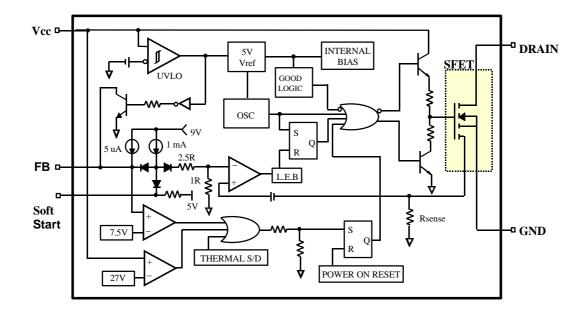

KA5H0165RN

SPS

The SPS product family is specially designed for an off-line SMPS with minimal external components. The SPS consist of high voltage power SenseFET and current mode PWM IC.

Included PWM controller features integrated fixed oscillator, under voltage lock out, leading edge blanking, optimized gate turn-on/turnoff driver, thermal shut down protection, over voltage protection, and temperature compensated precision current sources for loop compensation and fault protection circuitry. Compared to discrete MOSFET and controller or RCC switching converter solution, a SPS can reduce total component count, design size, weight and at the same time increase efficiency, productivity, and system reliability.

It has a basic platform well suited for cost-effective design in either a flyback converter or a forward converter.


FEATURES

- Precision fixed operating frequency (100kHz)
- Pulse by pulse current limiting
- Over current protection
- Over voltage protection (Min. 25V)
- Internal thermal shutdown function
- Under voltage lockout
- Internal high voltage sense FET
- Auto-restart mode

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temp.
KA5H0165RN	8DIP	-25°C to +85°C

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit		
Drain-source(GND) voltage (1)	Vdss	650	V		
Drain-gate voltage (RGs=1MΩ)	Vdgr	650	V		
Gate-source(GND) voltage	Vgs	±30	V		
Drain current pulsed ⁽²⁾	ldм	4.0	ADC		
Single pulsed avalanch energy ⁽³⁾	Eas	95	mJ		
Avalanch current ⁽⁴⁾	las	5	А		
Continuous drain current (Tc = 25° C)	ID	1.0	Adc		
Continuous drain current (Tc = 100°C)	lD	0.7	ADC		
Supply voltage	Vcc	30	V		
Analog input voltage range	Vfb	-0.3 to VsD	V		
Total power dissipation	PD (Watt H/S)	40	W		
	Derating	0.32	W/°C		
Operating temperature	TOPR	-25 to +85	°C		
Storage temperature	Тѕтс	-55 to +150	°C		

NOTES :

- 1. $T_j = 25^{\circ}C$ to $150^{\circ}C$
- 2. Repetitive rating : Pulse width limited by maximum junction temperature
- 3. L = 24mH, starting $T_j = 25^{\circ}C$
- 4. L = 13uH, starting $T_j = 25^{\circ}C$

ELECTRICAL CHARACTERISTICS (SFET part)

(Ta = 25°C unless otherwise specified)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	BVDSS	Vgs=0V, Id=50µA	650	-	-	V
Zero gate voltage drain current	IDSS	VDS=Max., Rating, VGS=0V	-	-	50	μA
		VDS=0.8Max., Rating, VGS=0V, Tc=125°C	-	-	200	μΑ
Static drain-source on resistance ^(note)	RDS(on)	VGS=10V, ID=0.5A	-	8	10	Ω
Forward transconductance ^(note)	gfs	VDS=50V, ID=0.5A	0.5	-	-	mho
Input capacitance	Ciss	VGS=0V, VDS=25V, f = 1MHz	-	250	-	pF
Output capacitance	Coss		-	25	-	
Reverse transfer capacitance	Crss		-	10	-	
Turn on delay time	td(on)	VDD=0.5BVDSS, ID=1.0A (MOSFET switching time are essentially independent of operating temperature)	-	12	-	nS
Rise time	tr		-	4	-	
Turn off delay time	td(off)		-	30	-	
Fall time	tf		-	10	-	
Total gate charge (gate-source+gate-drain)	Qg	VGS=10V, ID=1.0A, VDS=0.5BVDSS(MOSFET Switching time are Essentially independent of Operating temperature)	-	-	21	
Gate-source charge	Qgs		-	3	-	nC
Gate-drain (Miller) charge	Qgd		-	9	-	

NOTE: Pulse test: Pulse width $\leq 300\mu$ S, duty $\leq 2\%$

ELECTRICAL CHARACTERISTICS (Control part)

(Ta = 25°C unless otherwise specified)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
REFERENCE SECTION		1	1	1		1
Output voltage ⁽¹⁾	Vref	Ta=25°C	4.80	5.00	5.20	V
Temperature Stability (1)(2)	Vref/∆T	-25°C ≤ Ta ≤ +85°C	-	0.3	0.6	mV/∘C
OSCILLATOR SECTION		1		1		1
Initial accuracy	Fosc	Ta=25°C	90	100	110	kHz
Frequency change with temperature ⁽²⁾		-25°C ≤ Ta ≤ +85°C	-	±5	±10	%
PWM SECTION		1	1	1		1
Maximum duty cycle	Dmax	-	64	67	70	%
FEEDBACK SECTION			•	•		•
Feedback source current	lfв	Ta=25°C, 0V≤Vfb≤3V	0.7	0.9	1.1	mA
Shutdown delay current	Idealy	Ta=25°C, 5V≤Vfb≤VsD	4	5	6	mА
OVER CURRENT PROTECTION SECT	ON	1		1		1
Over current protection	IL(max)	Max. inductor current	0.53	0.6	0.67	Α
UVLO SECTION		1		1		1
Start threshold voltage	Vth(H)	-	14	15	16	V
Minimum operating voltage	Vth(L)	After turn on	8.4	9	9.6	V
TOTAL STANDBY CURRENT SECTION	N	1	1	1		1
Start current	IST	Vcc = 14V	-	100	170	mА
Operating supply current	IOPR	Vcc ≤ 28	-	7	12	mA
(control part only)						
SHUTDOWN SECTION			-			
Shutdown Feedback voltage	Vsd	$V f b \ge 6.5 V$	6.9	7.5	8.1	V
Thermal shutdown temperature(Tj) ⁽¹⁾	TSD	-	140	160	-	°C
Over voltage protection voltage	Vovp	$Vcc \ge 24V$	25	27	29	V

NOTE:

- 1. These parameters, although guaranteed, are not 100% tested in production
- 2. These parameters, although guaranteed, are tested in EDS(wafer test) process

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com