =

D, which is exactly the same as the ideal CCM conversion

ratio. Fig. 6 shows the conversion ratio as a function of the

duty ratio D for constant kj and several values of �j . The

conclusion is that non-zero �j due to inductor coupling not

only extends the load range in CCM, as shown by (11), but it

also keeps the DCM conversion ratio closer to the conversion

ratio in CCM, thus improving cross regulation, as shown by

(14).

4 Design Approaches

In this section, speci�c design approaches are discussed using

the results of Section 3. The experimental three-output con-

verter shown in Fig. 7 is used to illustrate the discussion. In

the experimental circuit, the main output (output 1) is reg-

ulated at Vo1 = 5:1V and the auxiliary outputs (outputs 2

and 3) are unregulated. This circuit is constructed so that
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Figure 7: Experimental three-output converter. Vo1 is close-loop

regulated at 5:1V. The switching frequency is fs = 50kHz.

n2 n3 l12 l13 l23

design #1 1:004 0:919 0:36�H 21:3�H 16:4�H

design #2 0:997 0:994 0:36�H 96:2�H 84:1�H

Table 1: Parameters of the three-winding cantilever model for

the coupled-inductor designs shown in Fig. 8. In both designs the

self-inductance of winding W1 is L11 = 88�H.

experimental veri�cation of cross-regulation issues related to

the coupled-inductor design can be separated from the e�ects

of transformer leakage inductances that would occur in a prac-

tical converter with isolation transformer.

The experimental coupled inductors are wound using #20

AWG wire on a Magnetics Inc. 58254 high 
ux density

powdered iron toriodal core. The extended cantilever model

parameters have been measured for two di�erent coupled-

inductor designs shown in Fig. 8.

In the design #1 shown in Fig. 8(a), all three windings

have the same number of turns (24). Windings W1 and W2

are bi�lar, while winding W3 is wound on top of the windings

W2 and W3. The measured cantilever model parameters for

the design #1 are shown in Table 4. The bi�lar windings

are tightly coupled: l12 is very small, and the e�ective turns

ratio n2 is essentially equal to the physical turns ratio n2 �

1. Winding W3 is coupled moderately well to the windings

W1 and W2. As a result, series inductances l13 and l23 are

signi�cantly larger than l12, and the e�ective turns ratio n3 is

smaller than the physical turns ratio, n3 = 0:92 < 1.

In the design #2 shown in Fig. 8(b), windings W1 and W2

are bi�lar with the same number of turns (24), while winding

W3 has 28 turns wound on the opposite side of the toriod.

The measured cantilever model parameters for the design #2

are also shown in Table 4. The bi�lar windings are tightly

coupled as in the design #1. Winding W3 is loosely coupled

to windings 1 and 2 so that the series leakage inductances l13
and l23 are relatively large. The number of turns in winding

W3 is increased to 28 (compared to 24 turns on W1 and W2),

in order to have the e�ective turns ratio n3 close to 1.

The parameters of the Thevenin equivalent used in Section 3

to determine boundaries of operation in the CCM can be found
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Figure 8: Two coupled-inductor designs tested in the experimental

circuit of Fig. 7. In the design #1, windings W1, W2 and W3 have

24 turns each. In the design #2, windings W1, W2 have 24 turns

each, winding W3 has 28 turns.

l2 �2 l3 �3

design #1 0:358�H 1.006 7:81�H 0:919

design #2 0:384�H 0.990 44:3�H 0:994

Table 2: CCM/DCM analysis parameters lj and �j for the two

coupled-inductor designs of Fig. 8.

using (4), (5) and (8). For example, (4) gives l3 as the parallel

combination of l13 and l23 referred to winding W3:

l3 = n23(l13jjl23) = 7:81�H ; (15)

using the design #1 parameter values. The Thevenin source

e3 is found using (5) as:

e3 = n3
l23

l13 + l23
v1 +

n3

n2

l13

l13 + l23
v2 = (16)

= a31v1 + a32v2 = (17)

= 0:400 v1 + 0:519 v2 : (18)

Finally, since N1 = N2 = N3, the coe�cient �3 in (8) is

�3 = a31 + a32 = 0:919 : (19)

Numerical values of lj , �j parameters in the two designs are

summarized in Table 4.

The experimental circuit of Fig. 7 and the two coupled-

inductor designs of Fig. 8 are used to illustrate the discussion

of three approaches to coupled-inductor design.

4.1 Near-Ideal Coupling

In the case of near-ideal coupling, the series leakage induc-

tances ljk in the extended cantilever model are very small and

the inductance lj in the Thevenin equivalent circuit of the jth

winding is therefore very small. As a result, even slight mis-

match of winding voltages imposed on the coupled inductor

by the converter causes signi�cant current spikes (\circulat-

ing currents"). The mismatch in winding voltages is caused

by second-order e�ects such as small output capacitor voltage

ripples, conduction losses, and unequal diode turn-on/turn-o�

times. The winding current waveforms can di�er substantially

from the familiar triangular shape. For example, the wave-

forms of Fig. 9 show current spikes in the current i2 of wind-

ing W2, which is tightly coupled to the winding W1. These

Figure 9: Waveforms in the experimental circuit using the

coupled-inductor design #2; top-to-bottom: (R1) i3 (100mA/div);

(R2) i2 (100mA/div); (4) i1 (2A/div); (1) vs1 (20V/div). Operat-

ing conditions: Vo1 = 5:1V, Io1 = 2A, Vo2 = 5:7V, Io2 = 20mA,

Vo3 = 5:66V, Io3 = 20mA.

current spikes are due to the unequal diode turn-on/turn-o�

times, and are not predicted by the analysis of Section 3. In

the case of near-ideal coupling, however, e�ective turns ratios

are close to the turns ratios of the physical windings. As a

result, �j is very close to 1, which indicates that the wind-

ing voltage waveforms track closely, leading to good cross-

regulation even in DCM.

4.2 Moderate Coupling

In this case, which is commonly obtained in practice, the se-

ries inductances are moderate in value and the e�ective turns

ratios di�er somewhat from the turns ratios of the physical

windings. The winding currents typically exhibit triangular

waveforms, and the analysis of DCM boundaries in Section

3 yields reasonably accurate predictions. Because the leak-

age inductances are larger, the winding current ripples are

reduced and outputs are less likely to operate in the discontin-

uous conduction mode (as opposed to the near-ideal coupling

case). However, the winding voltage waveforms do not track as

closely and cross-regulation in DCM is degraded compared to

the case of near-ideal coupling. Fig. 10 shows the experimen-

tal waveforms observed with the coupled-inductor design #1

where winding W3 is coupled moderately well to W1 and W2.

The winding W3 output operates in the DCM. The analysis of

Section 3 predicts that the load resistance at the DCM/CCM

boundary is 2l3fs=(1� �3)=(1�D) = 14
, which agrees well

with the experimentally observed threshold resistance of 17
.

Fig. 11 compares the cross-regulation of the winding 2 and

3 outputs using the coupled-inductor design #1. It can be

observed that cross-regulation is degraded compared to the

near-ideal coupling case in the range of load currents where

the winding W3 output operates in DCM.

4.3 The Zero-Ripple Approach

In this case, the series inductances are moderate or high in

value and the e�ective turns ratios di�er signi�cantly from the
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Figure 10: Waveforms in the experimental circuit using the

coupled-inductor design #1; top-to-bottom: (R1) i3 (0.5A/div);

(R2) i2 (1A/div); (4) i1 (2A/div); (1) vs3 (20V/div). Operating

conditions: Vo1 = 5:1V, Io1 = 2A, Vo2 = 5:3V, Io2 = 0:97A,

Vo3 = 5:6V, Io3 = 0:2A, Vg = 20V.
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Figure 11: Experimental cross-regulation (Vo2�Vo1)(Io2) at Io1 =

2A, Io3 = 1A, and (Vo3 � Vo1)(Io3) at Io1 = 2A, Io2 = 1A, using

the coupled-inductor design #1.

physical turns ratios. By changing the number of turns, the

e�ective turns ratio for an output can be adjusted to match the

ratio of the voltages imposed on the windings by the converter.

This results in �j = 1, which, as shown by the analysis of

Section 3, implies that the winding current ripple is ideally

zero and that the CCM operation is guaranteed for all loads.

In general, the zero-ripple condition can be achieved in all

but one winding. To do so, one simply needs to adjust the

e�ective turns ratios to match the applied voltages, nj = Nj ,

for all windings. In this case, the general condition �j = 1 is

in equivalent to the \zero-ripple" condition discussed in [7].

In the experimental circuit, the coupled-inductor design #2

is used to illustrate the zero-ripple approach. Experimental

waveforms for the case when all outputs are in the CCM are

shown in Fig. 9. Winding W3 output operates in the CCM at

very light load with very small residual ripple, as opposed to

the current i2 of the tightly-coupled winding W2 that exhibits

0
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Figure 12: Experimental cross-regulation (Vo2�Vo1)(Io2) at Io1 =

2A, Io3 = 1A, and (Vo3 � Vo1)(Io3) at Io1 = 2A, Io2 = 1A, using

the coupled-inductor design #2.

large spikes. Measured cross-regulation results are shown in

Figs. 12 for the case when the main output is operated in

CCM. The cross-regulation on the winding W3 output is ac-

tually superior to the near-ideal coupling case because of the

absence of circulating currents, and because the W3 output

always operates in the CCM.

Since the windings are not tightly coupled in the zero-ripple

approach, the winding voltage waveforms do not track closely;

hence, cross-regulation is degraded if the non-zero-ripple out-

puts operate in DCM. This is illustrated by the waveforms of

Fig. 13: outputs 1 and 2 are both in the DCM, while winding

W3 output is in the CCM. The voltage vs3 di�ers signi�cantly

from the voltages vs1 and vs2, the cross-regulation on the out-

put 3 is degraded, and non-zero current ripple can be observed

in the winding W3 current. The cross-regulation results for

the outputs 2 and 3 obtained when the main output load cur-

rent is varied are shown in Fig. 14. In this case, the output

2 with W2 tightly-coupled to the main-output winding W1

outperforms the output 3.

It can be concluded that the best cross regulation can be

obtained via the zero-ripple approach in applications where

there is at least one output whose load current variations are

not too great: all of the ripple can be steered to this output,

and all windings can always operate in CCM.

4.4 Dynamic Response Considerations

Coupled inductors, and the discontinuous conduction mode,

can also signi�cantly a�ect the converter small-signal dynam-

ics. The extended cantilever model can be used to investigate

dynamic responses of multiple-output converters by analyt-

ical tools or by simulation. A brief qualitative summary is

presented in this section.

The leakage inductances of the extended cantilever model,

in conjunction with the capacitances of the auxiliary outputs,

can introduce resonances into the converter control-to-main-

output transfer function. To mitigate these resonances, it

may be necessary to reduce the leakage inductances via tight

coupling. Furthermore, lower leakage inductances result in

better dynamic cross-regulation, simply because the output
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Figure 13: Waveforms in the experimental circuit using the

coupled-inductor design #2; top-to-bottom: (R1) i3 (200mA/div);

(R2) i2 (200mA/div); (4) i1 (200mA/div); (1) vs1 (20V/div). Op-

erating conditions: Vo1 = 5:1V, Io1 = 90mA, Vo2 = 4:98V,

Io2 = 230mA, Vo3 = 4:81V, Io3 = 230mA, Vg = 20V.
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Figure 14: Experimental cross-regulation (Vo2 � Vo1)(Io1) and

(Vo3 � Vo1)(Io1) for Ro2 = Ro3 = 25
, Vo1 = 5:1V.

impedances of the auxiliary outputs are smaller [4].

We have also observed signi�cant changes in the control-to-

main-output transfer function of a current-programmed for-

ward converter with moderate coupling of inductors, when an

auxiliary output enters the discontinuous conduction mode.

This behavior can be explained as follows. The high-

frequency asymptote of the current-programmed control-to-

output transfer function depends on the total e�ective ca-

pacitance Ctot. When all outputs operate in the continuous

conduction mode, then Ctot is equal to the parallel combi-

nation of all output capacitors, referred to the main output.

However, when a moderately-coupled output enters the dis-

continuous conduction mode, then the in
uence of its output

capacitance on the control-to-main-output transfer function

is greatly reduced. Depending on the relative values of the

output capacitances, this e�ect can lead to signi�cant varia-

tions in the crossover frequency of the main voltage feedback

loop. This e�ect can be mitigated by choosing the output

capacitance of the main output to be much greater than the

re
ected capacitances of the auxiliary outputs, or by obtain-

ing near-ideal coupling of the inductor windings. This point

is discussed further in [9].

5 Conclusions

A general extended cantilever model of the multiple-winding

coupled inductor is described, in which all parameters can

be directly measured. This model is employed in a tutorial

explanation of the mechanisms by which leakage inductances

and e�ective turns ratios a�ect cross regulation and discontin-

uous conduction mode boundaries in a multiple-output con-

verter. Three basic approaches to coupled-inductor design are

compared. Near-ideal coupling provides good cross-regulation

even when some outputs become discontinuous; however, real-

ization of near-ideal coupling may be di�cult in practice, and

the resulting circulating currents can also lead to increased

output voltage ripples and reduced e�ciency. Practical mod-

erate coupling leads to lower circulating currents, but the cross

regulation is degraded in discontinuous modes because the in-

ductor waveforms are not matched as closely as in the near-

ideal coupling case. In applications where there is at least one

output whose load current variations are relatively small so

that all winding can always operate in CCM, the best static

cross regulation can be obtained via the zero-ripple approach

with relatively loose coupling.
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