MODELING OF CROSS-REGULATION IN CONVERTERS CONTAINING COUPLED INDUCTORS

Dragan Maksimović and Robert Erickson Colorado Power Electronics Center University of Colorado at Boulder http://ece-www.colorado.edu/~pwrelect/

Carl Griesbach
Analog Systems
Morrison, Colorado

INTRODUCTION

Example: a three-output forward converter with coupled inductors

Static Cross Regulation

- Conduction losses (diodes, magnetics windings, capacitor esr)
- Transformer leakage inductances, unequal diode conduction times
- Discontinuous conduction modes
- Suitable multiple-winding magnetics models?

Multiple-Winding Magnetics Models

- General case: $n \text{ windings} \Rightarrow n(n+1)/2 \text{ model parameters}$
- Simple model with ideal transformer, magnetizing inductance and leakage in series with each winding:
 - -2n parameters
 - In general, not valid for n > 3
- Reduced-order models based on physical and geometrical arguments [5,6,...]
 - Model validity?
 - May be difficult to derive (toroidal geometries, distributed air-gaps)

- Model with self (L_{jj}) and mutual $(L_{ij} = L_{ji})$ inductances:
 - General
 - Parameters can be measured easily
 - Supported by simulation tools

Not well-suited for magnetics with tightly-coupled windings because:

- calculations of leakage inductances are illconditioned
- small errors in L_{jj} , L_{ij} may result in completely wrong values of leakage inductances

A Different Approach

• T-model of a 2-winding transformer:

• Cantilever model of a 2-winding transformer:

• Approach: extend the cantilever model to n windings

Parameters:

• Shunt inductance: L_{11}

• Effective turns ratios: n_i

• Leakage inductances: l_{ij}

Parameters:

• Shunt inductance, measurement:

$$L_{11} = \frac{1}{\omega} \left\| \frac{v_1}{i_1} \right\|$$

• Effective turns ratios: n_j

• Leakage inductances: l_{ij}

Parameters:

- Shunt inductance L_{11}
- Effective turns ratios: n_j , measurement example:

$$n_2 = \left\| \frac{v_2}{v_1} \right\|$$

• Leakage inductances: l_{ij}

Parameters:

- Shunt inductance
- Effective turns ratios: n_i
- ullet Leakage inductances: l_{ij} , measurement example:

$$l_{24} = rac{1}{\omega} rac{1}{n_2 n_4} \left\| rac{v_2}{i_4}
ight\|$$

(In general, in same cases not frequently found in practice, l_{ij} can have negative values, so the phase information should be observed)

Extended Cantilever Model

- General
- Parameters can be measured directly and easily
- Parameters are useful for analysis and modeling of power converters

Model application:

• Discontinuous-mode analysis and modeling of cross-regulation in multiple-output converters

DCM Analysis Using the Extended Cantilever Model

The venin equivalent of the j^{th} winding

DCM Analysis Using the Extended Cantilever Model

CCM condition:

$$k_j = \frac{2l_j f_s}{R_j} \frac{1}{|1 - \alpha_j|} \ge 1 - D$$

DC Conversion Ratio

- $\alpha_j = 0$: no coupling
- $\alpha_j = 1$: zero-ripple approach, CCM for all loads

Experimental Example

- V_{o1} regulated at 5V
- $V_g = 20$ V, $f_s = 50$ kHz

Magnetics In the Experimental Example

	W1 turns	W2 turns	W3 turns
design #1	24	24	24
design #2	24	24	28

	n_2	n_3	l_{12}	l_{13}	l_{23}
design #1	1.004	0.919	$0.36\mu\mathrm{H}$	$21.3\mu\mathrm{H}$	$16.4\mu\mathrm{H}$
design #2	0.997	0.994	$0.36 \mu { m H}$	$96.2 \mu \text{H}$	$84.1 \mu { m H}$

	l_2	α_2	l_3	α_3
design #1	$0.358 \mu { m H}$	1.006	$7.81 \mu { m H}$	0.919
design #2	$0.384 \mu { m H}$	0.990	$44.3 \mu { m H}$	0.994

Magnetics Inc. 58254 powdered iron core

Design Approaches: Near-Ideal Coupling vs. Moderate Coupling (design #1)

Operating conditions: $V_{o1} = 5.1 \text{V}$, $I_{o1} = 2 \text{A}$, $V_{o2} = 5.3 \text{V}$, $I_{o2} = 0.97 \text{A}$, $V_{o3} = 5.6 \text{V}$, $I_{o3} = 0.2 \text{A}$, $V_{g} = 20 \text{V}$.

Design Approaches: Near-Ideal Coupling vs. Moderate Coupling (design #1) Cross Regulation

 $I_{o1} = 2\mathbf{A}$, $I_{o2} = 1\mathbf{A}$, coupled-inductor design #1.

Design Approaches: Near-Ideal Coupling vs. Zero-Ripple Approach (design #2)

Operating conditions: $V_{o1} = 5.1 \text{V}$, $I_{o1} = 2 \text{A}$, $V_{o2} = 5.7 \text{V}$, $I_{o2} = 20 \text{mA}$, $V_{o3} = 5.66 \text{V}$, $I_{o3} = 20 \text{mA}$.

Design Approaches: Near-Ideal Coupling vs. Zero-Ripple Approach (design #2) Cross Regulation

 $I_{o1} = 2A$, $I_{o2} = 1A$, coupled-inductor design #2.

Design Approaches: Summary

- Near-ideal coupling (very small l_j , $\alpha_j \approx 1$)
 - Good cross-regulation even in DCM
 - Exact matching of turns-ratios is necessary
 - Significant current spikes, larger ripples
 - May be difficult to achieve in practice
- Moderate coupling (small l_j , $\alpha_j \neq 1$)
 - Degraded cross-regulation in DCM
- Zero-ripple approach (moderate l_j , $\alpha_1 \approx 1$)
 - Effective turns ratios match the ratios of imposed voltages
 - Effective turns ratios differ from turns ratios of physical windings
 - CCM operation down to almost zero load
 - Very small ripples
 - Best (static) cross regulation
 (if the non-zero-ripple output operates always in CCM)

CONCLUSIONS

- Extended cantilever magnetics model:
 - General
 - Model parameters can be measured directly
 - Parameters are useful for converter modeling
- Extended cantilever model applied to DCM analysis of a multiple-output converter with coupled inductors
- Design approaches compared:
 - Near-ideal coupling
 - Moderate coupling
 - Zero-ripple approach

using the model predictions and an experimental example.