
Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

MAST Language
Reference Manual
Release 2003.06, June 2003

Copyright Notice and Proprietary Information
Copyright 2003 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property ofSynopsys, Inc. The softwareand documentation are furnished under a license agreement and may
be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be
reproduced, transmitted,or translated, inanyformorbyanymeans,electronic,mechanical,manual,optical,orotherwise,withoutprior
written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each
copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign
sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks, Trademarks, and Service Marks
of Synopsys, Inc.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CoCentric,
COSSAP, CSim, DelayMill, Design Compiler, DesignPower, DesignWare, Device Model Builder, EPIC, Formality,
HSPICE, Hypermodel, I, InSpecs, iN-Phase, in-Sync, LEDA, MAST, Meta, Meta-Software, ModelAccess, ModelExpress,
ModelTools, PathBlazer, PathMill, Photolynx, Physical Compiler, PowerArc, PowerMill, PrimeTime, RailMill, Raphael,
RapidScript, Saber, SiVL, SmartLogic, SNUG, SolvNet, Stream Driven Simulator, Superlog, System Compiler, Testify,
TetraMAX, TimeMill, TMA, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail,
Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit
Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE,
Cyclelink, Davinci, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design
Analyzer, DesignerHDL, DesignTime, DFM-Workbench, DFT Compiler, Direct RTL, Direct Silicon Access, DW8051,
DWPCI, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore,
Encore PQ, Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FormalVera, FoundryModel, FPGA
Compiler II, FPGA Express, Frame Compiler, Frameway, Galaxy, Gatran, HDL Advisor, HDL Compiler, Hercules,
Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSPICE-
Link, iN-Tandem, Integrator, Interactive Waveform Viewer, iQBus, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC,
JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, LRC, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture,
Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, NanoSim, Nova
Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, OpenVera, Optimum Silicon, Orion_ec,
Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE,
PowerGate, ProFPGA, Progen, Prospector, Proteus OPC, Protocol Compiler, PSMGen, Raphael-NES, RoadRunner,
RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon
Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design,
Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-Sim XT, Star-Time, Star-
XP, SWIFT, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-OPC, Taurus-Process, Taurus-
Topography, Taurus-Visual, Taurus-Workbench, The Power in Semiconductors, TimeSlice, TimeTracker, Timing
Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice, TSUPREM-4, TymeWare, VCS, VCS Express,
VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks
of Synopsys, Inc.
ii

Service Marks (SM)
DesignSphere, MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.
SystemC is a trademark of the Open SystemC Initiative and is used under license. AMBA is a trademark of ARM Limited.
ARM is a registered trademark of ARM Limited. All other product or company names may be trademarks of their respective
owners.
Printed in the U.S.A.
iii

iv

MAST Language Reference Manual

Chapter 1. Overview ...1-1

File for C language declarations included.......................................1-3

A compound statement in a template cannot have an empty body1-3

A foreign routine in a template that does not return a value can cause
errors ...1-3

You cannot use an enumerated type parameter (enum) as an external
variable in a template ..1-3

Chapter 2. MAST Syntax Rules ...2-1

Chapter 3. Declarations and Data Structures ..3-1

Chapter 4. Expressions ...4-1

Chapter 5. Intrinsic Functions and Values ...5-1

Chapter 6. Statements ..6-1

Chapter 7. Templates ...7-1

Chapter 8. Foreign Functions ..8-1

Chapter 9. MAST Functions ..9-1

Index ... Index-1
MAST Language Reference Manual (June 2003) v
Copyright © 1985-2003 Synopsys, Inc.

MAST Language Reference Manual
vi MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 1
Overview
Introduction

This manual describes the MAST modeling language. This language lets you
create a model of any analog system or element that can be defined in terms of
nonlinear “lumped” algebraic or differential equations. Some extensions are
also provided by the use of ideal delay and scheduling.

After completing a model, you can use it as input to the Saber simulator. You
can also use the MAST language to create digital models that take on discrete
values at discrete times. With the MAST language and the Saber simulator,
you can model and simulate most physical systems: electronic, mechanical,
optical, hydraulic, etc. (or any combination of them).

The MAST language is a unique concept in simulator input—the same
language describes models of elements, of subsystems, and of full systems. A
system model can be as simple as a netlist that describes the interconnections
of existing system components (using pre-defined models from a MAST
library) or as complex as the full system description (using no pre-defined
models).

At minimum, the Saber simulator requires (for each system to be simulated)
an input file containing a netlist that completely describes the system in the
MAST language.

NOTE
The simulator also accepts files containing SPICE
input, after they have been converted to MAST format
with the spitos conversion utility. However, the Saber
simulator is inherently compatible with the MAST
language, so using MAST models provides both greater
modeling flexibility and better simulation speed.
MAST Language Reference Manual (June 2003) 1-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
 The MAST language enables you to do the following:

• Add new models as needed

• Combine technologies (electrical, optical, mechanical, etc.) without the
need for translation into electrical

• Alter models with ease

• Describe functions inside models

• Determine output responses as functions of model parameters and
simulated variables

• Define systems hierarchically

• Describe complicated relationships between components

• Use models within other models

• Pass information from one model to another

• Model analog systems at any of three levels: behavioral, functional, and
primitive

The principal unit of modeling used by the Saber simulator is called a
template—the MAST description of the model. Depending on the model,
MAST templates can vary in appearance, length, and complexity; however,
they do share common features. These are covered in the remaining sections
of this chapter.

The rest of this manual provides reference information on templates and on
the characteristics of the MAST language itself. The Guides To Writing
MAST Templates, Book 1 and Book 2, serve as companion documents,
illustrating basic MAST functionality by way of writing templates to model
common electrical devices (resistors, BJTs, voltage sources, AND gates, etc.).

Deprecated MAST Features

As part of formalizing the definition of the MAST language several language
features that were undocumented for a long time have now been marked as
deprecated. These features include:

1. the states section

The states section has been replaced by the much more flexible
apparatus of When statements

2. external declarations in the template body
1-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

File for C language declarations included
External declarations should be in the template header

3. val and state declarations in functions

Such declarations should be replaced by appropriate variable
declarations of type number

The simulator will issue a warning for each use of a deprecated language
feature if it is started with the -d deprec8 option. Deprecated language
features will not be supported in the VeriasHDL Simulator but remain to be
available in the Saber Simulator.

MAST Modeling Language

File for C language declarations included

The file saberApi.h in the install_home/include directory contains the
declarations for the published C language interface of the Saber simulator.
(15323)

A compound statement in a template cannot have an empty body

A compound statement in a template cannot have an empty body. For
example, the following is not allowed:

values {
comment
}

There is no workaround for this problem. (8980)

A foreign routine in a template that does not return a value can cause errors

If you include a foreign routine in a template and it does not return a value, it
can cause excessive simulation time or other unpredictable results with no
error reported.

The workaround is to make sure any foreign routine returns a value even if it
is a “dummy” value. (10118)

You cannot use an enumerated type parameter (enum) as an external variable in
a template

The workaround is to use an argdef (..) operator to pass the enum in from
another template. (10272)
MAST Language Reference Manual (June 2003) 1-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
Templates and Hierarchy

A complete MAST description of an element, subsystem, or entire system is
contained in a file and is called a template.

The MAST language supports designs, which means that templates can
contain references to other templates. If one template (say template A)
contains a reference to another (template B), this indicates that, in the model,
the system represented by template B is a subsystem of that represented by
template A. You can create a template that defines a subsystem, and then
refer to it in the system template wherever the subsystem is used. When you
take full advantage of hierarchical modeling, the most natural structure of the
model is the structure of the system it models.

A reference in one template to another template is a netlist entry. Using
netlist entries to define a system hierarchically can significantly increase the
speed of simulation.

The MAST language places no restrictions on the depth of the template
hierarchy. Moreover, any level may contain any number of references to lower
levels, and called templates can be defined either inside or outside of the
calling template.

Because we supply substantial libraries of standard component and element
templates, you can usually simplify your model-writing effort by including
references, whenever possible, to these templates. In many cases, you can
define an entire system using only netlist entries that call library templates.
Such a system is called a netlist.

A netlist entry is equivalent to the full definition of the referenced template.
For example, a netlist reference to a predefined resistor template is equivalent
to a full definition of that resistor. Moreover, the netlist reference would
specify the value of the resistor (in ohms), and that value would be passed to
the resistor template.

If a template consists only of a full model description instead of referencing
other templates, it is called flat. Flat descriptions have two disadvantages:

• In most cases, simulation requires more time.

• If there are multiple occurrences of a subsystem, its description must be
written in full for each occurrence, reducing simulation efficiency and
increasing the size of the input file.

Naming the Template File
1-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Template Organization
You can use your system’s editor to create a template file in the MAST
language. Give it a name of this form:

templatename.sin

where templatename is the name of your template, which can model a system,
subsystem, or component. The number of characters allowed in templatename
depends upon your operating system. The .sin extension is required for use by
the Saber simulator. The templatename must start with a letter. The other
characters in the name may be letters, numbers, or underscores. If you have
an input file previously created in the SPICE format, you can convert it to
Saber format with the Spice-to-MAST Translation tool nspitos. For a
description of the nspitos tool, refer to nspitos in the SaberBook Online Help
System.

The top-level template in a hierarchical system model contains other
templates or references to them, and is not referred to by other templates.
When invoking the Saber simulator, you call the top-level template directly, as
follows, where brackets ([]) denote optional items:

saber [options] templatename[.sin]

Template Organization

This section presents an overview of template organization.

Templates have a general form consisting of several different sections. You use
some or all of the possible sections depending on the requirements of your
model and whether you include previously defined templates in your model.

Within your template, at any point, you can specify other files, the contents of
which are read into the template. Included files are called “include files.”
Include files can contain part, or even all, of a template. The possible template
sections are as follows:

Unit definitions

Connection point definitions

Template header

Header declarations

{

Local declarations

Parameters section

Netlist section

When statements

Values section
MAST Language Reference Manual (June 2003) 1-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
Control section

Equations section

}

In general, the more complicated the model, the more template sections you
will probably use.

In a hierarchical system model, the top-level template models the whole
system and can contain templates that define the subsystem and components.
Templates within the top level template can either be explicitly defined within
the template file, or can be defined in separate files and included by reference.

The top level template must not contain a template header, the header
declarations section, or the braces ({ }) surrounding the body of the
template. When you invoke the Saber simulator to analyze a system model,
you use the name of the file containing the top level template in the Saber
invocation line.

When writing templates, you should bear in mind two important rules that
affect the positions of related items.

1. You must always define something before you use it. For example, if the
template uses a variable, that variable must be declared prior to its
first occurrence. The exception is the use of implicitly declared pins
and some forward references to component’s vars . Simvars and
intrinsic functions are also implicitly declared.

2. Where you define something determines whether it is defined locally or
globally. In particular, if you include or define a template before a
template header, it is accessible by all templates below that one in the
template hierarchy. This is generally true for other declarations.
However, if you define it after the header declarations section (for
example, in the local declarations section) then it is visible only in the
local scope. “Local scope means that the particular definition is
accessible only to that template and possibly to its descendants. (Other
templates can include or define the same thing independently.)

As long as you comply with these rules, template sections do not have to be in
a particular order.

Unit and Connection P oint Definitions

The~unit definition specifies the units for certain variables such as through
variables, across variables, vars , refs , states , and vals . Unit definitions
set the identifier used to indicate the units of a number that will result from a
calculation.
1-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Template Organization
The connection point definition specifies the connection points a template can
use. If they are pin-type, it implies the names of the through and across
variables, two important variables associated with all pins.

The connection point definition is important because it tells the Saber
simulator which variable to solve for and which must be equal to zero at a
connection point. In addition, it allows the simulator to make sure that only
compatible components are connected.

Because the connection point definition uses units, it must follow the unit
definition in the template.

Standard unit and connection point definitions appear in units.sin , which
is included in the file header.sin. If you invoke the Saber simulator with the
-la option, header.sin is automatically loaded. If you wish, you may change
units.sin and re-compile it using the saber -p option.

Header

The header for a template file defines the name of the template, the names of
its connection points, and the names of the template’s arguments used in a
netlist entry. You must include the header in any template that you will call
from another template; that is, any template except a top level template.

The header includes the name of the template, the names of the connection
points, and any arguments associated with it. Whenever you define a
particular element by referring to it in terms of the template that defines it (a
netlist statement), the form and content of the header statement defines the
form of the netlist statement.

Declarations

There are two sections that contain declarations: header declarations and
local declarations. All names (identifiers) must be defined before they can be
used. These definitions are called declarations. Keywords (names that are
required part of MAST statements) are defined by the language and require
no further declaration. A declaration tells the system the type to be associated
with the name, thus defining how it is to be used. Some declarations can also
include the assignment of an initial value.

The purpose of header declarations is to define to the system the names used
in the header. The local declarations define the names used in the rest of the
template—it contains declarations for all identifiers used inside the template.

The name of the template does not require a separate declaration; in fact, the
header itself is the declaration of the template name. The other names use in
the header (names of connection points and arguments) must be declared in
the header declarations.
MAST Language Reference Manual (June 2003) 1-7
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
Declarations of connection points must define their type (pin , ref , var , or
state). Declarations of arguments define the type of each argument.
Argument types fall into one of three categories: simple, composite, or arrays
of simple/composite.

Understanding declarations is a key to understanding how to use the MAST
language and is explained in more detail in the chapter on Declarations and
Data Structures.
1-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Template Organization
The Parameter s Section

The Parameters section is used to manipulate parameters. You can use it to
add error checking to templates by testing the input values of arguments for
validity and to model statistical distributions for Monte Carlo analyses.

Parameters and arguments are similar. They can have the same types of
declarations, but parameters are declared locally in a template, while
arguments are declared in the header declarations section and their values
can be passed into a template by using a netlist statement. However, only
arguments and initialized parameters can be changed by the alter command
in the Saber simulator. Only parameters may be changed in the Parameters
section.

The statements in the Parameters section are evaluated as follows:

• Once just after the input file is read

• Each time the Saber alter command is used (causing a temporary
alteration of a template argument)

• For each run of a Monte Carlo simulation

Parameters may depend only upon other parameters, arguments and
constants.

Assignment statements, expressions, and conditional statements (if-else)
are allowed in this section. Mathematical expressions and intrinsic functions
are allowed in this section with the exception of d_by_dt(x) (the derivative
function) and the delay function. Calls to foreign subroutines are allowed.

The Netlist Section

The Netlist section consists of one ore more netlist statements that call other
templates. These statements define elements of the system that are instances
of the template(s) being called. The Netlist section is required only in
templates that make reference to other templates; in fact, it is an
implementation of another level of hierarchy.

The form of a netlist statement is as follows:

templatename. refdes connection_pt_list [= argument_assignments]

The templatename is the name of the template you are calling, as identified in
its header.

The refdes is the reference designator, a unique name for that element of the
system.
MAST Language Reference Manual (June 2003) 1-9
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
The connection_pt_list is a list of the nodes in the system to which the
connection points of the template are connected. There is a direct
correspondence between the number of connection points and the number of
nodes. A template for an element such as a resistor, with two connection
points, must be connected to two nodes of the system.

The argument_assignment is the assignment of values to the arguments of the
template.

When Statements

When statements make it possible to construct state machines, which perform
certain actions depending upon preceding system states, or upon the values of
digital gates.

Conditional statements are allowed in this section, as well as mathematical
expressions and intrinsic functions, except for the d_by_dt(x) , delay , and
random() intrinsic functions. Foreign subroutines are also allowed. When
statements are evaluated by the Saber simulator as needed.

When statements are used in discrete time simulation. You can use them in
describing digital behavior, in testing for analog waveforms crossing a
threshold, and in scheduling.

Values Section

The Values section of the template is used to define variables that are to be
extracted during post-processing. It also can be used to transform variables
into a form needed in the Equations section, including the use of foreign
subroutines. The Values section is helpful in clarifying the template and
making it more maintainable.

For example, you may wish to define a val that will allow you to extract the
power (for example, voltage•current) of a resistor when you are analyzing
the results of the simulation. To the Values section of your resistor template,
you would add the following statement:

power_res = v_res * i_res

If power_res is not needed for solution of the system matrix, it is evaluated
but not used during the simulation. The simulator places it in the pfile only
if it is specified in the signal list (using the siglist variable for the analysis).
After the simulation, you can use the simulator’s extract command to add it
to the pfile . This feature allows you to add any simulation values that will
be useful during extraction without affecting the simulation speed.
1-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Template Organization
Conditional statements are allowed in this section, as well as mathematical
expressions and intrinsic functions, except for the d_by_dt , delay and
random() intrinsic functions. Foreign subroutines are also allowed.

Contr ol Section

The Control section declares specific information to the simulator that does
not fit in other sections of the template—it is not required in all models. The
information that the Control section provides is specific to the system being
analyzed.

The Control section can contain the following types of statements:

• Conditional statements that can collapse two nodes into a single node,
thereby speeding up the simulation. However, once nodes are collapsed
during a simulation, you cannot undo it without exiting and re-entering
the Saber simulator.

• Statements that declare groupings of nonlinear values for the purpose
of piecewise linear evaluation, defining the independent variables for
each group

• Statements that declare the sample points for each independent
variable used in the piece-wise linear set

• Statements that declare Newton steps for the specified independent
variables

• Statements that describe small-signal noise sources

Each of these statements is described in the Templates section.

Equations Section

The Equations section describes the analog characteristics at the terminals of
the element the template is defining. In effect, this section defines the effect of
the element on the rest of the system.

Statements in the Equations section indicate the relationship of the analog
characteristics of special variables to variables in the rest of the system. These
statements use the special operators += (is added to) and -= (is subtracted
from) to indicate this relationship. Mathematical expressions and intrinsic
functions are allowed in this section. The intrinsic functions d_by_dt and
delay are allowed as well, but may not be nested. The random() function is
not allowed.
MAST Language Reference Manual (June 2003) 1-11
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
Miscellaneous

Include Files

There are two ways to “bring” the contents of other files into a template. One
way is with the netlist statement, which refers to a template and defines the
connections of its terminals to nodes of the system. The other way is with the
include statement, which has the following form:

<includefilename
where, as shown, the character < must be in the first column. The
includefilename (the name of the include file) may begin in any column.

When the simulator finds an include statement in a template, it replaces the
statement with the complete contents of the file named in the statement. Files
to be included can contain any information that is part of a template, up to
and including multiple complete template definitions. The Saber simulator
reads in the contents of include files directly, so you must locate the include
statement precisely where the information is required.

When the Saber simulator encounters a file reference in a template—either in
a netlist statement or in an include statement—it automatically searches for
that file in a list of directories. This list is defined at the operating system
level in the SABER_DATA_PATHenvironment variable, as described in the Saber
installation instructions. Otherwise, you must specify the full path name of
the include file. For example, you may wish to include the file consts.sin, which
contains a number of constants useful for mathematical calculations, by
putting the following statement in your template:

<consts.sin

Auto-Inc lusion

Saber will automatically search for template references along the
SABER_DATA_PATH in files whose names have the .sin extension. Therefore,
templates referenced in netlist sections do not have to be formally included if
they are named templatename.sin. Templates automatically included in this
way (auto-inclusion) will be known globally (as if they were included in the
top-level template), even if they’re referenced within the local section of a
template.

Pre-compiled T emplates

The Saber command defaults to a -la option, which loads analogy.sld at the
top level of a system. This “saber load” file contains header.sin, which has
standard unit and pin definitions included from units.sin, so these definitions
are usually included automatically in a template.
1-12 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Miscellaneous
Template Variables

Several different types of variables can be used in a template. Each type has
its own function and uses. The types of variables are listed below.
Understanding the concepts behind these variables is essential for anything
but the most rudimentary template usage.

• System variables
- through variables
- across variables
- var s
- ref s

• Simulator variables

• Parameters

• Arguments

• Values (val s)

• state s

The task of a simulator is to describe the behavior of a mathematical model of
a physical system. For the Saber simulator, the model is a system of
simultaneous (linear or nonlinear) algebraic and ordinary differential
equations, or both.

The purpose of the MAST language is to specify the model of the system to be
simulated. The language must be able to do the following:

1. Allow arguments to be passed into templates.

2. Specify how the template is connected to the rest of the system. More
specifically, this means specifying the interactions of elements in terms
of the equations that arise from physical laws when entities are
connected (at nodes) to form a system. In electrical systems, these laws
are Kirchoff ’s current and voltage laws (KCL and KVL). These two laws
may be stated, respectively, as “the sum of the currents leaving a node
is zero” and “the sum of voltage drops across elements in any loop is
zero”.

3. Specify the equations that describe the analog behavior of the system.
For example, the equations describing the analog behavior of a resistor
are v=i*r and those for a capacitor are i=c*dv/dt , where, in both
cases, v and i are the voltage across and the current through the
element, respectively.
MAST Language Reference Manual (June 2003) 1-13
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
4. Specify the discrete behavior of the system. You can use When
statements to tell the simulator how to schedule discrete events and
time steps.

5. Allow flexibility in specifying system behavior.

6. Keep the simulation as fast as possible by separating variables into the
following:

a. Those that must be evaluated continuously

b. Those that must be evaluated on an event-driven basis

c. Those that can be evaluated only as needed or for post-processing

d. Those that have to be evaluated only once for each simulation

To fulfill these various functions, the MAST language offers these different
types of variables, each of which is described in the following section.

System V ariab les

System variables are the variables for which the simulator solves. They
include across variables, var s, and ref s. You cannot assign values to these
variables in a template. Only the simulator can assign their values.

To generalize KCL and KVL so they apply to both electrical and non-electrical
systems, two associated quantities must be defined for each connection point:
the through and the across variables. The rule for through variables is as
follows:

“The sum of all through variables leaving a node is zero.”

The rule for across variables is as follows:

“The sum of all across variable differences around any closed path is
zero”.

Across and through variables for various technologies are as follows:

Through Across

Electrical current voltage

Rotational torque angular velocity

Mechanical force position

Fluid flow rate pressure

Thermal power temperature
1-14 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Miscellaneous
Modified Nodal Analysis

The supplied templates usually use a modified nodal analysis technique. In
nodal analysis, through variables are added to and subtracted from the
system matrix directly, and then the simulator solves for across variables.
Therefore, through variables are dependent variables and across variables are
independent variables. In many cases, however, nodal analysis must be
modified. For example, modification is required where across variables are not
functions of through variables, such as in an ideal voltage source, in which the
current is whatever it needs to be to give the defined voltage. In such a case
the through variable, current, is an independent variable, which is handled by
adding an equation to the system of equations.

In general, most through variables are dependent variables and all across
variables are independent variables. These variables are declared implicitly
through the pin declarations. For example, when you define a connection point
x to be electrical, the simulator automatically creates an independent variable
of the form v(x) and the dependent variable i(x) .

An independent through variable, such as the current through a voltage
source, must be declared as a var in the local declarations section. It must be
associated with an equation in the Equations section of the form:

var: expression = expression

A var is not declared in the form i(x) (for example, as a current at a pin),
because that form would denote a dependent variable. You can also use a var
for situations that arise less frequently. In cases where you need to take
multiple derivatives and delays (which cannot be nested), you can declare a
var .

You can also define a var as an independent variable that can be passed
another template, in which it is declared a ref .

In general, the dependent variable in a template is the through variable
defined in relation to a connection point. The independent variables in a
template are across variables defined in relation to a connection point, var s
that are associated with an additional equation in the Equations section, and
occasionally as ref s.

Dependent through variables and independent across variables are declared
implicitly by the pin declarations. They are associated with equations in the
Equations section using the following formats:

through(pin) += expression

through(pin) -= expression

through(pin1->pin2) += expression
MAST Language Reference Manual (June 2003) 1-15
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
The form through(pin1-> pin2) -= expression is also possible, but is less
readable and is not recommended.

A var must be declared in the local declarations section and must be
associated with an equation in the Equations section, where the equation has
the form var: expression = expression . A ref must be identified, along
with other connection points, in the template header, and must be declared in
the header declaration section. For examples, refer to the Templates section.

Simulator V ariab les

Simulator variables (simvars) are variables used by the simulation. They are
not directly part of the system of equations that describe the model, but may
be used in various ways throughout the template. They are used most
frequently in conditional statements (if-else). Simvars include the
following:

The simulator assigns values to most simvars according to its own rules and
requirements. Exceptions are next_time and step_size , which give
information to the simulator. A template need not provide values to these
simvars. However, if a template does provide a value, the simulator uses the
value to influence its choice of the next time step or time-step size in the
simulation.

The simulator automatically declares simvars, so you need not declare them.
However, if you declare a variable with the same name as a simvar (not
recommended), then your declaration overrides the automatic one, so you
cannot use that variable as a simvar.

You can use simvars in When statements and in the Values section, and in
certain circumstances, in the Equations section. The statistical simvar can be
used in the Parameters section and in the Netlist section.

Arguments

Arguments are named in the template header, and values for them are passed
into a template via a netlist entry. You declare each argument in the header
declarations section–either as one of the three simple types, as one of three
composite types, or as an array of simple and/or composite types.

dc_domain freq next_time time_domain

dc_done freq_domain statistical time_init

dc_init freq_mag step_size time_step_done

dc_start freq_phase time tr_done

tr_start
1-16 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Miscellaneous
Arguments can receive their values in two ways:

1. Being initialized in the declaration

2. Having values passed in through the argument list in a netlist entry

A value passed in through a netlist entry supersedes any initialized value. You
can change the value of an argument during a simulation run using the alter
command of the simulator.

Parameter s

Parameters are variables used in expressions that assign values to other types
of variables. Parameters can be declared to be any of three simple or three
composite types, or arrays or combinations thereof. Parameters and
arguments have the same types of declarations. You declare parameters in the
local declarations section.

A parameter can receive its value in two ways. You can either initialize it in
the declaration or you can assign it a value in the Parameters section, by
either an assignment statement or a foreign subroutine call. You can change
this initial value while running the Saber simulator, using the alter
command.

Within the Parameters section, only parameters can appear on the left hand
side of an assignment statement, or be returned from a foreign subroutine
call. You can use parameters to initialize states. Parameters can be used in all
other sections in the body of a template: the Parameters section, Netlist
section, When statements, the Values section, the Control section, and the
Equations section.

Vals

Val s are variables that hold temporary information during simulation, and
which can supply information not otherwise available during post-simulation
processing.

Val s can receive their values only in the Values section of the template: either
in an assignment statement (with the val on the left-hand side of the
statement) or as the return value of a foreign subroutine call. You must
declare val s in the local declarations area of the template. You can use them
in the Values section, the Equations section, and in When statements.
MAST Language Reference Manual (June 2003) 1-17
Copyright © 1985-2003 Synopsys, Inc.

Chapter 1: Overview
States

State s are variables that hold information pertinent to discrete time
simulation. State variables may be “digital” (discrete in values and discrete
in time), or “event-driven analog” (continuous in values and discrete in time).

State s can receive their values in two ways:

1. Use a state as a connection point in the header of a template, then
pass the value in from a netlist.

2. Assign the state a value in a When statement, where the state can be
the left-hand term of an assignment statement, can be used in various
scheduling statements, or can have its value returned by foreign
subroutine calls.

If a state is passed in as a connection point, it must be declared in the header
declaration section; otherwise, it must be declared in the local declaration
section. You can use state s in When statements and in the Values and
Equations sections.
1-18 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 2
MAST Syntax Rules
The general syntax rules and reserved words for the MAST modeling
language are divided into the following topics:

Identifiers and Strings

White Space Usage

Netlist Statement

Comments

Line Continuation

Section Keywords

Expressing Real Numbers

MAST Keywords

MAST - Non-Reserved Keywords

Identifiers and Strings

Identifiers are names for variables, templates, nodes, etc. There are two valid
forms for identifiers. One must start with an alphabetic character or an
underscore (_), followed by alphabetic characters, digits, or underscores. The
other form must start with the @ character and be followed by a string
constant. There is no limit on the number of characters in an identifier, and all
characters are significant. Because the MAST language is not case-sensitive,
the following words all refer to the same identifier: name, NAME, NaMe.

Identifiers for connection point pins names can be unsigned integers, but only
in netlist entries, and nowhere else in the template.

String constants consist of zero or more characters, without any double quotes
or newlines, enclosed in double quotes. Empty strings can be specified as "" .
MAST Language Reference Manual (June 2003) 2-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 2: MAST Syntax Rules
String constants cannot span more than one line, although you can use
concatenation as follows:

There are no escape sequences (such as the C language backslash) available in
string constants. By using a foreign subroutine, you may enter a double quote
or a newline into a string (refer to Messages on page 5-10).

White Space Usa ge

Blanks, tabs, and comments (described later) are considered “white space”,
and are ignored except to separate words when no other punctuation is
required. For example, blanks (spaces) act as separators in a list of nodes on a
template reference.

Netlist Statement

A netlist statement (or template reference) is a netlist entry in the netlist
section of a template that “calls” (refers to) another template. It consists of the
name of the template, followed by a period, followed by a reference designator
as follows:

templatename. refdes connection_points [= argument_assignments]

The templatename. refdes is considered a complete unit, so no blanks are
allowed within it. The reference designator (refdes) may consist of alphabetic
characters, digits, and underscores, with no requirement that the first
character be alphabetic.

The connection_points consists of the names of the nodes to which the model’s
connection points are joined. Entries in this list must be separated by white
space. The node names must either be in the same order and quantity as the
connection points specified in the called template, or they must be specified
with reference to the actual connection point names, in the form:

connection_point_name:node_name

"This is a long string. Because it might not"//
"fit on one line, it is put together using"//
"concatenation."
2-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Identifiers and Strings
For example, if the diode (with the reference designator dx) is connected to
nodes named node1 and node2 , you can specify it either as:

d.dx node1 node2

or as either of the following:

d.dx p:node1 n:node2
d.dx n:node2 p:node1

Also, node names cannot have a number as the first character unless all
remaining characters are numbers:

Correct: 5, v16 , vcc94b , 6431
Incorrect: 5v, +5V, 15v1

Non-alphanumeric characters (such as + or -) are not allowed.

The argument_assignments are required only for templates that have
uninitialized arguments. Formats for this argument list depend on the data
structure of the arguments. Multiple entries in an argument list must be
separated by commas.

Comments

The MAST language ignores blank lines and comments. A comment must
begin with a pound sign (#) and is recognized as running to the end of the line.
A comment can start anywhere within a line, which is useful for temporarily
removing a line or part of a line.

Line Contin uation

Normally, a carriage return terminates a line. A backslash (\) at the end of a
line with no comment indicates continuation of the line and is called a
continuation character. It has no meaning in an input file except to indicate
continuation, and if it is the last non-comment character on a line, it is
discarded.

In addition, each of the following indicates that the line is to be continued if it
is in context (part of the line) and it is the last non-comment character on the
line:

+ - * /

& | < >

({ [~

, . : =
MAST Language Reference Manual (June 2003) 2-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 2: MAST Syntax Rules
The semicolon (;) is allowed as an explicit line terminator, but it is not
required. Typically a semicolon is used to allow more than one statement on a
single line. One use for the semicolon is in data structure definitions, following
a list of variables, to allow the closing brace (}) to be on the same line rather
than the following line.

The line parser does not count the parentheses in a line, and so cannot
determine whether a closing grouping symbol () , } ,]) is the final one in a
statement. Therefore, in the absence of the line continuation character, a
closing symbol indicates the end of a line.

Section K eywords

The left brace ({) that follows a section keyword must always be on the same
line, right after the keyword. These keywords are control_section ,
equations , parameters , and values . The left brace must also directly
follow when.

Expressing Real Number s

All real numbers can be expressed either in the usual scientific notation, with
the letters e or d expressing powers of 10, or with the following suffixes:

You can express a number as a constant immediately followed by an
appropriate abbreviation (do not include units).

No alphanumeric character can appear immediately after a suffix; a space or
punctuation is required.

Note that m means 10 , and me and meg mean 10 .

a atto 10

f femto 10

p pico 10

n nano 10

u (or mu) micro 10

m milli 10

k kilo 10

meg (or me) mega 10

g giga 10

t tera 10

-18

-15

-12

-9

-6

-3

3

6

9

12

-3 6
2-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

MAST - Non-Reserved Keywords
For example, the following are equivalent:

x=3p x=3d-12 x=3e-12

The following are illegal specifications for numbers:

x = 3 p

(space not allowed between number and abbreviation)

x = 1mA

(units not allowed)

MAST Keywords

The following keywords are reserved in the MAST language and cannot be
used as variable names in a template:

*Section keywords that must be followed by a left brace, { , on the same line.

MAST - Non-Reserved Keywords

The following groups of keywords are not reserved and can be used as variable
names, although it is good practice to treat them as if they were reserved:

Control Section Words

Simulator Variables

Intrinsic Functions

Predefined Numbers in header.sin File

component control_section* element else

enum equations* external foreign

group if inf number

parameters* pin ref return

simvar state states string

struc template undef union

unit val values var
MAST Language Reference Manual (June 2003) 2-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 2: MAST Syntax Rules
If any of these keywords are declared as a variable name, it loses its special
meaning.

Contr ol Section W ords

The following words are used in a control section:

Simulator V ariab les

The following words are simulator variables (simvars):

Intrinsic Functions

The following are the available intrinsic functions:

collapse noise_source sample_points newton_step

pl_set

dc_domain dc_done dc_init dc_start

freq freq_domain freq_mag freq_phase

next_time statistical time step_size

time_domain time_init time_step_done tr_done

tr_start

abs acos acosh asin

asinh atan atanh cos

cosh d_by_dt delay deschedule

error event_on expc

instance len limexp ln

log message random schedule_event

schedule_next_time sin sinh sqrt

tan tanh threshold union_type

warning
2-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

MAST - Non-Reserved Keywords
Predefined Number s in header .sin File

The following are predefined numbers in the header.sin file:

Number Definition Description

temp = 27 Temperature value

mos_scale = 1.0 Scale factor for mosfet physical dimensions
(used by m.sin and spm.sin)

mos_scalm = 1.0 Process scale factor for mosfet physical
dimensions (used by m.sin only)

r_tol = 0 Resistor value tolerance
(for example, a value of 0.05 indicates a 5%
tolerance resistor)

c_tol = 0 Capacitor value tolerance
(for example, a value of 0.05 indicates a 5%
tolerance capacitor)

l_tol = 0 Inductor value tolerance
(for example, a value of 0.1 indicates a 10%
tolerance inductor)

r_pdmax = undef Maximum power dissipation for resistor
(for example, 1/4 W resistors)

c_vmax = undef Forward voltage rating for capacitors

c_vrmax = c_vmax Reverse voltage rating for capacitors
(different from c_vmax for electrolytics)

include_stress = 1 Allows removal of stress analysis in
netlisted templates. Default value = 1 will
run stress.

use_2g6 = 0 Allows invocation of SPICE2G.6 compatible
MOS models through m.sin and spm.sin

acc_fac = 1 Accuracy factor

Global values for hydraulics library

rho = 1k Global value of rho (kg/m**3)

mu = 14.3m Global value of mu (N-s/m**2)

bulk = 689.5meg Global value of bulk modulus (N/m**2)
MAST Language Reference Manual (June 2003) 2-7
Copyright © 1985-2003 Synopsys, Inc.

Chapter 2: MAST Syntax Rules
Logarithms are expressed in MAST as follows:

base e = ln
base 10 = log

This differs from how other programming languages (such as FORTRAN,
RATFOR, and C) express logarithms:

base e = log
base 10 = log10

patm = -101325 Global value of patm (N/m**2)

pcav = -95k Global value of pcav (N/m**2)

valid_pres = inf Stress rating parameter

Number Definition Description
2-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 3
Declarations and Data Structures
Introduction

This chapter lists and describes the various “types” that variables can assume
in a MAST template. It gives more information on pin and unit definitions,
explains declarations, and shows how to refer to data structures in netlist
entries and in the rest of a template.

• A unit definition specifies the unit types (such as voltage, current, or
time) of the system’s variables. You can use units in declarations of
var s, ref s, state s, and val s.

• A pin definition defines a pin type, which applies to any through and
across variables for that pin type. Pins are a specific type of connection
point that you must declare; these declarations refer to the pin
definition. Connection points can be declared pin s, var s, ref s, and
state s.

• Connection point declarations identify the types of the connection
points named either in a template header or internally in a template.

• Argument declarations describe the types of values that can be passed
into the template arguments from a netlist statement. It determines
the syntax used to pass arguments into a template, and the syntax of
references to arguments within the template. Argument types include
number , enum, string , struc , union , and argdef , all of which can be
parts of arrays.

• Parameter declarations describe the types of the values that
parameters can take on. Parameters are used in expressions that
assign values to other types of variables. A parameter declaration
determines the syntax of the references to that parameter within the
template. Parameters can be of the same types as arguments.

• System variables are the independent variables in the mathematical
description of the system (across variables, var s, and ref s). The pin
MAST Language Reference Manual (June 2003) 3-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
declaration causes an implicit declaration of the associated through and
across variables. You must declare var s and ref s and specify their
units.

• Val declarations declare variables and specify their unit types. The
simulator assigns values to val s only when needed, which is not
necessarily at each time or frequency step.

Val s can act as intermediate variables that receive values in the Values
section and then are used to carry those values into equations in the
Equations section or a when statement.

Any expression of any type may be assigned to a val . The extract
command uses the dfile and the information in the Values section to
assign values to val s.

• State declarations identify variables to be used to model discrete time
simulation and specify their units. States can be initialized and can be
assigned values in when statements and in the values and equations
sections of the template.

• Simulation variable (simvar) declarations are optional. You do not have
to declare simvars because their definition is part of the simulator.
Simvars are pre-defined variables that pass information from the
simulator to the template or from the template to the simulator. You
may use only the names pre-defined in the MAST language as the
names of simvars.

• External declarations identify parameters, arguments, and pins
brought from a higher level to a lower level template.

• Foreign declarations identify foreign functions and foreign states. There
are two kinds of foreign functions: those that return a single number
and those not restricted to returning a single number. Foreign states
are used for mixed-simulator applications.

• Group declarations are a way to group variables together for extraction
and for other purposes.

• Template declarations describe a template. This term refers to the
entire template format.

• Implicit declarations are those that occur as a product of other
definitions and declarations, and do not require explicit declaration.
Variables that are declared implicitly include through and across
variables (declared implicitly by pin definitions), simvars, connection
3-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

point assignments used in netlist statements, external templates, node
names, and net names.

Variable names fall into two categories: units and pins, and all other
variables. In a template, the names of pins and units must all be different, but
they need not be different from other variable names. For example, there may
exist both a unit v and a variable v.

The following sections describe the variable types in more detail.

Unit and Pin Definitions

The MAST language lets you define units for use in describing systems. Units
appear in:

• Definitions of pin-type connection points

• Declarations of var , ref , state , and val connection points

Unit definitions must precede any declarations that use them.

Standard unit and pin definitions are in the file units.sin . This file is
included in the file header.sin . Normally, this file is included automatically
by use of pre-loaded templates, so if you wish to use the standard definitions,
you do not need to add unit and pin definitions to your template.

NOTE
If you enter the saber command with no contradictory
options, it defaults to the “-la” option. This loads the
“saber load” file analogy.sld at the top level of a system.
This is a pre-compiled file made from analogy.sin using
the “-p” option. The standard analogy.sld file contains
header.sin, which includes units.sin. The spice.sld file
also contains header.sin.

To define new units or pins, or to change definitions, there are several options.

• Change units.sin and run saber -p to pre-compile it for inclusion
with the -la option.

• Change units.sin and include header.sin at the top level of the
system hierarchy, and do not use the -la option. (The file can be
included by writing <header.sin where the < sign is in the first
column)
MAST Language Reference Manual (June 2003) 3-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
• Write new definitions of units and/or pins in the template before they
are used in declarations. Pins and units cannot be redefined, so you
cannot change pin and unit definitions in this way.

You may place unit and pin definitions above the header, in the header
declarations section, or in the local declarations section. Regardless of where
you place them, they are global to the entire system description.

Unit Definitions

Unit definitions can take one of two forms—analog or digital. The analog form
of a unit definition is as follows:

unit { " symbol", " unit", " definition" } identifier
where identifier is the name being defined, and the three strings give the unit
abbreviation, the full unit name, and the unit description, respectively.

Examples of unit declarations are:

unit {"V","Volt","Voltage"} v

unit {"A","Ampere","Current"} i

unit {"rpm","Revolutions/minute","Angular velocity"} w

unit {"kg.m","kilogram meter","Torque"} t

Logic states use the following form unit definition:

unit state { MASTname," Boolean value"," printmap"," plotmap",
MASTname," Boolean value"," printmap"," plotmap"}
name = MASTname

There must be as many lines in the unit definition as there are states in the
unit state. Two discrete logic families are provided, logic_4 and logic_3. The
logic_4 unit definition describes four-state logic (0, 1, X, Z); therefore, it has
four lines. The logic_3 unit definition (0, 1, Z) has three lines. By convention,
the name of the unit is logic_ number, where number refers to the number of
logic states.

Each line has four entries that provide all the information needed for one of
the states.

The first entry in the definition is the MASTname assigned to the state. This
is the name used in the MAST language for the value of the state. For
example, one of the MASTnames for the logic_4 family is l4_0 , which
corresponds to the logic state of 0. A state variable declared as a logic_4 type
can be assigned to be l4_0 .
3-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

The second entry is the Boolean value of the state, which is used by the
waveform calculator in Scope. The calculator only accepts the values of 0, 1,
and X for digital signals, so all states must be assigned one of these three
values.

The third entry is the printmap. The printmap can be an arbitrary string. It is
used when a digital state is printed to represent the value of the digital state.

The fourth entry is the plotmap. The plotmap is a string that is dictated by
Scope. Its syntax is symbol. style. Symbol can be low , middle , high , or
unknown . The graphic meaning is shown in the following table.

Styles can be numbers 1-6 as shown in the table below. This field was used in
prior releases. It is currently ignored by Scope.

At the end of the definition is an initializer (name=MASTname), which must
be one of the MASTnames described above. This provides the default value for
states declared to be of a particular logic family when they are not initialized
in a template.

An example of a unit state is the logic_4 family defined as follows:

unit state {l4_0,"0","0","low.1",
l4_1,"1","1","high.1",
l4_x,"x","x","middle.1",
l4_z,"x","z","middle.1"} logic_4=l4_x

Symbol Graphic Display

low low line

middle mid-level line

high high line

unknown low and high lines

Style Mono Graphic Display Color Graphic Display

1 solid line black

2 long-dash line dark blue

3 dash line red

4 2dot-2dash line purple

5 dot-dash line dark green

6 dot line brown
MAST Language Reference Manual (June 2003) 3-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
Pin Definitions

Pin-type connection points need to be defined in terms of the units they will
use.

NOTE
It is generally unnecessary to insert this section in a
template, because standard pin definitions are specified
in the units.sin file. This file is automatically included
when you load the Saber simulator.

The two general forms of a pin definition are:

pin identifier across unit1 through unit2
pin identifier through unit1 across unit2
In this example, identifier is the name of the pin type being defined, and unit1
and unit2 are the through and across unit types that are to be associated with
that pin type. Examples of pin types contained in units.sin are:

pin electrical through i across v

pin rotational through w across t

Once you have defined these pins (for example, in units.sin), you can use
the definition to declare the types of pins in a template.

Across variables are those whose values are equalized when two or more pins
are tied together at a node (as, for example, voltage in electrical systems).
Across variables follow a generalized KVL law: the sum of across variables
around a closed loop is zero.

Through variables are those (like current in electrical systems) whose values
follow a generalized KCL law: the sum of through variables flowing out of a
node is zero.

Connection Point Declarations

Naming a variable and specifying its type is called a declaration. There are
four kinds of connection points that you can declare in a template:

• pin-type

• state

• var

• ref
3-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Pins are analog connection points that use through and across variables (for
electrical circuits, these are used to form KCL and KVL equations). When you
specify them in the template header and declare them in the header
declarations section, pins are available for external connection. When you
declare them in the local declarations section, pins can be internal nodes.

A pin declaration identifies the type of node to which a pin may be connected.
The general format of pin declarations is the following:

pintype id[,id...]
where the pintype is a word already specified in a pin definition, and the ids
are the names of the pins being declared.

An example of a pin declaration is the following:

electrical c,b,e,s

This declares that the four pins c, b, e, and s are electrical pin-type
connection points. An automatic side effect of this declaration is that the
simulator implicitly makes available v(c) , v(b) , v(e) , and v(s) (with
respect to ground) as across system variables; it makes i(c) , i(b) , i(e) , and
i(s) as through system variables.

Although it is recommended that pins be declared, they do not have to be
declared if you use them in a netlist statement within the same template.

Pin names can be integers as long as they are used only in a netlist. If you use
non-integer pin names, you can then use them in other places within the
template. This implicit declaration is valid only after the netlist statement
occurring within the template. This means, for example, that the pin names
could be used in a Values section following the netlist statement, but not in a
When statement preceding the netlist statement. The following example
shows a valid use of the implicit declaration:

template templatename a b
{

val v v
templatename2.1 a b = 1k
values
{

v = v(a)-v(b)
}

...

}

Parameter and Argument Declarations

Parameters are template variables that are used to assign values to other
types of variables. They are declared in the local declarations sections. The
MAST Language Reference Manual (June 2003) 3-7
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
way they are declared determines the syntax used to refer to them later in the
template. Parameters may be declared with initial values assigned. If they are
not assigned initial values, then they are given an initial value of undef, which
is described in the chapter about Intrinsic Functions and Values.

Arguments are template parameters that are listed as part of the template
header—their values can be passed in from a netlist entry. They appear in the
netlist entry to the right of the first equals sign (=):

template. refdes connection_points [=argument_list]
Arguments are declared in the header declarations section of the template.
Because they are parameters, the way they are declared determines the
syntax used to pass their values. If arguments in a template are not assigned
initial values in their declarations, then they must be assigned values when
the template is referenced in a netlist entry. If they are assigned initial values
in the template and are not given specified values in a netlist entry, the initial
values become defaults.

Within the template, parameters and arguments are essentially the same--
they may be of the same types and they can both be initialized and referred to
using the same mechanisms. Thus,

NOTE
Unless otherwise indicated or required, the term
parameter is used for both parameters and arguments.

Parameter Types

A parameter may be declared as either a simple type or composite type. Each
type has different variations as listed in the following table.

Simple Parameter Types

There are three simple types of parameter:

• number

• enum (enumerated)

Simple Composite

number structure

enumerated union

string
3-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

• string

These parameters use an equals sign (=) to assign one appropriate value to
that particular variable.

NOTE
If a simple parameter is used as an argument, it must
be initialized (either in the template or in a netlist)—
otherwise, a netlist error will result.

If a simple parameter is used as a local parameter, the
Saber simulator will automatically initialize it to undef
(unless otherwise initialized in the template).

Numbers

A parameter declared as a number type requires a numeric (integer or real)
value. The Saber simulator uses only real numbers, so there is no syntax that
distinguishes between real numbers and integers. The form of the declaration
is:

number id [[= initial_value] ,id [= initial_value]...]
where the ids are the argument or parameter names, and the initial_values
are (optional) numbers or expressions specifying initial values. Such
expressions must consist of constants, parameters that have been previously
initialized, or template arguments.

For example, the following declares several number declarations on one line:

number vcc=5, dc_input, rload=10k, cload

Here, vcc , dc_input , rload , and cload are declared as number type
parameters. In addition, vcc and rload have been assigned initial values of 5
and 10k, respectively. If these were arguments, dc_input and cload would
need to be specified in a netlist entry.

If these variables were arguments, they could be assigned values in a netlist
entry one of two ways:

1. Following the equals sign, just list the values in the order the
arguments are listed in the header, separated by commas
(... = 5, 2.7, 10k, 47n)
MAST Language Reference Manual (June 2003) 3-9
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
2. List the names of the arguments and assign their values in any order
(... = cload=47n, vcc=5, dc_input=2.7, rload=10k)

For clarity, you may always wish to specify the argument names, regardless of
order. Arguments without initial values assigned in the template must be
specified by the netlist entry.

templatename. refdes connection_points = 5,2.7,10k,47n

templatename. refdes connection_points = dc_input=2.7, cload=47n

If these numbers are parameters, you can assign them values in the
Parameters section of the template. Any simple parameters can be used after
they are declared in the template by referring to them by name (e.g., vcc ,
dc_input , rload , cload).

Enumerated Types

A parameter declared as an enumerated type (enum) may hold only one of a
restricted set of names. This set of names must be specified within braces { }
when declaring the enum parameter.

The form of the declaration is:

enum { evalue [, evalue...]} id [[= initial_value], id [= initial_value]...]
where the ids are the arguments or parameters being declared, and the
evalues, which are names, are the values they may contain. The evalue names,
once declared, are meaningful in the template, and no other variables or
evalues may have the same name. The initial_values are the evalues assigned
to ids as initial values.

An example of an enum declaration is:

enum {_n,_p} bjt_type = _n

which declares bjt_type to be an argument or parameter that can assume
values of only _n or _p . In this example, bjt_type has been assigned an
initial value of _n . You can use enumerated types in assignments and in
comparisons; you can also pass them to foreign routines.

If this were the declaration of an argument, you could assign it a value from a
netlist entry by assigning one of the enumerated values to bjt_type . (Again,
the argument name is necessary only if the arguments are taken out of order.)
Because the declaration in the template specifies an initial value, it is not
necessary to specify it in the argument list of a netlist entry if you want to use
that value:

templatename. refdes connection_points = bjt_type=_n

If the declaration is for a parameter, you can assign it a value in the
Parameters section or use the initial value by not assigning a value. You can
3-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

use a simple enumerated type in a template by referring to it by name (e.g.,
bjt_type).

When passed to foreign routines, enumerated types have a numerical value
that indicates their position in the enumeration declaration (1, 2, 3, etc.). In
the above example, if bjt_type were to be passed to a foreign routine, it could
have only one of the values: 1 (meaning _n for npn), 2 (meaning _p for pnp), or
undef . For information about passing variables, refer to Foreign Functions.

Strings

A parameter declared as a string type may contain string constants. String
constants are zero or more alphanumeric characters (other than the double
quote or new line characters), which are enclosed in quotation marks.

The form of the declaration is:

string id[[=initial_value], id[=initial_value] ...]
where the ids are the arguments or parameters being declared, and the
initial_values are the initial assignments to strings.

For example, the following statement declares the parameter coretype to be
a string (it is also initialized to iron):

string coretype="iron"

Strings that are arguments can be assigned string variables or strings
constants by a netlist entry. Using the name of the string variable in such an
assignment is only necessary if the arguments are taken out of order.

templatename. refdes connection_points = coretype = "air"

templatename. refdes connection_points = "air"

You can assign values to strings that are parameters in the Parameters
section. A string variable does not take on a fixed length; that is, it can be re-
assigned a string constant with a different length. You can use a simple string
variable in a template by referring to it by its name (e.g., coretype).

Composite Types

There are two composite parameter types: structure and union.
MAST Language Reference Manual (June 2003) 3-11
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
These parameter types allow you to group multiple parameters (either simple
or composite) together, providing convenience and flexibility when working
with large numbers of parameters.

Structures

A structure is a parameter that declares an ordered list of other parameters.
The most general form of structure declaration is as follows:

struc [structurename] {
declaration
declaration
...

} id [= initial_value] [, id [= initial_value]...]
Note that the structure id comes after the closing brace.

Aside from the keyword struc , the structure declaration consists of four
major components: the structure name (structurename), the declarations of
parameters within the structure, the ids of the parameters being declared as
instances of the structure, and, optionally, their initial values.

Following is an example of a structure declaration:

struc fred {

enum {_n,_p} type

number is,beta,cj

} bjt

structure It is often convenient to work with many related variables
as a unit. An example of such a grouping is the model
argument of a semiconductor device such as a bipolar
junction transistor, which is declared as a structure. This
structure in turn, declares several dozen related simple
parameters that can all be called by the name of the
structure, model .

union It may be necessary for a single argument or parameter
to hold different types of information at different times,
one type at a time. An example of this kind of grouping is
the transient (tran) argument of the voltage source
template, which is declared as a union. This union, in
turn, declares both structures and enumerated
parameters, only one of which can be active at a time.
That is, assigning a value to one member of the union in a
netlist entry overrides all the other members of that
union.
3-12 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

This example declares a single argument or parameter named bjt . This
variable is a structure of the type whose name is fred . It contains four
subordinate parameters (type , is , beta , and cj). The parameter type is an
enumerated type, while is , beta , and cj are numbers.

Using this declaration, it is now possible to refer directly to the structure
name (fred) as a shorthand way of declaring additional structure arguments
or parameters:

struc fred m1,m2

where m1 and m2 are declared as structures, the same as bjt .

It is not necessary to declare a structure name (such as fred). The following
single declaration accomplishes the same purpose as the above two:

struc {

enum {_n,_p} type

number is,beta,cj

} bjt,m1,m2

On the other hand, it is possible to separate completely the declaration of the
structure name from the declarations of the arguments or parameters that
have that structure, as follows:

struc fred {

enum {_n,_p} type

number is,beta,cj

}

struc fred bjt,m1,m2

You can refer to argument structures from netlist entries by assigning values
to the parameters within the structure. These are enclosed within
parentheses when assigned values from a netlist entry. The names of the
parameters within the structure need to be specified only when they are not
given in order (although for ease in reading netlist entries, you may want to
specify them):

templatename. refdes connection_points =
bjt=(type=_p,is=1a,beta=100,cj=10p)

If the parameters of a structure are not assigned initial values, but the
structure itself is assigned a value of () in the netlist entry, all of its
parameters are given the value undef when simulated.

If the structure is a parameter, the value assignment in the Parameters
section is similar.

You can assign initial values to the parameters within the structure in two
places: within a structure declaration or following the parameter name. The
next example declares a structure with three number parameters: a, b, c.
MAST Language Reference Manual (June 2003) 3-13
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
Initial values are assigned to a and b, but not c. Four ids of this structure
parameter (w, x , y, and z) are then declared, with varying initial values:

struc{number a=1, b=2, c

} w=(3,4,5), x=(c=3), y=(), z

The structure w assigns initial values of a=3 , b=4 , and c=5 . The structure x
“inherits” values a=1 and b=2 from the declaration, and initializes c=3
explicitly. The structure y also “inherits” the values for a and b, but c remains
undefined, because it has no initial value in the structure and no value
declared for it explicitly by y. Finally, the structure z is declared to have the
same structure as the other structures, but with it has no initial values. Here
a, b, and c will all be undefined.

If this structure defined arguments instead of parameters, w would have
defaults of a=3 , b=4 , and c=5 ; x would have defaults of a=1 , b=2 , and c=3 ; y
would have defaults of a=1 , b=2 , and c=undef ; and z would have no
defaults—it would need to be declared in the netlist entry that references this
template. If the netlist entry were:

templatename. refdes connection_points = z=()

then z will also have values of a=1 , b=2 , and c=undef .

Unions

A union is similar to a structure, in that it groups parameters. However, the
parameter within a union are “activated” at different times instead of all at
the same time. A union allows you to define parameters or groups of
parameters that will override the other parameters at different times—a
choice function. The most general form of a union declaration is as follows:

union unionname {

declaration
declaration
...

} id [[= initial_value] ,id [= initial_value]...]
Note that the union id comes after the closing brace.

Like the structure, the union declaration consists of four major components:
the unionname, the declarations of the parameters within the union, and the
ids of parameters being declared as instances of the union.

Unlike a structure, each instance (with name id) of a union parameter always
has, as its value, only one of the declarations. Thus, a union type parameter
presents a set of declarations as options—it will always evaluate to only one of
the declarations.

The following example illustrates how unions are uniquely flexible among the
parameter types:
3-14 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

union source {

number dc

struc {

number mag

number phase

} ac

} input1=(dc=5), input2=(ac=())

The declaration declares a single union type, named source , and two union
ids: input1 , input2 . The declaration of source consists of two options: dc (a
number type parameter) and ac (a structure type parameter with two
numeric fields, mag and phase). From this, you can see that there is nesting
capability—one of the members of the union grouping is a structure (ac)
which also consists of a grouping.

You can create the same effect with the following declarations (the names of
the unions and their declarations can also be specified as shown):

union source {

number dc

struc {

number mag

number phase

} ac

}
union source input1=(dc=5), input2=(ac=())

Initializing unions is similar to initializing structures. The difference is that
you must also specify the name of the choice to be in effect. In the above
example, input1 is initialized to the choice of dc with a numeric value of 5.
Input2 is initialized to the choice ac , using initial values defined within the
ac structure. Since mag and phase were not assigned initial values there,
input2 inherits mag=undef and phase=undef .

To reference a union argument from a netlist entry, you need to include,
within parentheses, the name of the choice to be “activated” and its assigned
values.

templatename. refdes connection_points =
input1=(ac=(mag=1,phase=0))

To reference a union from inside a template, you must first determine the
declaration that the union “activates.” To do this, use the intrinsic function
union_type , which is described in Intrinsic Functions and Values. After
using this function, you can access the structures using the symbol ->
(structure reference) as follows:

input1->dcinput2->ac->maginput2->ac->phase
MAST Language Reference Manual (June 2003) 3-15
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
When a union parameter is passed to a foreign routine, an indication of which
choice is assigned is available to the foreign routine. The details of the passing
conventions are shown in Foreign Functions.

Arrays

Just as it is useful to create composite type parameters to group together
many parameters of possibly dissimilar types, it also desirable to keep several
identical types together and to refer to them by a single name. You can do this
with an array. You can declare an array to be of fixed size (like a structure), or
of unbounded size (unlike a structure).

Only arguments, parameters, and states (of a fixed size) may be declared to be
arrays. Use the following syntax to declare a simple array:

type id[subscripts]

where type is one of number , enum, string , or state id, and id is the name of
the variable being declared an array, and the subscripts act as identifying
numbers that distinguish among the members of the array. More than one set
of subscripts indicates a multi-dimensional array. The subscripts themselves
are a comma-separated list of simple subscripts, with each simple subscript
giving an optional lower bound and an upper bound:

[lower: upper, lower: upper, ...]

The lower bound on any of the individual subscripts may be omitted, and if it
is, it defaults to 1. The syntax would then be:

[upper, upper,...]

In addition, the upper bound of the first simple subscript may be specified as
an asterisk (*), indicating a variable-length array whose length is determined
at run-time:

[*, lower: upper,...]

It is not possible to have arrays in which the second and higher subscripts
have variable lengths.

Some examples of array declarations are the following:

number tc[2]

number samples[*,0:1]

number x[0:50,5,-1:+1]

In the examples above, tc is a one-dimensional array of 2 numbers; samples
is a two-dimensional array, of which the first dimension is not declared until
run time, and the second dimension starts at 0 and ends at 1; x is a three
3-16 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

dimensional array which has a first dimension of 0 to 50, a second dimension
of 1 to 5, and a third dimension of -1 to 1.

These arrays can be initialized by including the appropriate number of comma
separated entries between square brackets.

number tc[2]=[0,1]

number y[0:2,2,-1:1]=[1,2,3,4,5,6,7,8,9,10,11,12]

If you want to assign values to arrays, you must use square brackets.

The elements of multidimensional arrays are stored with the last subscript
varying first (by row). This convention is the same as that in Pascal, but the
opposite of that used in FORTRAN. The only time you need to know this is
when passing the arrays to a foreign routine. The Chapter on Foreign
Functions describes the details of passing variable length arrays to foreign
routines.

Arrays of Composite Types

Arrays of composite or nested composite type parameters can be declared by
putting the square brackets after the id of the parameter. For example, the
following declare a structure containing two number parameters
(breakpoint , increment) as an element of arrays svbe and svbc :

struc{

number breakpoint, increment

} svbe[*],svbc[*]

or

struc sa_points{

number breakpoint, increment

}

struc sa_points svbe[*],svbc[*]

In both these examples, svbe and svbc are one-dimensional arrays with the
number of structures they contain determined at run time. Each member
(structure) within these arrays has two numbers: breakpoint and
increment .

You can initialize the arrays by setting each structure equal to parenthesized
sets of two numbers, separated by commas and enclosed in square brackets.
The following example declares svbe to be a variable-sized array of
structures.

struc{

number breakpoint, increment

} svbe[*]=[(-1k,10),(-10,.1),(0,.1),(10,10),(1k,0)]
MAST Language Reference Manual (June 2003) 3-17
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
Initially, its size is set to five by the five pairs of numbers enclosed in the
square brackets. Because the field names are not named in the number pairs,
the simulator considers the numbers in each pair to be in the same order as in
the structure declaration—breakpoint first, increment second. Specifying
values for these arrays as arguments or as parameters requires the same
syntax as the initializer.

Nested Composite Types

The members of structures and unions may be any of the parameter types. In
addition, they may be declared as fixed- or variable-length arrays.

An example of this is the following declaration of a source, similar to a voltage
source. Note that the union and structure ids (tran and source , respectively)
come after their closing braces.

struc {

number dc

union {

struc {number off,ampl,freq,ph;} sin

number pwl[*]

} tran

struc {number mag,phase;} ac

} \

source

This example declares source as a structure with three members
(presumably to be used with three different analyses): dc (a number), tran (a
union, meaning a choice of two values or waveforms), and ac (a structure).
Within the tran union, two possibilities exist: the structure sin , and the
variable-length array, pwl .

If you wanted source to be an array of length 3, you could achieve this by
replacing the last line of the structure declaration above by source[3] .

This example illustrates two syntax features not yet discussed—the semicolon
(;) and the backslash (\). The syntax requirements of a structure include the
need for an end-of-line just before the closing brace. However, for readability
you can keep the brace on the same line as the last declaration if you use the
semicolon, as above. The backslash is a continuation character, meaning that
the next line is to be treated as a continuation of the line with the backslash.
This is simply to enhance readability.

The four syntax examples below assign values to source . This syntax will
work when declaring initial values for source in the nested composite type
3-18 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Declaration Operators
declaration, when referring to an argument source in a netlist entry, or when
referring to a parameter source in the Parameters section.

1. source=(dc=5)

2. source=(tran=(sin=(0,1,10k,0)))

3. source=(tran=(pwl=[0,1,2,3]))

4. source=(ac=(1,0))

In the first example, source is declared as dc=5 .

In the second example, source is declared as a sin tran . The source
structure, the tran union, and the sin structure all require parentheses.

In the third example, source is declared as a pwl tran . The source
structure and the tran union require parentheses, while the pwl array
requires square brackets.

In the fourth example, source is declared as ac . The source structure and
the ac structure both require parentheses.

Declaration Operators

There are three two-character operators that provide a shorthand method of
using composite parameters:

These operators allow you to declare an argument or parameter to be of the
same type as in an existing template. Thus, if its declaration is lengthy, you
need not write it out in full for every template that uses it.

Argdef

Argdef (argument definition) declarations let you specify an argument that is
of the same type as an argument in the same or another template. It consists
of two periods (..) and appears in the general form of the simplest argdef
declaration as:

templatename.. argumentname id [[= initial_value] ,
id [= initial_value]...]

.. argdef

-> structure reference

<- structure overlay
MAST Language Reference Manual (June 2003) 3-19
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
where templatename is the name of the template from which the argument
definition is to be “borrowed”, argumentname is the name of an argument
within templatename, and the ids are the names of the arguments or
parameters being declared to be of the same type as argumentname.
Assuming that there is a template with the name q, and it has an argument
with the name model , you can declare variables named m1and m2to be of the
same type with the following declaration:

q..model m1=(), m2=()

With this declaration, the two variables m1 and m2 can be used whenever the
model argument of the q template is required. In particular, if the model
argument of q is a large structure, then m1 and m2 are also large structures,
with the same subordinate parameter names and any existing default values.

Because it is possible for template definitions to be nested, it is also possible
for argdefs to refer to arguments in the nested templates. The general form is
as follows:

template1.. template2.. template3.. argumentname
with as many template names as are needed to reach the required argument.
For example, there may be a template nand , that uses its private definition of
a MOS transistor called mos. You could declare an argument to be of the same
type as the model argument within mos, as follows:

nand..mos..model m1

Argdefs are initialized to the same parameter names and initial values as in
the defining argument. It is as if the id were listed after the structure as
follows:

data_structure {

declarations
} id=()
You can supply additional initialization information with the same syntax
used to initialize other ids of the data structure. In the example using
q..model , assume that one of the member parameters is bf . The following
statement initializes bf to a value different from the default:

q..model m1=(bf=80)

Arrays of argdefs

If an argument or parameter is defined as an array of argdefs, and the
argument used in the declaration is itself an array, the resulting variable will
be an array with the subscripts in the arguments appended to the subscripts
used on the argdef declaration. This is best explained by an example. Consider
a template lowlevel , with the following declaration for one of its arguments:

number lowarg[5]
3-20 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Declaration Operators
In the template midlevel , some variables may be declared by an argdef:

lowlevel..lowarg x,y[3]

which declares x to be just like lowarg , that is, an array of five numbers, and
y to be an array of three items, each of them like lowarg . For y, the result is a
variable identical to one declared as follows:

number y[3,5]

If, in the template midlevel, an argument were declared using an argdef:

lowlevel..lowarg midarg[2]

it could be used in a template toplevel as a declaration:

midlevel..midarg a[*]

with the result that a would effectively be declared as:

number a[*,2,5]

Notice that, although variable-length array declaration is possible with
argdefs, the resulting subscripts must have the variable-length indicator in
the first position. An argdef that would result in something like the following
is not allowed:

number a[3,*,2]

Structure and Arra y Reference

Structure reference declarations let you refer to members of a structure or
union within the same template. It consists of the right arrow symbol (->) and
is formed according to the general rule:

variable -> variable [-> variable ...]
where variable is either a variable or a subscripted variable. Each structure
reference operator (->) points to a field within a structure or a union. For
example, if rb were declared within the structure model , using -> would
allow using rb individually as a variable within the template:

struc {

number is,rb,cj

string type = "n_type"

} model

model->rb

For a union, if phase were declared within the structure sin , using -> would
allow using it individually as follows (note that it is necessary to use it twice—
first to reference sin then to reference phase within sin):

union {

number dc
MAST Language Reference Manual (June 2003) 3-21
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
struc {number vo,va,f,td,phase;}sin

} tran
tran->sin->phase

Similarly, you can use the same operator with an array. An array reference
has the following general form:

variable[expression, expression, ...]
where each expression must, when evaluated, be a number (real numbers are
converted to integers by truncation).

An example of an array reference is shown below:

struc {

number work[32]

} m1[*]
m1[i]->work[32]

where array work is a member of array m1[i] (an array of arrays), and
m1[i]->work[32] represents one of its elements.

Structure Overla y

Structure overlay declarations let you assign the values of a composite
parameter to another composite parameter, and then change values of specific
members. The general syntax for this assignment is:

left_hand_value=structurename<- structurevalue
where the left_hand_value and the structurename parameters have both
already been declared as identical structures. The structure overlay operator
(<-) is used with the structurevalue to indicate the members to be changed in
the left_hand_value parameter.

For example, using an argdef to define model1 and model2 as structures of
the same types as model , which is declared as:

template bjt c b e s = model, area

electrical c,b,e,s

number area

struc{

number is,bf,re=0,rb=0,rc=0

} model=()

then, the following local declaration would start them with the same initial
values as model :

#in local declarations section

bjt..model model1,model2
3-22 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Declaration Operators
You could then change the is and rb values for model2 by using the
structure_overlay with model1 :

#in parameters section

model1=(is=1e-14,bf=100)

model2=model1<-(is=1e-15,rb=10)

In this example, this replaces the longer version of making this re-
assignment, which would be:

model1=(is=1e-14,bf=100,rb=0,rc=0,re=0),

model2=(is=1e-15,bf=100,rb=10,re=0,rc=0)

The structure overlay can be used to replace the following sequence of
statements:

model1=model2

model1->is=1e-15

model1->rb=10

with:

model1=model2<-(is=1e-15,rb=10)

Thus, the members not explicitly mentioned in the structurevalue are taken
from the structure named by structurename instead of from the defaults
defined in the structure declaration. The parameter values that are explicitly
specified are assigned to directly to left_hand_value, overriding the contents of
structurename.

Simulator Variables

Simvars are certain pre-defined variables that pass information from the
simulator to the template or from the template to the simulator. Simvars are
known to the simulator and thus do not have to be declared. You may use only
the names predefined in the MAST language as the names of simvars.

If you use the name of a simvar to declare a variable of another type within a
template, you will not have access to it as a simvar. If a simvar name is used
for something else (such as a node in a netlist), then it cannot be used
hierarchically for “child” templates or templates descending from them.

The form of a simvar declaration is as follows:

simvar id,[id...]
where the ids must be chosen from the following set of simulator variable
names:

dc_domain freq next_time time_domain

dc_done freq_domain statistical time_init
MAST Language Reference Manual (June 2003) 3-23
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
You may use most simulator variables only in the Values section, in When
statements, and in the Equations section of the template. You can use the
statistical simvar only in the Parameters section and in netlist
statements.

Simulator variables fall into two opposing categories:

5. Those that get their values from the simulator and are available for use
(but not modification) in the template.

6. Those that get their values from the template and are available for use
by the simulator. They are next_time and step_size .

The simulator variables have the following meanings when declared as
simvars:

Category 1

• dc_domain is set to 1 during DC analyses, that is, during DC, DT, and
the DC portion of DCTR. It is set to 0 otherwise.

• dc_init is set to 1 at the start of DC analyses, meaning at the start of
the DC, DT and the DC portion of DCTR. It is set to 0 otherwise. It is
used primarily in When statements.

• dc_start is set to 1 at the start of any DC analysis and the DC portion
of DCTR, even one that is restarted from a previous DC initial point. It
is set to 0 otherwise. It is used primarily in When statements.

• dc_done is set to 1 after the DC algorithm is completed. It is set to 0
otherwise. It is used primarily in When statements.

• freq is set (continually updated) to the simulation frequency at which
the template is being evaluated. Freq is defined only during frequency
domain analyses. Freq is set to 0 in DC and time domain analyses.

• freq_domain is set to 1 during frequency domain analyses, that is,
during frequency, distortion, and noise analyses. It is set to 0 otherwise.

• freq_mag is set to 1 during frequency domain analyses, that is, during
frequency, distortion, and noise analyses, that compute the magnitude
of complex numbers. It is set to 0 otherwise.

dc_init freq_mag step_size time_step_done

dc_start freq_phase time tr_done

tr_start
3-24 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Declaration Operators
• freq_phase is set to 1 during frequency domain analyses that
compute the phase of complex numbers. It is set to 0 otherwise.

• statistical is set to 1 when Monte Carlo and other statistical
analyses are being performed. It is set to 0 otherwise. It can be used
only in the Parameters section and in the netlist.

• time is set (continually updated) to the simulation time at which the
template is being evaluated. Time progresses only during time domain
analyses. Time is set to 0 in frequency and DC domain analyses in the
Values and Equations sections for analog-only simulation.For
templates providing mixed-mode simulation (i.e., containing When
statements), the value of time is dependent on the DC Algorithm
outlined in The DC Algorithm on page 9-11.

• time_domain is set to 1 during any transient analysis. It is set to 0
otherwise.

• time_init is set to 1 at the start of transient analysis. It is set to 0
otherwise. It is not reset when restarting a transient analysis from a
previous one. It is used primarily in When statements.

• tr_start is set to 1 at the start of any transient analysis, including
one restarted from a previous transient analysis. It is set to 0
otherwise. It is used primarily in when statements.

• tr_done is set to 1 at the end of any transient analysis. It is used
primarily in When statements.

• time_step_done is set to 1 at the end of each time step in transient
analysis. It is used primarily in When statements.

Category 2

• next_time can be set by the template to a future time that the
simulator must reach exactly. If the template has no scheduling
requirements, it should leave next_time undefined. A typical use of
this simvar is in piecewise linear sources, where it tells the simulator
when the next turning point occurs in the definition of source, or any
other time-dependent template where an “abrupt” change occurs.
Another use is to ensure that the simulator uses a particular time.
More information about using next_time is provided in the subsection
titled Scheduling Analog Waveform Sampling Times.

• step_size can be set by the template to specify a desired maximum
time step size to the integration algorithm. The simulator uses the
MAST Language Reference Manual (June 2003) 3-25
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
value to limit the size of the next time step. A typical use is in sinusoid
pulses.

System Variables

System variables are the dependent and independent variables in the
mathematical model of the system being simulated. They include across
variables, var s, and ref s.

You do not have to declare across variables (or through variables) because
they are declared implicitly by the pin definition. The pin definition
automatically declares a dependent through variable of the form through(pin)
and an independent variable of the form across(pin).

Var declarations

An explicitly declared var is a second type of system variable. The simulator
assigns a value to a var based on a line of the following form in the Equations
section:

varname: expression = expression
For each var , there should be one such line in the Equations section of the
template. You can use var s in the Equations, Values, and Control sections.

The general form of a var declaration is:

var unit id[, id...]
where unit is one of the units declared in a unit declaration, and the ids are
the names of the var s being declared. If a var is to be passed out of a
template as a connection point, you must declare it in the header declarations;
otherwise, declare it in the local declarations section.

Ref declarations

A third type of system variable is the ref . If it is necessary to refer to a var in
another template, you may declare a ref . Such a declaration binds the ref in
the current template to the var in the other template, and it has the following
general form:

ref unit id[, id...]
where unit is one of the units declared in a unit declaration, and must be the
same unit as in its previous declaration in the template where the var was
defined. The ids are the names of the ref s being declared.
3-26 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Ref declarations
You may declare only connection points (of the current template) as ref
variables. You can use a ref in the equations section, similar to the way you
use a var :

refname: expression = expression
Its effect is that the right-hand side of this statement (the part to the right of
the equal sign) is added to the left-hand side of the statement defining the
value of the var . This is done even if the statement defining the value of the
var is in another template.

An example of using a ref is the input current of a current-controlled source,
such as ccvs.

State Variables

State variables are used in discrete time simulation (refer to MAST
Functions). There are two types of state variables: digital and event-driven
analog.

• A digital signal is discrete in the values it represents; for example, 0, 1,
x, and z. It is also discrete in time.

• An event-driven analog signal can assume any real number as a value,
but values are still discrete in time.

States can be declared and used internally in a template, they can be passed
to or from a template as connection points, or they can be passed to a foreign
simulator.

States passed in as connection points cannot be initialized within a template.
They automatically take on initial values of undef for analog event-driven
states, and the initial state declared in the unit definition for digital states.
States declared locally in a template can be initialized, and should be
initialized to conform to a zero value of any associated analog waveform (refer
to Initializing Templates on page 9-10).

Digital states should be declared as foreign when they are used to relay
information to foreign simulators in mixed-simulator simulation, where
mixed-simulator simulation involves using the Saber simulator interfaced to a
digital simulator. All foreign state declarations must be local. At present, the
provided templates use the logic_4 family in mixed-simulator simulation and
in hypermodels, which are templates written in the MAST language which
serve as interfaces between connection points in an analog network and
digital pins in a digital network. More information can be found in the mixed-
simulator documentation for the appropriate combination of the Saber
simulator with a digital simulator.

You must declare state variables as follows:
MAST Language Reference Manual (June 2003) 3-27
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
state unit id[=initial_value[, id=initial_value]...]
You can also declare them as fixed length arrays.

State variables can receive values only in when statements. You can use them
either in when statements or on the right-hand side of statements in the
Values or Equations section.

The following are examples of state declarations:

state logic_4 inm

state v vin

state nu handle[2] foreign

state logic_4 out

In the first example, inm is declared to be a digital signal using the logic_4
units definition. In the second example, vin is declared to be a voltage; it is an
event-driven analog signal. In the third example, handle is declared to have
no units (nu), and is a one-dimensional array of length 2. In the fourth
example, out is declared as a foreign state, and will presumably be used in a
mixed-simulator application. Foreign states can only be declared in the local
declarations section.

Values

Val (value) declarations declare variables and specify their unit types. The
simulator assigns values to val s only when needed, which is not necessarily
at each time or frequency step.

Val s can act as intermediate variables that receive values in the Values
section and then are used to carry those values into equations in the equations
section.

The values assigned to vals depend on parameters, states, and system
variables. The values of states and system variables go to the dfile (data file),
while the parameter values are fixed. Extract reads the dfile and can therefore
(with the help of the Values section) assign values to vals.

The general form of a val declaration is the following:

val unit id[, id...]
where unit is one of the units declared by a unit declaration and ids are the
names of the val variables being declared.

Variables of type val can receive values only in the Values section of a
template, and can be used in the Values, Control, and Equation sections of a
template, and in When statements.
3-28 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Ref declarations
NOTE
A val cannot receive a value from a subordinate
template called in the Netlist section.

Groups

It is convenient, and in some cases necessary, to group together several
variables, and to refer to the group by a single name. For arguments and
parameters, the usual method of combining them is to put them into a
structure. However, groups differ from structures in several ways, and
therefore serve different purposes. The differences are as follows:

• Groups need not consist of arguments and parameters

• A variable may be a member of multiple groups

• Groups cannot be used to pass arguments to templates

The general form of a declaration of a group is as follows:

group { member, member, ...} id
where members are the names of the variables or other groups in this group,
and id is the name of the group being declared.

Groups must be homogeneous. That is, they must consist entirely of
arguments and parameters or entirely of system variables, val s, and simvars.

You can use groups to arrange vars and vals for extraction or for use with the
siglist command. By convention, extraction groups include the following:

• v - voltage

• i - current

• f - flux

• noise - noise

• pd - dc power

• pt - instantaneous power

The following example groups current variables ie , ic , and ib under the
name i :

group {ie, ic, ib} i

Although it is not necessary, you can also use groups when passing variables
to and from foreign functions, and in Control section statements. Groups can
MAST Language Reference Manual (June 2003) 3-29
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
be used to define pl_set , sample points, and newton steps. An example of
using groups for newton steps is shown below (for further information on this
syntax, refer to Purpose of Template Sections on page 7-3).

#in local declarations section

group {vbe, vce} voltages

struc {

number sample_point, increment

} nsteps[*]=[(0.3,3m),(0.6,1m),(0.7,0)]

control_section{

newton_step (voltages, nsteps)

}

Templates

Templates are declarations of names just like other declarations, and can be
mixed with other declarations. However, because they are the most
complicated constructs of the language (and also the most powerful), the
details of their definition are described in the Chapter on Templates. Here only
a simplified outline of a template declaration is given here.

The form of a template declaration is as follows:

[type] template templatename connection_pt_list [= arguments]
header declarations
{

local declarations
parameters section
netlist
when statements
values section
control section
equations section

}

where type is optional, templatename is the name of the template,
connection_pt_list is a list of the connection points of the template (separated
by blanks or commas), and arguments is a comma-separated list of the
arguments of the template. The body of the template, which is enclosed in
braces, consists of local declarations, followed by several sections describing
different aspects of the template (refer to the Templates Chapter).

The top-level template defining a system does not require the template
header. Syntactically, it is the body of an unnamed template, without the
surrounding braces:
3-30 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Ref declarations
local declarations
parameters section
netlist
when statements
values section
control section
equations section

The simplest and most commonly used top-level template is merely the netlist
of a circuit or system; it uses predefined templates and does not use the other
body sections.

You can include templates in other templates by writing the included template
in the local declarations section. Templates declared locally are only known
locally, and therefore cannot be accessed freely by outside templates.

Resolving Template Names

Whenever a template name is used in a netlist, the simulator must find its
definition. In general, if there is not a declaration for a referenced template in
the current template, the referenced template must be found in a higher-level
template. Because template declarations may be nested to an arbitrary depth,
a search for the declaration of an external template proceeds up the path of
declarations until the declaration is found, or the top level is reached without
finding the template. By convention, any precompiled template brought in
when the simulator starts up is automatically considered to be at the top level
of the template hierarchy, although this is not a requirement.

If the template declaration is not found then, the Saber simulator performs a
search along the SABER_DATA_PATH for a file named templatename.sin . If
the file is found, it is automatically included at the top level of the template
hierarchy. If not, an error message is printed. In case of an error, you should
examine the SABER_DATA_PATH and change it or the location of the template
in question, or simply include the template and its full path name in the
system.

Implicit Declarations

Every name used in a template must be declared to be of some type. Almost all
names must be declared explicitly by one of the declarations described in the
previous sections. There are, however, several cases of names that are
implicitly declared when they are encountered.

Variables that are declared implicitly include the following:

• Through variables

• Across variables
MAST Language Reference Manual (June 2003) 3-31
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
• Simvars

• Connection points used in netlist statements

• External templates

• Reference designators

• Node names

Through and across variables are declared implicitly by the associated pin
definition. For instance, if a pin_name is declared to be electrical,
i(pin_name) is implicitly declared as a through variable, and v(pin_name)
is implicitly declared as an across variable.

Simvars are known to the Saber simulator, and therefore you do not have to
declare them.

Although you can improve template readability by declaring connection
points, you do not have to declare them if they are used in netlist statements.
(Presumably they will be declared further down the hierarchy.) Connection
points cannot be used until they are declared, so if they are not declared by
the user, they cannot be used in sections before the netlist statement that
implicitly declares them.

Netlist statements implicitly declare the templates named. The system tries
to locate a template in a file with names of the form templatename.sin
through an automatic search using the SABER_DATA_PATH. If a template does
not lie along the SABER_DATA_PATH, its full pathname should be included in
the template before its use in the netlist statement.

Netlist statements also implicitly declare the reference designators and node
names named in the statement.

For example, in the following netlist statement (in the absence of local
declarations):

r.r1 n1 n2 = 1k

r is implicitly declared as an external template (r); r1 is implicitly declared as
a reference designator; n1 and n2 are implicitly declared as connection points
of the same type (i.e., pin, var , ref , or state) as those in the template being
referenced. It is not necessary to list a separate include statement for the
template r since it can be found along the SABER_DATA_PATH.

External Declarations

In most cases, the names and types of variables used in a template are
declared in the template and are not accessible from outside the template.
Occasionally, however, it is useful to bring in a value of a variable in another
3-32 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Ref declarations
template of the system, without explicitly declaring the variable in the current
template.

Temperature is an example of a variable that could be brought into the
template from the outside without entering it in the argument list of every
template reference. Other examples are global nodes such as rail voltages or
system clocks.

The mechanism for doing all of the above is to make the appropriate variable
an external variable. For variables such as parameters or system variables
you must declare them explicitly with an external declaration. A variable is
declared to be an external variable by preceding its declaration by the
keyword external:

external type id[,id...]

Some specific examples are:

external number temperature

external bjt..model lateral

external electrical vcc,vee,signal_ground

Only parameters and pins may be declared to be external.

The following example illustrates how the value of an external variable
(temperature) is resolved through several levels of hierarchy.

Resolving Variable Names—An Example

When a variable is declared to be external, the search proceeds up the path of
template references. The following example illustrates template references
nested several levels deep. Only the skeleton of the templates is given here to
bring out the relevant details.

#template example for resolving variable names
#local declarations section
number temperature=27
template r ...

{
external number temperature
#...definition of a resistor by equations
}

template bjt ...
{
r.b b bprime = rb
#...further definition by equations
}

template diffpair ...
{
bjt.1 ...
MAST Language Reference Manual (June 2003) 3-33
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
}
template opamp ... = local_t

number local_t
{
number temperature
parameters {

temperature=local_t
}
diffpair.1 ...
bjt.1 ...
r.1 ...
}

netlist section
r.1 ...
bjt.1 ...
opamp.1 ... = local_t = 50

opamp.2 ... = local_t = 80

In this example, each reference to the r template is resolved at the top level,
because that is the only level at which an r template is declared. However, the
nesting of the references to the various templates is as follows:

Top Level:

r(1)

bjt(1)

r(2)

opamp(1)

diffpair(1)

bjt(2)

r(3)

bjt(3)

r(4)

r(5)

opamp(2)

diffpair(2)

bjt(4)

r(6)

bjt(5)

r(7)

r(8)

In the template for r, temperature is declared as an external number, and its
value must be obtained from the higher levels of the hierarchy. Taking the
eight cases of resistor references in turn:

1. The temperature is found at the top level, and is 27.
3-34 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Ref declarations
2. The temperature is looked for in bjt(1), is not found there, and is then
found at the top level. It is 27.

3. The temperature is looked for in bjt(2), then in diffpair(1), and finally in
opamp(1), where it is found. It is 50, as passed into the opamp by the
local_t argument.

4. The temperature is looked for in bjt(3) and then in opamp(1), where it is
found. It is 50.

5. The temperature is found in opamp(1). It is 50.

6. The temperature is looked for in bjt(4), then in diffpair(2), and finally in
opamp(2), where it is found. It is 80, as passed into the opamp by the
local_t argument.

7. The temperature is looked for in bjt(5) and then in opamp(2), where it is
found. It is 80.

8. The temperature is found in opamp(2). It is 80.

Foreign Declarations

Foreign declarations are used for and for foreign states. There are two types of
foreign subroutines: subroutines that are declared in such a way that they
return a single number, and subroutines that are not restricted in what they
return. The syntax for these declarations follows:

#Type 1...in local declarations section

foreign number subroutinename()

#Type 1...in another template section

variablename=subroutinename(input_list) [bin_operator expression]

#Type 2...in local declarations section

foreign subroutinename
#Type 2...in another template section

(output_list)= subroutinename(input_list)
The first type shown above is a foreign subroutine that returns a number.
After it is declared, you can use that number in a statement wherever you can
use a numeric value. As an example:

#Type 1 example...in local declarations section

foreign number fred()

#Type 1 example...in another template section

a = b + fred(c)
MAST Language Reference Manual (June 2003) 3-35
Copyright © 1985-2003 Synopsys, Inc.

Chapter 3: Declarations and Data Structures
The second type is a foreign subroutine whose output is not restricted. Each
member of the input_list and output_list must be declared.

Foreign state declarations are required for digital states that are intended for
use by a foreign simulator, that is, in a mixed-mode simulation. Foreign states
must be declared in the local declarations section, using the keyword foreign.
The syntax is the same as a local connection point declaration:

#Type 2 example...in local declarations section

foreign state units statevar

Refer to the particular mixed-simulator documentation for specific
information on using the Saber simulator with a foreign digital simulator.
3-36 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 4
Expressions
Introduction

Expressions play an important role in templates. The main uses of
expressions are to pass arguments to templates, to modify parameters, and to
define values in assignment statements and in equations. They can be used in
all sections. You can build expressions out any kind of variable, parameter
type, strings, operator, and other characters in the MAST language.
Expressions are allowed as statements, which is especially useful for
messages and within the body of when statements.

Expression Types

An expression can be any of the following types:

constant
variable
array_reference
structure_reference
array_reference
unary_operator expression
expression binary_operator expression
function(expressions)

The following sections explain these types.

Constants

Constants can be numbers, enumerated, or string type values.

Variab les

Variables can be numbers, enumerated types, strings, simvars, var s, ref s,
val s, states and across variables. An across variable has the form unit(pin)
MAST Language Reference Manual (June 2003) 4-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 4: Expressions
where pin is either a connection point or a node, and unit is the across
variable declared in the pin definition. For example, for an electrical node in ,
the across variable is voltage; therefore, the across variable at the connection
point in is v(in) . Dependent through variables of the form unit(pin), where
unit is the through variable in the pin definition, can only be used in the
Equations section.

Structure Ref erences and Arra y References

A structure reference is formed according to the general rule:

variable -> variable [-> variable ...]
where variable is either a variable or a subscripted variable. Each structure
reference operator (->) points to a field within a structure or a union.

An array reference has the following general form:

variable[expression, expression,...]

where the expressions must, when evaluated, be numbers (real numbers are
converted to integers by truncation).

An example of a structure reference is:

struc {

number is,rb,cj

string type = “n_type”

} model

model->rb

where number rb is a parameter declared within the structure model.

You can also use a structure reference for nested levels:

union {

number dc

struc {number vo,va,f,td,phase;}sin

} tran

tran->sin->phase

where number phase is a parameter within the structure parameter sin ,
which in turn is contained within the union parameter tran .

An example of an array reference is:

struc {

number work[32]

} m1[*]

m1[i]->work[32]
4-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Expression Types
where the array work is a member of array m1[i] (an array of arrays), and
m1[i]->work[32] represents one of its elements.

Expressions with Operator s

Expressions may contain unary and binary operators. All binary operators are
left associative except for the ** operator, which is right associative. (The **
operator indicates that the number to its left is to be raised to the power of the
number to its right.)

Operators can operate upon any expression, assuming that the result is
meaningful. The general forms for expressions with operators are:

unary_operator expression
expression binary_operator expression

All operators (except the concatenation operator //) may operate on numbers.
Only the == (is equal to) and ~= (is not equal to) operators may operate on
enumerated types and strings. The result of any operation (except string
concatenation, which is a string) is a number. The boolean operators treat 0 as
false and all other numbers as true; they always return 0 for false and 1 for
true.

The unary operators are:

The binary operators are:

- negation
~ boolean not

** to the power of
* multiply
/ divide
+ plus
- minus
< less than
> greater than
>= greater than or equal to
<= less than or equal to
== equal to
~= not equal to
& Boolean AND
_ Boolean OR
// string concatenation
MAST Language Reference Manual (June 2003) 4-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 4: Expressions
Operator Precedence

The operators are listed below in decreasing order of precedence, where
operators on the same line are equal in precedence. When operators are equal,
they are applied as they are encountered in a left-to-right scan of the expression
(except for the ** operator and when parentheses indicate otherwise):

Examples

Following are some examples of expressions. Each expression in the left column
is equivalent to the corresponding parenthesized expression in the right column:

Unary Operators
**
* /
+ -
//
< > >= <=
== ~=
&

a+b-c (a+b)-c

a**b**c a**(b**c)

a+-b*c a+((-b)*c)

a<b&c==2 (a<b)&(c==2)

a==b==c (a==b)==c

-~0 -(~0)
4-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 5
Intrinsic Functions and Values
Introduction

The MAST language provides intrinsic functions to be used in expressions.
These include:

• Mathematical functions

Trigonometric and Hyperbolic Functions

• Logarithmic and Exponential Functions

• Other Mathematical Functions

• Argument and Parameter functions

sin cos tan

asin acos atan

sinh cosh tanh

asinh acosh atanh

ln log exp limexp

abs (absolute value)

d_by_dt (the derivative function)

delay

random()

sqrt (square root)

union_type (present value of a union)

len (length of an array)
MAST Language Reference Manual (June 2003) 5-1
Copyright © 1985-2003 Synopsys, Inc.

lzz1
abs (absolute value)d_by_dt (the derivative function)delayrandom()sqrt (square root)

Chapter 5: Intrinsic Functions and Values
• Event-driven functions

schedule_event
schedule_next_time
event_on
threshold
deschedule

• Messages

message
warning
error
instance()

• In addition, MAST provides two constants which can be referred to by
name:

Mathematical Functions

You can use all mathematical functions in all sections of a template, with the
exception of the derivative and delay functions (d_by_dt and delay). The
delay and d_by_dt functions are restricted to the Equations section.

Trigonometric and Hyperbolic Functions

Basic trigonometric functions and their corresponding hyperbolic functions
are available for use in the parameters, values, and equations sections of a
template, and in when statements.

The following table shows these intrinsic trigonometric functions. The first
column shows the syntax of the function, where x indicates an expression,
whose value represents an angle, in radians. The second column shows the
definition of the function. The third column indicates limitations, if any, on the
value of the expression x:

undef (undefined)

inf (infinity)

Function
Syntax

Definition Limitations

sin(x) sine (x) none

cos(x) cosine (x) none
5-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

lzz1
schedule_eventschedule_next_timeevent_onthresholddeschedule

Log and Exponential Functions

The functions that provide the decimal logarithm and the natural logarithm
are both available. In addition, the exponential function (ex) is also available.
These functions are shown in the following table, with the first column

tan(x) tangent (x) x cannot equal n(π/2)

asin(x) arcsine (x) -1 ≤ x ≤ 1

acos(x) arccosine (x) -1 ≤ x ≤ 1

atan(x) arctangent (x) returns a value between ±π/2

sinh(x) none

cosh(x) none

tanh(x) none

asinh(x) none

acosh(x) x ≥ 1

atanh(x) -1 < x <1

Function
Syntax

Definition Limitations

ex e x––
2

ex e x–+
2

ex e x––
2

ex e x–+
2

ln x x2 1++()

ln x x2 1–+()

ln
1 x+
1 x–

MAST Language Reference Manual (June 2003) 5-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 5: Intrinsic Functions and Values
showing the syntax, and the second column showing the definition of the
function, and any limitations:

NOTE
Logarithms are expressed in MAST as follows:
base e = ln
base 10 = log

This differs from how other programming languages
(such as FORTRAN, RATFOR, and C) express
logarithms:
base e = log
base 10 = log10

Other Mathematical Functions

This section describes the other mathematical functions: d_by_dt , delay ,
sqrt , abs , and random() .

Function Syntax Definition Limitations

ln(x) natural (base e)
logarithm of x

x > 0

log(x) common (base 10)
logarithm of x

x > 0

exp(x) ex x ≤ 80

limexp(x) a subroutine that
numerically limits the
value of ex

Also,
limexp(-
x)=1/limexp(x)

x > 80

This subroutine limits the value
of ex as follows:

For 80 < x ≤ 88,
limexp(x) = (x-
79)*exp(80)

For 88 < x ≤ 88.7,
limexp(x) =
(1+1e-6*(x-88))*exp(88)

For x >88.7,
limexp(x) = exp(88.7)
5-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Deriv ative

The derivative function, d_by_dt , can only be used in the Equations section of
a template. The syntax for taking the derivative of an expression with respect
to time is as follows:

d_by_dt(x)

where x is any valid expression, except an expression containing d_by_dt (no
nesting is allowed) or delay .

It can follow only the operators +, -, =, +=, and -=, so any constant multipliers
must appear within x. Similarly, it can only be followed by +, -, and ;.

For example, to describe the effect of a linear time-invariant capacitor on the
through variable, the following statement could appear in the Equations
section:

i(p->m) += d_by_dt(cap*v)

where i(p->m) is the through variable, cap is the value of capacitance (a
linear time-invariant capacitance declared as a number) and v is the voltage
across the capacitor, (declared as a val).

Delay

The delay function lets you model the effects of delay in your system, as, for
example, in a delay line. You specify the value that is to be delayed and the
amount of delay (in seconds). Note that the delay function is not restricted to
the time-domain analyses; it can apply to frequency-domain analyses as well.

You can use the delay function only in the Equations section of the template.
It cannot be nested and it cannot contain a d_by_dt function.

The form of the delay function is:

delay(reference_value, time_parameter)

The reference_value can be a system variable (var or ref) or a linear
combination of system variables. It can follow only the operators +, -, =, +=,
and -=, so any multipliers must appear within the time_parameter expression.
The time_parameter may be a constant, a parameter, an argument, or any
expression composed entirely of constants, parameters, and arguments. A
delay function can be followed only by operators + and -, or by a semicolon (;).

Then, in the Equations section, (in a template in which i is a var) you could
include the following statement:

i: vindelay = delay(((vinp-vinm)/2),50u)

This causes the vindelay signal to be delayed 50 microseconds from vin
(calculated as (vinp-vinm)/2) .
MAST Language Reference Manual (June 2003) 5-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 5: Intrinsic Functions and Values
Square Root

Use the square root function for all expressions that, when evaluated, produce
a positive value of x. The syntax for the square root function is:

sqrt (x)

Absolute V alue

The absolute value of any expression can be obtained by use of the following
function, where x is any expression:

abs (x):

Random()

The random() function returns the next pseudo-random value in the range of
0 to 1, where 0 is included and 1 is excluded. When using the statistical
environment, you can specify the seed of the pseudo-random sequence.

random()

This function does not take an argument.

Parameter Functions

There are two functions that affect parameters (and arguments): union_type
and len .

union_type

When you define a parameter or argument to be of type union , you list two or
more declarations that the variable can assume. At any given time, the
variable assumes only one of the declarations. The union_type function has
the form:

union_type(union_name, union_item)

where union_name is the name of an argument or parameter of type union ,
and union_item is one of the items that union_name can assume. This
function returns the value 1 if union_name has the value union_item, and it
returns 0 otherwise.

Length of an Arra y

The len function returns the length of an array. It is useful particularly when
the array is defined without bounds. This function has the form:

len(array_name)

where array_name is the name of the array whose length is being determined.
5-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

lzz1
Random()The random() function returns the next pseudo-random value in the range of0 to 1, where 0 is included and 1 is excluded. When using the statisticalenvironment, you can specify the seed of the pseudo-random sequence.random()This function does not take an argument.

Event-Driven Functions

Event-driven functions are used in When statements for discrete time
simulation.

The general form of the When statement is:

when (condition) {

statements
}

Event_On

The event_on function is often used as a condition for the When statement.
The event_on function returns 1 (true) whenever a value is assigned to a
specified state variable, as previously scheduled by a schedule_event . The
syntax of the event_on function is as follows:

event_on (state_var [, old_value])
where state_var is the name of a state variable to be monitored for an
assignment, and old_value is the name of a state variable that receives the
previous value of state_var when state_var is assigned a new value.

Threshold

Threshold is often used as a condition for the When statement. The
threshold function returns 1 (true) whenever the value of a specified
expression crosses, becomes equal to, or becomes unequal to, a specified value.
It is useful for converting from analog to discrete systems, but has other uses
as well. The syntax of the threshold function is as follows:

threshold (expression, value [, before_state [, after_state]])
where expression is compared to value to see if a threshold condition has been
met. The before_state and after_state are output variables that can be used to
determine how the threshold condition was met.

before_state equals:

after_state equals:

1 if expression > value before the threshold

-1 if expression < value before the threshold

0 if expression = value before the threshold

1 if expression > value after the threshold
MAST Language Reference Manual (June 2003) 5-7
Copyright © 1985-2003 Synopsys, Inc.

lzz1
event_on (state_var [, old_value])

lzz1
syntax of the event_on function is as follows:

Chapter 5: Intrinsic Functions and Values
Schedule_e vent

The schedule_event function is often used in the statements portion of the
When statement. The schedule_event function sets (schedules) a time at
which a specified variable is to receive the value of a specified expression.

The syntax is as follows:

[scheduling_id =] schedule_event(time, state_var, expression)

The scheduling_id is an array of two unitless state variables. This array
becomes a unique identifier when the event is scheduled, and can be used for
de-scheduling the event. The time is an expression whose value indicates the
time at which the assignment is to occur. Typically time is defined as the sum
of the time simvar and some expression that represents a delay. The state_var
variable is the name of the state variable that is to receive expression as its
new value at time time.

Schedule_ne xt_time

The schedule_next_time function schedules a time at which the
integration algorithm samples the analog waveforms. That is, if the
simulator’s integration algorithm yields a time step that would cause the
simulator to go beyond one or more scheduled “next” times, the simulator is
required to step ahead only to the first such time. This is the means by which
the discrete part of a system can affect the analog simulation. The syntax
follows:

[scheduling_id =] schedule_next_time(time)

The optional scheduling_id identifier represents an array of two unitless state
variables. You can use it to de-schedule the event. The time is an expression
whose value indicates the time at which the assignment is to occur.

Deschedule

The deschedule function de-schedules a specified event or next time that
had been scheduled previously by schedule_event or
schedule_next_time . The syntax follows:

deschedule(scheduling_id)

The scheduling_id identifier represents an array of two unitless state
variables. You can use it to de-schedule a scheduled event or next_time. A
warning message occurs if you attempt to deschedule an un-scheduled event
or time step.

-1 if expression < value after the threshold

0 if expression = value after the threshold
5-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

lzz1
The schedule_next_time function schedules a time at which theintegration algorithm samples the analog waveforms. That is, if thesimulator’s integration algorithm yields a time step that would cause thesimulator to go beyond one or more scheduled “next” times, the simulator isrequired to step ahead only to the first such time. This is the means by whichthe discrete part of a system can affect the analog simulation. The syntaxfollows:

lzz1
[scheduling_id =] schedule_next_time(time)

lzz1
deschedule(scheduling_id)

Conflict resolution f or event-driven digital nets

Each event-driven digital unit has an associated set of states. The supplied
units.sin file contains two such sets, logic_4 and logic_3. In the units.sin
file, there is, for each set, a conflict resolution routine (called l4cnfr for
logic_4 and l3cnfr for logic_3). Conflict resolution routines are binary,
associative operators that apply to two or more event-driven digital signals
that drive the same net (node). The supplied routines resolve conflict
according to the following tables:

You can supply your own conflict resolution schemes as foreign functions. You
can find out more in the foreign functions section.

Messages

There are four message functions: message, warning, error, and instance().

Message, Warning, and Err or

Message, warning, and error comprise a group of three built-in functions that
can be used in the Parameters section and in the bodies of When statements,
but not in the Values or other sections of the template. Their format follows:

message (format_string[, substitution_entities])
warning (format_string[, substitution_entities])
error (format_string[, substitution_entities])

Messages require a single format_string, usually a string constant, but which
may be a string variable or expression (a concatenation of string variables and
constants). The format_string may include ordinary text, substitution tokens,
and escape sequences. All message format_strings have an implied new line at
the end. A substitution token is a percent sign (%). It is replaced by the next
available argument in the substitution_entities. An escape sequence consists of
the backslash character (\) followed by another character. The
substitution_entities need only be specified if there are substitution tokens in the
message format_string.

l4cnfr : ln3cnfr :

0 1 x z 0 1 x

0 0 x x 0 0 0 x x

1 x 1 x 1 1 x 1 x

x x x x x x x x x

z 0 1 x z
MAST Language Reference Manual (June 2003) 5-9
Copyright © 1985-2003 Synopsys, Inc.

Chapter 5: Intrinsic Functions and Values
The message function simply prints the format_string with substitutions, and
then gives a new line. Messages are intended to be used for debugging and for
informational purposes.

The warning function prints the following annunciator line:

*** WARNING “TEMPLATE_WARNING” ***

on the screen, followed by the format_string with substitutions and a new line.
Warnings are intended to inform template users in significant situations, such
as when a user enters an invalid parameter, which is then reset to some
reasonable default value in the template.

The error function prints this annunciator line:

*** ERROR "TEMPLATE_ERROR" ***

on the screen followed by the message format with substitutions and a new
line. It is intended for errors in critical situations. It ends the analysis when
encountered, and can exit the Saber simulator in some situations.

Substitution entities permitted in messages include any expressions. For
debugging, it is especially useful to use the names of parameters and
arguments, or to refer to their fields.

The instance() function

The instance() function returns the name of the template instance,
including the full pathname, and thus is of particular use in messages. For
example, if your top-level template had a netlist entry for mytemplate.m1 ,
and if mytemplate contained a message such as:

message(“You are now using %”,instance())

in the Parameters section, then you would receive the message:

You are now using /mytemplate.m1

each time the Parameters section is evaluated.

\t a tab character
\n a newline character
\any any other character taken literally; primarily

to introduce the backslash (\) and percent
sign (%) as ordinary text. (\\ and \%).
5-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

NOTE
Any argument names or parameter names can be used
as substitution entities for messages in the parameters
section. If these are complicated data structures, then
all the variables and their values from inside the
structure will print out. Individual members can also
be accessed.

For example, if the parameter model is declared as follows:

struc {

enum {_n,_p} type = _n

number is=1e-16,

bf =100,

vaf,

tnom=27

string abc=”xyz”

}model = ()

then the following statement in the Parameters section:

message(“model = %”,model)

produces the message:

model=(type=_n,is=100a,bf=100,vaf=undef,tnom=27,abc="xyz")

The message “bf=% is greater than 80”,model->bf produces:

bf=100 is greater than 80

Intrinsic numbers: undef and inf

The MAST language provides two constants, undef and inf (undefined and
infinity), which you can refer to by name. They do not have to be declared to be
used.

As a general rule, if parameters and arguments are not initialized, they are
undefined, which means they assume a value of undef . You may, therefore,
test in a template to see whether parameters and arguments are undefined.
The undef number is also available in foreign subroutines because the Saber
simulator passes it to foreign subroutines as one of the standard arguments.

Infinity (inf) is not assigned by the simulator, but can be used anywhere in a
template to indicate infinity.
MAST Language Reference Manual (June 2003) 5-11
Copyright © 1985-2003 Synopsys, Inc.

Chapter 5: Intrinsic Functions and Values
5-12 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 6
Statements
Introduction

There are several types of statements, some of which are available in only
certain sections of a template as follows:

• Assignment statements, which you can use in the Parameters and
Values sections, and in When statements.

• Expressions, which you can use as statements in the Parameters
section, in When statements, and in the Values section.

• Foreign functions declared as numbers, which you can use anywhere a
number can be used on the right-hand side of an assignment statement
(either statement or field). They can be used as initializers.

• If statements, which you can use in the Parameters, Values, Control,
and Equations sections, and in When statements.

• Control statements, which you can use only in the Control section.

• Equations, which you can use only in the Equations section.

The following sections describe these types of statements.

Assignment Statements

Assignment statements are similar in appearance to mathematical equations;
however, assignment statements are allowed anywhere in a template except
in the Equations section. They are evaluated in sequence (as in a program or
routine). The expression on the right-hand side (RHS) of the equals sign is
evaluated first and then assigned to the variable on the left-hand side (LHS).
MAST Language Reference Manual (June 2003) 6-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 6: Statements
In the Parameters section, only parameters can be on the LHS of assignment
statements. In the Values section, only vals can be on the LHS of assignment
statements. In When statements, only states can be on the LHS of assignment
statements. Of these three categories of assignment statements, parameter
assignment statements can be the most complex because parameters can have
the most complex data structures. Parameters can be simple or composite
types, or arrays, or nested combinations of these; vals are numbers or discrete
values with declared units, and states are only numbers with declared units,
arrays of numbers, or discrete values with declared units. For more
information, refer to Parameter and Argument Declarations.)

Parameters Section

An assignment statement in the Parameters section can have one of the
following forms:

1. left_hand_value = expression[[, expression]...]

2. left_hand_value = structure_overlay[[, structure_overlay]...]

3. (id, id, id) = foreign_function (arguments)

The left_hand_value is either the name of a parameter, a structure reference
(->), or an array reference. The forms are described in the following
subsections.

1. Left_hand_v alue = expression

The expression can be a combination of any numbers and variables. It can
include intrinsic functions except for d_by_dt and delay . In Example 1
(below), the parameter response_rate is used to adjust the input units on
the argument slewrate .

Example 1

template sample_and_hold p m = slewrate
electrical p,m
number slewrate #specify in V/usec

{
number response_rate
parameters{

response_rate = slewrate*1u
}

...
6-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Parameters Section
}

In Example 2, if the value for the phase of a transient sine wave (specified
within vin) is between 720 and 360 degrees, it is corrected to be less than 360.

Example 2

template voltage p m = vin
electrical p,m
struc {

number dc=0
union {

struc{number amp,freq,phase;}sin
number pwl[*]

} tran
} vin

{
number phase
parameters{

if (union_type(vin->tran,sin)){
phase = vin->tran->sin->phase

if ((holder > 360) & (holder < 720)) {
phase = phase - 360

}
}

}
...

}

Example 3 contains examples of array references. First, an array reference of
the fifth member of the work array contained in the structure calc_model is
assigned a value of rb*area . Then the sample point array for svbe is
assigned a series of breakpoint-increment pairs, svbc is set equal to it, and
then the first sample point pair of svbc is changed to subtract 100 from the
breakpoint and multiply the increment by 2.

Example 3

template bjt c b e s = model, area
electrical c,b,e,s
number area
struc{

number is,bf,re=0,rb=0,rc=0
} model=()

{
struc{

number is,bf,work[10]
MAST Language Reference Manual (June 2003) 6-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 6: Statements
} calc_model=()
struc sample_point{

number breakpoint, increment
} svbe[*],svbc[*]
parameters{

calc_model->work[5] = model->rb*area
svbe = [(-100,10),(10,1),(0,1),(10,10)]
svbc = svbe
svbc[1] = (breakpoint=svbc[1]->breakpoint-100,

increment=svbc[1]->increment*2)
}

}
...

2. Left_hand_v alue = structure_o verla y

This assignment uses the MAST operator <- (structure overlay) as a
shorthand method of assigning the values of one variable to another variable,
and then changing only specific field values. The general syntax for this
assignment is:

left_hand_value=structurename<- structurevalue
where the left_hand_value and the structurename parameters have both
already been declared as identical structures. The structurevalues indicate the
fields to be changed in the left_hand_value parameter.

In Example 4, an argdef (..) is used to define model1 and model2 to be of the
same types as model in Example 3. Thus, they start with the same initial
values as model . The values for is and rb from model2 are then changed
using the structure overlay.

Example 4

#in local declarations section
bjt..model model1,model2

#in parameters section
model1=(is=1e-14,bf=100)

model2=model1<-(is=1e-15,rb=10)

In this example, model1=(is=1e-14,bf=100,rb=0,rc=0,re=0) , and
model2=(is=1e-15,bf=100,rb=10,re=0,rc=0) .

This form is available as a shorthand notation for the following sequence of
statements:

model1=model2
model1->is=1e-15
6-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Parameters Section
model1->rb=10

Using the shorthand notation, this can be written as:

model1=model2<-(is=1e-15,rb=10)

Thus, the fields not explicitly mentioned in the structurevalue are taken from
the structure named by structurename instead of from the defaults defined in
the structure declaration. The fields that are explicitly mentioned are
assigned to directly to left_hand_value, overriding the contents of
structurename.

3. (id, id, id) = f oreign function (ar guments)

This type of assignment takes the returned value of a foreign subroutine on
the LHS and assigns it to any number of variables separated by commas on
the RHS. For more information on foreign functions and subroutines, refer to
the chapter on Foreign Functions.

Foreign subroutines that are declared as numbers can be used anywhere
numbers can be used. You can write a foreign function that converts degrees
into radians, and then use it as in the following example:

Example 5

template sin_voltage p m = amp,freq,phase
electrical p,m
number amp, # amplitude in volts

freq, # frequency in hertz
phase # in degrees

{
<consts.sin

foreign number deg2rad()
val v voltage
values{

if (freq_mag){
voltage = amp * sin(2*math_pi*freq + deg2rad(phase))

}
...

In the preceding example, a supported file of math constants was included in
the template using <consts.sin . The math_pi used in the assignment
statement is declared in the consts.sin file.

A foreign function declared as a number can also be used as an initializer.
Because the type of the return value is not known by the parser, it gets the
type from the variable to which is assigned, and therefore can only appear on
the RHS of an assignment statement.
MAST Language Reference Manual (June 2003) 6-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 6: Statements
The use of a foreign function not declared to be a number is also possible. This
can be regarded as a kind of assignment statement, and is allowed in the
Parameters and Values sections, and in When statements. The syntax is as
follows:

left_hand_value = foreign_function_call ([input_list])
(output_list) = foreign_function_call ([input_list])
groupname = foreign_function_call([input_list])

The left_hand_value, the output_list, and the groupname can be different
variables depending on the section in which the call is made. In the
Parameters section, this type of foreign function can only return parameters,
in the Values section it can only return values, and in a When statement it can
only return states. The left_hand_value represents a single variable, the
output_list represents a comma-separated list of variables, and the
groupname represents the name of a set of variables declared to be a group.

The following example shows two foreign subroutine calls: one for logsap and
one for psrsub .

Example 6

template psr p m = a,astar,vbo,l,lambda,sv
electrical p,m
number a, #cross-sectional area in micron**2

astar, #emission constant in amp/micron**2/K
vbo, #barrier height at zero bias in volts
l, #resistor length in meters
lambda #grain diameter in meters

struc sa_points {
number breakpoint, increment
} sv #sample voltage points

{
foreign logsap, psrsub
val i current
val p power
val v voltage
external number temp
struc sa_points localsample[*]
group {a,astar,vbo,l,lambda} psr_pars
parameters{

localsample = logsap(1n,1meg,1,90,sv)
}
values{

v = v(p)-v(m)
(current,power) = psrsub(psr_pars,temp,v)

}

6-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Values Section
...

Here, the logsap foreign subroutine returns an array of number pairs in the
parameter, localsample . The psrsub foreign subroutine returns two val s,
current and power . For clarity, the output list on psrsub could also have been
declared as a group, such as psr_pars was, and then only the name of the
group would need to be used.

Values Section

An assignment statement in the Values section can have the following form:

left_hand_value = expression
(id,id,id) = foreign_function (arguments)

The left_hand_value is the name of a val ; expression can be an expression
using any combination of variables (except through variables). Intrinsic
functions and foreign number functions can be used (except for d_by_dt or
delay).

Example

template resistor p m = res
electrical p,m
number res

{
val i current
val v voltage
values{

voltage = v(p)-v(m)
current = voltage/res

}
...

When Statement

An assignment statement in a When statement can have the following form:

left_hand_value = expression[[, expression]...]
(id,id,id) = foreign_function (arguments)

The left_hand_value is the name of a state; the expression can be an
expression using any combination of variables (except through variables). The
example below shows an assignment of next_low and next_high to
MAST Language Reference Manual (June 2003) 6-7
Copyright © 1985-2003 Synopsys, Inc.

Chapter 6: Statements
scheduled events. These variables, which are two-member arrays, function as
scheduling_id’s and would only need to be used if the events need to be
de-scheduled.

Example

template clock out = hightime, lowtime
state logic_4 out
number hightime, lowtime

{
state nu next_low[2],next_high[2]
state nu notify
when(event_on notify){

next_low =schedule_event(time+hightime,out,l4_0)
next_high=schedule_event(time+hightime+lowtim,

out,l4_1)
schedule_event(time+hightime+lowtime,notify,0)

}
...

Expressions

The MAST language accepts expressions as statements in the Parameters
section and in When statements. In When statements the syntax for
scheduling events and times has an optional scheduling_id, which can be used
for de-scheduling. When these id’s are not used, the resulting syntax is an
expression. An example of this was shown in the preceding clock example.

schedule_event(time+hightime+lowtime,notify,0)

Messages are another example of expressions used as statements (refer to
Messages on page 5-10). If messages were to be used as expressions within
assignment statements or other sorts of statements, they would evaluate to
zero. The following example shows the syntax for a message that prints out all
the fields and values for a parameters named model .

message(“model=%”,model)

If Statements

If statements are allowed in the Parameters, Values, Control, and Equations
sections of the template, and in When statements.

An If statement has the following syntax:

if(expression){
statements

}
else if(expression){
6-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When Statement
statements
}

...

else {
statements

}

where statements represents one or more statements. The else if and else
blocks are optional. There may be more than one else if block (represented
by the ellipses). At most, one block of the entire if statement is executed. The
expressions are evaluated, and the first true (non-zero) expression causes the
corresponding block of statements to be executed. If there is an else
statement, and none of the previous blocks has been executed, then the
statements following the else will be executed.

If statements can be nested.

In the case where only one statement is needed in a block, double braces do
not have to be used. In such a case, the statement must follow the
if (expression) or the else if (expression) or the else directly.

Example

template capacitor p m = capacitance
electrical p,m
number capacitance #input value of capacitance

{
number cap #local value of capacitance
parameters{

if ((capacitance==undef)|(capacitance<0.0)){
cap = 0.0

}
else if (capacitance==inf) {

cap = 1.0
}
else cap = capacitance

}
...

Control Statements

A control statement may appear only in the Control section of the template.
Control statements provide the simulator with specialized information that
cannot be provided by any of the other sections. The general form of Control
section statements is:

name (arg,arg,...)
MAST Language Reference Manual (June 2003) 6-9
Copyright © 1985-2003 Synopsys, Inc.

Chapter 6: Statements
where name is one of a predefined set of words, and args are identifiers
declared in the template, expressions, or multiple identifiers or expressions.
The specific control statements and their meanings are described in the
chapter on Templates.

Equations

The Equations section describes the analog behavior of the system to the
simulator in terms of through and across variables. It .also handles any delay
or d_by_dt functions needed by the template.

Three types of statements may appear in the Equations section.

The first kind defines the value of a through variable as an expression in
terms of other variables, and the simulator uses it to form a system equation
by applying a generalized Kirchoff ’s Current Law (KCL) at a specified node.
The second kind is a similar statement for a ref. And the third kind is an
equation, corresponding to a declared var variable, that the simulator uses to
find a value for the var.

The syntax for the first type of allowed statement is one of the following:

through_variable(pin_name) operator expression

through_variable(pin_name -> pin_name) operator expression

The pin declaration causes an implicit declaration of through variables.
Pin_names are the names of pins used in the template. In the second case, the
symbol -> indicates a flow of the through variable from the first pin_name to
the second. Operators permitted are += and -=, which mean to add to or
subtract from the equations at the node, respectively. Expression is any valid
expression. It can contain all intrinsic functions (including d_by_dt and
delay , which cannot be nested) and must follow and be followed directly by a
binary operator.

The syntax for the second kind of allowed statement is the following:

ref_variable operator expression

The ref_variable is a ref , that is, a var passed in from another template. A
ref may or may not need an equation in the Equations section. This depends
on whether the ref contributes in the current equation to the var to which it
refers.

The general form of an equation of the third kind is:

id : expression = expression

where id is the name of a var variable and expression has the same
restrictions as described for the first and second kinds of equation.
6-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 7
Templates
Introduction

All descriptions of systems or elements in the MAST language are templates.
Templates have a general form consisting of eleven different templates
sections, but there is no requirement that all sections be used for all
templates. The template sections used depend upon what is being modeled
and whether previously defined templates are used in the model. This chapter
approaches the design of a template through looking at the functionality of the
different sections.

The possible template sections are as follows. The left-hand column provides a
preview of the syntax and the right-hand column shows the title of each
section as it is referred to in this manual.

Syntax Title

unit definition # unit definition

pin definition # pin definition

header # header

header declaration # header declarations section

{ # Begin template body

local declarations # local declarations section

parameters { # Parameters section

statmements # ...

} # ...

netlist # netlist

when (condition){ # When statements

statements # ...
MAST Language Reference Manual (June 2003) 7-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 7: Templates
The top-level template in a hierarchical system model contains other
templates or references to them, and is not referred to by other templates. In a
flat system model, the whole template is top-level, by definition. The top-level
template does not require the template header. Syntactically, it is the body of
an unnamed template, without the surrounding braces, as shown below.

} # ...

values{ # Values section

statements # ...

} # ...

control_section{ # Control section

statements # ...

} # ...

equations{ # Equations section

statements # ...

} # ...

} # End template body

Syntax Title

unit definition # unit definition

pin definition # pin definition

local declarations # local declarations section

parameters { # Parameters section

statmements # ...

} # ...

netlist # netlist

when (condition){ # When statements

statements # ...

} # ...

values{ # Values section

Syntax (continued) Title (continued)
7-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Purpose of Template Sections
The simplest and most commonly-used system template describes only the
netlist of a system, using pre-defined templates, and contains only the netlist
section.

The template sections do not have to be in the order shown, but there is a
requirement that all variables be declared before they are used. There can be
as many When statements as needed. Netlist statements can appear at
various places throughout the body of the template. The body is the set of
sections typically enclosed in braces, starting with the local declarations
section and ending with the Equations section.

Purpose of Template Sections

The sections of a template can be separated into two groups: declarative and
operational. The declarative sections designate variables and other entities
for use by the Saber simulator. The operational sections contain statements
that are executed in various ways by the Saber simulator.

Declarative sections include the following (Also refer to the chapter on
Declarations and Data Structures):

statements # ...

} # ...

control_section{ # Control section

statements # ...

} # ...

equations{ # Equations section

statements # ...

} # ...

Sections Description

unit defnitions Unit definitions specify units that can be used for variables
declared with units (e.g., vars, refs, states, and vals).

pin definitions Pin definitions specify analog pin types and their associated
through and across variables.

Syntax Title
MAST Language Reference Manual (June 2003) 7-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 7: Templates
header The template header declares the name of the template, and
specifies the type of template, the connection points, and the
arguments. It determines how to refer to a template in a
netlist entry.

header
declarations
section

The header declarations section specifies the types of the
connection point and argument names given in the header and
their default values.

local
declarations
section

The local declarations section specifies any other variables
used locally within the template and their initial values.

Control section The Control section has five specialized functions:

1. Collapsing nodes

2. Declaring dependencies between nonlinear dependent
variables and independent variables for some templates

3. Declaring sample points for some nonlinear variables

4. Limiting the step size in Newton-Raphson iterations for
some

types of nonlinear variables

5. Defining noise sources

Sections Description
7-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Purpose of Template Sections
MAST Sections

The following pages describe each of the sections comprising a MAST
template.

Operational
section

Operational sections include the following:

• Parameters section -- used to manipulate parameters, to
check the

values of arguments passed into the template, and for
speeding up other template work by performing
mathematical transformations.

• When statements--allow you to set up discrete time
simulation, to describe digital behavior, to test for analog
waveforms crossing a threshold, and to schedule events and

times.

• Netlist section--contains netlist entries in this section call
other templates and specify their arguments.

• Values section--allow you set up vals for extraction, to
handle

foreign functions needed for the equations sections, and to
add information so the equations section is easier to read.

• Equations section--describes the analog characteristics at
the terminals of the element being modeled.

Sections Description
MAST Language Reference Manual (June 2003) 7-5
Copyright © 1985-2003 Synopsys, Inc.

unit definition

7

unit definition

Purpose

Unit definitions are declarative. They specify units that can be used for
variables that are declared with units (i.e., vars, refs, states, and vals) and for
pins. (It is usually unnecessary to write this section because standard units
are already found in a supported file called units.sin that is included in
header.sin)

Evaluation

Unit definitions are evaluated when the system is first read into the
simulator.

Syntax

There are two ways to define units: the first is for analog units, the second is
for digital units.

The syntax for analog unit definitions is as follows:

unit {" symbol"," unit"," definition"} identifier
The keyword unit is required. The symbol is used by the Scope Waveform
Analyzer for assigning names to axis, unit is the full unit name, and
definition is the unit description. The identifier is the name of the unit being
defined.

The syntax for digital units is

unit state { MASTname," Boolean_value"," printmap"," plotmap",
...

MASTname," Boolean_value"," printmap"," plotmap"}
name = MASTname

There are as many lines in the unit definition as there are states in the unit
state. Two discrete logic families are provided, named logic_4 and logic_3 in
the pre-defined units. The logic_4 unit definition has four lines while the
logic_3 unit definition has three lines. By convention, the name of the unit is
logic_number where number refers to the number of logic states.

Each line has four fields that provide all the information needed for one state.
7-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

unit definition
The first field in the definition is the MASTname assigned to the state. This is
the name used in the MAST language as the value of the state.

The second field is the Boolean_value of the state, which is used by the
waveform calculator in Scope. The calculator accepts only the values 0, 1, and
x for digital signals, so all states must be assigned one of these three values.

The third field is the printmap. The printmap can be an arbitrary string. It
will appear as the value of the state when using display or print, or while in
Scope.

The fourth field is the plotmap. The plotmap is a string with the syntax
symbol. style, and defines how the results will be graphicly displayed. Symbol
can be low , middle , high , or unknown . The graphic meaning is shown in the
following table.

Style can be an integer from 1 through 6 as shown in the table below. This
field was used in prior releases. It is currently ignored by Scope.

At the end of the definition is an initializer, which must be one of the MAST
names. This provides the default value for states declared to be of a particular
logic family when they are not initialized in a template.

Symbol Graphic Display

low low line

middle mid-level line

high high line

unknown low and high lines

Style Mono Graphic Display Color Graphic Display

1 solid line black

2 long-dash line dark blue

3 dash line red

4 2dot-2dash line purple

5 dot-dash line dark green

6 dot line brown
MAST Language Reference Manual (June 2003) 7-7
Copyright © 1985-2003 Synopsys, Inc.

Description
Description

The unit definition specifies the units used throughout the template. Once
units are specified, you can use them in the declaration of ref, var, state, and
val variables. You can also use them to assign units to through and across
variables in pin definitions. Once a unit has been defined, it cannot be
redefined. Once units are defined in any template, they are accessible by any
other template in the hierarchy.

Standard unit and pin definitions are in the file units.sin . This file is
included in the file header.sin . Normally, this file is included automatically
in your top-level template, so if you wish to use the standard definitions, you
do not need to add unit and pin definitions to your template. If you enter the
saber command with no contradictory options, it defaults to the -la option.
This loads the “saber load” file analogy.sld at the top level of a system. This
is a pre-compiled file made from analogy.sin using the saber -p option. The
standard analogy.sld file contains header.sin which includes
units.sin .

To define new units or pins or to change definitions, there are several options
as follows:

❑ Change units.sin and run the saber -p command to pre-compile it
so it will be included under the saber -la option.

❑ Change units.sin , include header.sin at the top level of the system
hierarchy, and use the saber -ln option. (Include header.sin in a
template by writing <header.sin , with < in the first column.)

❑ Write definitions of previously undefined units and/or pins in the
template before they are used in declarations. You can put unit
definitions in either of the following places:

• In the header declarations section

• In the local declarations sections

Examples

The analog unit definitions for current, voltage, angular velocity, and torque
are as follows:

unit {"V","Volt","Voltage"} v
unit {"A","Ampere","Current"} i
unit {"rpm”,"Revolutions/minute","Angular velocity"} w
unit {"kg.m","kilogram meter","Torque"} t

A digital unit definition for the logic_4 family of states follows:
7-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

pin definitions
unit state {l4_0,"0","0","low.1",
l4_1,"1","1","high.1",
l4_x,"x","x","middle.1",
14_z,"x","z","middle.1"
} logic_4=l4_x

pin definitions

Purpose

Pin definitions are declarative. They specify analog pin types and their
associated through and across variables. It is usually unnecessary to write
this section because standard pin definitions are already found in a supported
file called units.sin that is included in header.sin .

Evaluation

Pin definitions are evaluated only once, when the system is read into the
simulator.

Syntax

There are two general forms of a pin definition:

pin identifier through unit1 across unit2
pin identifier across unit1 through unit2
The identifier is the name of the pin type being defined, and unit1 and unit2
are through and across units that are to be associated with the pin type. The
units used in a pin definition must be defined before the pin is defined.

Description

Pin definitions specify analog pin types and their associated through and
across variables. The Saber simulator uses through and across variables in
generalized Kirchoff ’s current and voltage laws (KCL and KVL) to solve
analog systems. These two laws may be stated as:

• KCL - the sum of through variables leaving a node is zero

• KVL - the sum of across variable drops in any loop is zero
MAST Language Reference Manual (June 2003) 7-9
Copyright © 1985-2003 Synopsys, Inc.

Description
Pin definitions enable the simulator to check the compatibility of connected
components. For instance, it would not work to connect a resistor (electrical)
directly to a motor shaft (mechanical).

Pin definitions are referred to by pin declarations in the header declarations
section or in the local declarations section. When a pin is declared to be of a
defined pin type in a pin declaration, the Saber simulator, using the pin
definition, implicitly declares the through variable, through node_name, to
be a dependent variable and the across variable, across node_name to be an
independent variable.

The supplied templates usually solve analog systems using modified node
analysis. In node analysis, through variables are added to and subtracted
from the system matrix directly, and then the simulator solves for across
variables. Therefore, through variables are dependent variables and across
variables are independent variables. Node analysis must be modified to
encompass all systems, since there are often situations where across variables
are not functions of through variables, such as an ideal voltage source in
which the current is whatever it needs to be to give the defined voltage. In
such a case the through variable, current, is an independent variable, which is
solved by adding an equation, or another row and column, to the system
matrix.

Therefore, most through variables are dependent variables and all across
variables are independent variables. The Saber simulator implicitly declares
through variables of the form through node_name to be dependent variables,
and across variables to be independent variables. If you need other
independent variables for the system being modeled, you declare them as
vars, and describe them by using an additional equation in the equations
section for each var.

Pin definitions are global for a system model, meaning that once they are
defined in a template, they are accessible by any template below that in the
hierarchy. Once you have defined a pin, you cannot give it a different
definition.

Standard unit and pin definitions exist in units.sin . This file is included in
header.sin . If you wish to use the standard definitions, you typically need
not do anything, because units.sin is usually included automatically in the
top level of a template via the following mechanism. The saber command
defaults to the -la option, which loads the file analogy.sld at the top level
of a system. This “saber load” file is a pre-compiled file made from
analogy.sin using the saber -p option. The standard analogy.sld file
contains header.sin which includes units.sin .

To define new units or pins or to change definitions, there are several options:

❑ Change units.sin and run saber -p to pre-compile it for inclusion
under the saber -la option.
7-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

header
❑ Change units.sin , include header.sin at the top level of the system
hierarchy, and use the -ln option of the saber command. (Include
header.sin in a template by writing <header.sin where < is in the
first column.)

❑ Write definitions of new pins in the template before they are used in
declarations. You can put pin definitions in any of the following places:

• In the header declarations section

• In the local declarations sections

Examples

A pin type called electrical has been predefined in units.sin. It defines an
across variable of v, voltage, and a through variable of i , current. Its definition
is as follows:

pin electrical across v through i

The declaration for a pin x uses the definition as follows:

electrical x

This causes the simulator to implicitly declare i(x) to be a dependent
variable and v(x) to be an independent variable.

header

Purpose

The header is declarative. It declares the name of the template, and specifies
the type of template, the connection points, and the arguments. It determines
how to refer to a template in a netlist statement. It must be included in any
template that you intend to call from another template.

Evaluation

Headers are evaluated when the system is first read into the simulator.

Syntax

[type] template template_name connections [= arguments]
There are two types of templates: the standard template, which does not have
a specified type, and the element template, which uses the keyword element
for type. Template is a required keyword that identifies the line as a template
header. The template_name is the name you have chosen for the template
MAST Language Reference Manual (June 2003) 7-11
Copyright © 1985-2003 Synopsys, Inc.

Description
being defined. This is the name used to identify the template in a netlist
statement in a template on a lower or the same level in the hierarchy.

Each connection has the form:

connection_point[: internal_node]
where connection_point is the name of a connection point for the temple, and
internal_node, if present, is a name used as a node in the netlist section of the
template.

Connection points can be pins, vars, refs, or states. Connections can be
separated by spaces or commas. The equal sign (=) is used only if there are
arguments in the template. Each argument is the name of an argument to be
passed in through a netlist statement higher in the hierarchy. Arguments
must be separated by commas.

Description

The header declares the name of the template, and specifies the type of
template, the connection points, and the arguments. It determines how to
refer to a template in a netlist statement. Netlist statements are covered in
the Netlist section description.

Element Templates

Declaring a template as an element template flattens the hierarchy one
level. This speeds simulation in cases where there are few or no internal
nodes. All basic templates, such as resistors, inductors, and bipolar junction
transistors, are defined as element templates.

Template_name

The template_name is an arbitrary name for the template. Saber performs an
automatic search for templates used in netlist statements. If you want the
simulator to find your templates automatically, you must give their files
names of the form template_name.sin . For example, the template name of a
resistor is r . To ensure that it is found and included automatically, the file
containing the template is named r.sin .

Connections

Connections can be pin s, state s, ref s, and var s. Pin s are the analog
connection points of a modeled device that are used to implicitly declare the
across and through variables. For example, the pin s for a simple resistor
could be given the names p and m. These pins can be referred to indirectly in
the resistor template as v(p) , v(m) , i(p) , and i(m) . States can be used as
7-12 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

header declarations
discrete-time connection points of a modeled device. They can be digital or
event-driven analog. Ref s are a way to connect to a var in another template.
When ref s and var s are connected together, there must be exactly one var ,
and there may be 0 or more ref s. A var can be passed out of a template as a
connection point. In other templates that have connection points that are
connected to the same node, declarations of the same variable must be as
ref s.

Arguments

Arguments are variables which can be passed into a template through a
netlist statement higher in the hierarchy. Arguments must be declared in the
header declarations section. The way they are declared determines how they
can be referred to in other places within the template. Arguments can be
altered within the Saber simulator using the alter command. Arguments
can be simple, composite, or nested composite types, or arrays of these types.

Examples

element template r p m = r, tnom

This template, r , is declared as an element template, so its hierarchy will be
flattened for simulation. It has two connection points, p and m. The simulator
cannot tell, from the header, whether they are pin s, state s, ref s, or var s.
They must be declared in the header declarations section, or used in a netlist
statement within the template. The template has two arguments, r and tnom .
The arguments that are declared in the header declaration section determine
the way in which information is passed into these arguments.

template amplifier inplus inminus out

This template, amplifier , is a standard template. It has three connection
points: inplus , inminus , and out . It has no arguments, so arguments and
the equals sign (=) are omitted.

header declarations

Purpose

The header declarations section is declarative. It specifies the types of
connection point and argument names given in the header.

Evaluation

Header declaration sections are evaluated only once, when the system is first
read into the simulator.
MAST Language Reference Manual (June 2003) 7-13
Copyright © 1985-2003 Synopsys, Inc.

header declarations
Syntax

Connection Points
The forms for the declaration of connection points are:

The ids are the names of the connection points. The pin_type must be
previously specified in a pin definition, which may be contained within
units.sin . The pin declaration, by using the pin definition, implicitly creates
declarations of the through variable in the pin definition as a dependent
variable and the across variable as an independent variable. The keywords
state , ref , and var are needed to declare state, ref, and var connection
points, respectively. Unit must be previously specified in a unit definition,
which may be contained within units.sin . States, refs, and vars must be
declared with units. (Note that there is a unit defined as nu (no unit) in
units.sin for unitless states, refs, and vars.) Connection points may not be
assigned initial values.

Arguments
The section on Declarations and Data Structures describes the different types
of parameters and arguments. There are three simple types: numbers,
enumerated types, and strings, and three composite types: structures, unions,
and argdefs. Types can also be nested composite types and arrays of any of
these types. The basic forms of argument declarations for the three simple and
three composite types.

The syntax for declaring simple types is as follows:

number id[=initializer][, id[=initializer]...]
enum { etype[, etype...]} id[=initializer][, id[=initializer]...]
string id [=initializer][, id[=initializer]...]
The syntax for declaring the three composite types is as follows:

struc{
other declarations

} id [=initializer][, id[=initializer]...]
union{

other declarations
} id [=initializer][, id[=initializer]...]
template_name.. argument id[=initializer][, id[=initializer]...]

pin_type (implied unit) id, id, ...

state unit id, id, ...

ref unit id, id, ...

var unit id, id, ...
7-14 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
Keywords include number for numbers, enum for enumerated types, string
for strings, struc for structure, and union for union. The argdef does not
have a keyword, but instead refers to a previously-declared argument in some
template. Id refers to the argument being declared. The initializer is an
optional initial value assigned to the argument. Etypes are a listing of
enumerated types. Other declarations can include initialized composite types.

Description

The header declarations section specifies the types of connection point and
argument names given in the header. The way in which these variables are
declared not only determines how they can be referred to in the remainder of
the template, but also determines the form of a netlist statement that refers to
the template.

Connection Points
The Saber simulator checks to ensure that only like kinds of connection points
are connected together. This means that electrical pins can be connected only
to other electrical pins, and that logic_4 state pins can be connected only to
other logic_4 state pins. Refs can have only vars passed as connection points
while vars can have only refs passed as connection points.

Connection points do not have to be declared if they are used in a netlist
statement in the template. They are implicitly declared from the use in the
netlist, and may be used in other places in the template that follow the netlist
statement which implicitly defines them. However, for clarity, we suggest that
template writers declare each connection point.

Pin declarations implicitly declare the associated across variable as an
independent variable, and the associated through variable as a dependent
variable. State connections are the means for communicating discrete
simulation information into or out of the template. Ref connections are a
means for bringing a var from a higher template into a lower one. Vars can be
passed out of a template as a connection point. They must be connected to refs.

Arguments
Each argument requires a declaration in the header declarations section. An
optional initializer can be used for assigning a default to an argument.
Arguments with defaults need not have values assigned to them in netlist
statements.

There are three simple and three composite types (refer to Parameter and
Argument Declarations on page 3-8). The simple types are as follows:

number Any variable of this type has a numeric value.
MAST Language Reference Manual (June 2003) 7-15
Copyright © 1985-2003 Synopsys, Inc.

Description
Any variable of this type has a string variable of a string constant as its
value.The composite types combine two or more other types, so you can refer to
them as a unit.

In addition, you can declare an array of any of these six types. The array can
either have a fixed number of elements of can be unbounded. The simplest
example of an array is an array of numbers. However, it is also possible, for
example, to have an array of structures, the elements of which can be any
type, including arrays.

Examples

1. The following inductor template has two connection points and one
argument. The connection points are declared as electrical pin s. The
argument is declared as a number. Since the argument declaration is
not assigned an initial value, the user must specify l when referring to
this template in a netlist.

template ind p m = l
#declarations of connections
electrical p,m
#declarations of arguments

enum Any variable of this type has as its value a member of a list,
which is provided as part of the declaration.

string Any variable of this type has a string variable of a string
constant as its value.

structure An ordered list of variables, each of which has its own type.
Assigning a value to a structure involves assigning a value to
each of its components. The members of a structure may
either be simple or composite types.

union A list of variables, each of which has its own type. Assigning a
value to a union involves specifying one variable in the list
and then assigning a value to that variable. The members
may be either simple or composite types. Use unions when
you want a choice between variables.

argdef An argument definition, a variable that is to be of the same
type as an argument of some template. Assigning a value to
an argdef involves specifying the name of the template and
the name of its argument, using the form
templatename.. argument (e.g., q..model) Argdefs are
useful because you can define the argument in one place, and
then simply refer to the argument name to define another of
the same type.
7-16 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
number l

2. This template, a coupled inductor, has four connection points, which are
all ref s. Two of them have unit s of current and two have unit s of
inductance. There are five arguments. The mutual inductance k has no
initializer, so it must be specified in a netlist statement. Si1 , si2 , sl1
and sl2 are all declared as sample points, which are arrays of two
numbers: breakpoint and increment. All these arguments are declared
with initializers, although the initializers are undefined, so the user has
a choice of specifying or not specifying them in a netlist statement.

element template
coupled_ind i1 i2 l1 l2 = k,si1,si2,sl1,sl2

#declarations of connections-----
ref i i1,i2
ref l l1,l2

#declarations of arguments-------
number k
struc sa_points{

number breakpoint, increment
} si1[*]=[()],si2[*]=[()],sl1[*]=[()],sl2[*]=[()]

3. This template, trans , has four connection points, which are all
specified as electrical pin s. It has four arguments, all of which are
specified with initializers, so the user would not have to specify any of
these when using this template. Model is declared as a structure of 39
numbers, some of which have numeric values and some of which are
undefined. Svbe and svbb are declared as arrays of number pairs;
area is declared as a number.

template trans b e c s = model, svbe, svbb, area
#declare connection points------
electrical b,e,c,s

#declare arguments--------------
struc{

number is=1e-16,bf=100,nf=1,vaf,ikf,ise=0,ne=1.5,
br=1,nr=1,var,ikr,isc=0,rb=0,irb,rbm=0,re=0,rc=0,
cje=0,vje=.75,mje=.33,tf=0,xtf=0,vtf,ift,ptf=0,
cjc=0, vjc=.75,mjc=.33,xcjc=1,tr=0,cjs=0,vjs=.75,
mjs=.33,xtb=0,eg=1.11,xti=3,kf=0,af=1,fc=.5

} model = ()
struc sa_points{

number breakpoint, increment
}svbe[*]=[(-1k,10),(-10,1),(0,.1),

(.5,.05),(1,.1),(1k,0)],
svbb[*] =[(-1k,1),(0,1),(1k,0)]
number area = 1
MAST Language Reference Manual (June 2003) 7-17
Copyright © 1985-2003 Synopsys, Inc.

local declarations
local declarations

Purpose

The local declarations section is declarative. It specifies variables used locally
within the template, that is, variables that are not passed in as connection
points or arguments, or that are not otherwise implicitly declared.

Evaluation

The local declarations section is evaluated when the system is first read into
the simulator, after the header declarations section. Initializers of parameters
are evaluated again after each Saber alter command, once for each run of
Monte Carlo, and during extraction (extract and ipextract). Initializers of
states are evaluated when setting the initial value to 0.

Syntax and Description

Local declarations can include pins, states, refs, vars, parameters, vals,
foreign functions, foreign states, external declarations, groups, templates and,
optionally, simvars.

Pins

pin_type id, id,...

Pin s declared in the local declarations section are local pins, which can be
used to declare internal nodes within a template. The pin_type is the identifier
used in a previous pin definition. The ids are the names of the local pins being
declared.

States

state unit id[=initializer], id[=initializer], ...
State s hold information pertinent to discrete time simulation. In the
declaration, state is a keyword for the local declaration of a state. States
require a unit declaration, where the unit has been previously specified in a
unit definition. The ids are the names of the states being declared. State
variables which are declared locally can be initialized. If a local state variable
has a relationship with an analog waveform, it should be initialized to
conform with the analog waveform’s value of zero (refer to the MAST
Functions section.)
7-18 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

local declarations
Foreign States

Foreign state declarations are required for digital states that are intended
for use by a foreign simulator, that is, in a mixed-mode simulation. Foreign
states must be declared in the local declarations section. The syntax is

foreign state units id
This requires two keywords, foreign and state . The units must have been
previously specified in a units definition. The logic_4 unit declaration is
typically used for units in mixed-mode simulation. The id is the name of the
state variable being declared. Foreign states cannot have initializers. More
information can be found in the mixed-simulator documentation for the
appropriate combination of the Saber simulator with a digital simulator.

Refs

ref unit id, id, ...
Refs are references to a var in another template. Ref is a keyword used in the
declaration. The unit must have been previously specified in a unit definition.
The ids are the names of refs being declared. Refs cannot be initialized. The
underlying var is an independent variable solved for by the simulator.

Vars

var unit id,id,...

Var s are a type of independent variable for which the simulator solves. There
must be an equation in the equation section for each var of the form:
id: expression=expression. In the declaration, var is a keyword. The unit
must have been previously specified in a unit definition. The ids are the
names of the var s being declared. Since the simulator solves for var s, they
cannot be initialized by a template.

Parameters

The forms for parameter declarations are covered in Parameter Types on page
3-9. There are three simple types (number, enumerated, string) and three
composite types (structures, unions, argdefs). Types can also be nested
composite types and arrays of any of these types. The syntax for declaring
simple types is as follows:

number id[=initializer][, id[=initializer]...]
enum { etype[, etype...]} id[=initializer][, id[=initializer]...]
string id [=initializer][, id[=initializer]...]
The syntax for declaring the three composite types is as follows:
MAST Language Reference Manual (June 2003) 7-19
Copyright © 1985-2003 Synopsys, Inc.

local declarations
1. struc{
other declarations

} id [=initializer][, id[=initializer]...]

2. union{
other declarations

} id [=initializer][, id[=initializer]...]

3. template_name.. argument id[=initializer][, id[=initializer]...]

Keywords include number for numbers, enum for enumerated types, string
for strings, struc for structure, and union for union. The argdef does not
have a keyword, but instead refers to a previously declared argument in some
template. Id refers to the parameter being declared. The initializer is an
optional initial value assigned to the id. Etypes are a listing of enumerated
types. Other declarations can include composite types.

Values

val unit id, id
Val s are used to hold temporary information during simulation, and to supply
information not otherwise available during post-simulation processing.

The keyword is val . The unit must have been previously specified in a unit
definition. The Saber simulator does not check the val unit type for
consistency. The ids are the names of the val s being declared. Val s cannot be
initialized; their values are supplied by the simulator.

Foreign Functions

There are two types of foreign functions: those that are declared to return only
a single number, and those that are not restricted in what they return. Those
that are declared to return a single number may be used as part of a valid
expression, whereas those that are not restricted can be used only in an
assignment statement.

foreign number subroutinename()

This is the declaration for a foreign subroutine which returns only a single
number. It requires two keywords: foreign and number . The keyword is
followed by the chosen subroutine name and a pair of empty parentheses.

foreign subroutinename
This is the declaration for a foreign subroutine that is not restricted in what it
returns. It uses the keyword, foreign , and the chosen subroutinename.
Having declared either of these foreign subroutine types, you may write the
routines and use them as described in the chapter on Foreign Functions.

External Declarations
7-20 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

local declarations
Variables declared as external get their values from the declaration of that
variable in some higher template in the hierarchy of the system being
modeled. For example, if temperature is declared at the top level, and all
templates using temperature declare it as external, then the temperature
need only be changed at the top level to affect all the templates in the system.
Parameters, pin s, and var s can be declared as external.

external type id[, id...]
This declaration uses a keyword of external. Type can be a parameter, a var ,
or a pin . Id refers to the variable being declared.

When a variable is declared to be external, the search for its value proceeds up
the hierarchical path of template references.

Groups

Group declarations group variables together for extraction and other
purposes.

group { member, member, ...} id
This declaration uses the keyword group . The members are the names of
variables or other groups in the group, and id is the name of the group being
declared. Groups must be homogeneous. That is, they must consist entirely of
arguments and parameters or entirely of system variables, val s, and
simvar s.

Template Declarations

[element] template templatename connection_points [=arguments]
[header declarations]

{
[local declarations]
[parameters section]
[when statements]
[netlist]
[values section]
[control_section]
[equations section]

}

Entire templates can be declared in the local declarations area. They need
different sections based upon their modeling function. Since templates
declared in a local declarations area will not be top-level templates, they need
headers, and will be referred to by netlist statements that must follow the
template declaration. Any templates declared in the local declarations
MAST Language Reference Manual (June 2003) 7-21
Copyright © 1985-2003 Synopsys, Inc.

local declarations
template are local to the current template, meaning they are not recognized in
higher-level templates.

Simvars

simvar simvarname
It is optional to declare simvar s. If you wish to declare them, use simvar as a
keyword and give the simvarname exactly as it is known to the Saber
simulator. If you declare a simvarname as something other than a simvar ,
e.g., number time , then you will not be able to use that simvar in the
template.

Examples

The following are examples of local declarations (the # sign indicates a
comment, which is ignored by the simulator):

Pins

#declare internal pins for transistor model --------------
electrical bp,ep,cp

States

#declare internal state ---------------------------------
state logic_4 notify

Foreign States

#declare foreign state, dout, to be used with foreign ----
#simulator

foreign state logic_4 dout

Refs

#declare ref --
ref l inductance

Vars

#declare var --
var i current

Parameter s

#declare work array of 33 numbers ------------------------
number work[33]
7-22 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

local declarations
#declare enumerated type of n or p channel ---------------
enum{n_channel,p_channel}type

#declare coretype as string, and initialize to null string
string coretype=””

#declare structure of sample points and initialize -------
struc{

number breakpoint, increment
}svbe = [(-100,1),(0,.1),(100,0)]

#declare union and initialize to off ---------------------
union{ number off

struc {number vo=0,va,f,td,theta;} sin
}tran=(off=1)
#use argdef to declare local parameter based on bjt ------
#argument “model”
bjt..model localmodel

Vals

#declare val with units of p, for power ------------------
val p power

Foreign Functions

#declare foreign function as number ---------------------
foreign number deg2rad()

#declare foreign function without restricted output type -
foreign foo

External Dec larations

#declare external parameter of temperature, named “temp” -
external number temp

#declare external argdef from bjt, and name it lateral --
external bjt..model lateral

#declare external pins ----------------------------------
external electrical vc, vee, signal_ground
MAST Language Reference Manual (June 2003) 7-23
Copyright © 1985-2003 Synopsys, Inc.

Parameters section
Groups

#group bjt voltages for extraction ----------------------
group {vbe,vbc,vce,vbei,vbci,vsi,vbx,vbb} v

Templates

#declare local template ---------------------------------
template localres p m = lres

electrical p,m
number lres=10k{

equations{i(p->m) += (v(p)-v(m))/lres
}

}

Simv ars

#declare simvar time ------------------------------------
simvar time

Parameters section

Purpose

The Parameters section is an operational section used to manipulate
parameters. It can be used to “bullet-proof” templates by testing the input
values of arguments for validity, to model complex distributions for Monte
Carlo analyses, and to perform intermediate operations on parameters to
speed up simulation time.

Evaluation

The expressions in the Parameters section are evaluated once just after the
input file is read into the simulator, again after each Saber alter command,
and once for each run of a Monte Carlo simulation. The Parameters section is
evaluated from top to bottom, without interruption, in the same way that a
subroutine is evaluated.

Syntax

parameters{
statements

}

7-24 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
The Parameters section uses the keyword of parameters followed by a left
brace ({). Following the statements, the section is terminated with a right
brace (}).

Assignment statements, if statements, and foreign functions are allowed in
the Parameters section. Intrinsic functions (with the exception of d_by_dt
and delay) are also available. Only parameters can appear on the left-hand
side of assignment statements and in the output list for foreign functions
within the Parameters section. Another limitation is that you may use only
parameters, arguments, and constants in statements in the Parameters
section. In addition, you may use expressions and messages in the Parameters
section. The only simvar you can use in the Parameters section is
statistical .

Description

The Parameters section is used mainly for transforming values in arguments
(which are meaningful to the user of the simulator) to values used by the
simulator (which are meaningful to the designer of the template). It can be
used to speed up simulation through including repetitious mathematical
calculations, to “error-proof” a template by testing the input values of
arguments for validity, to allow alternative values of parameters, to model
complex distributions for Monte Carlo analyses, and to perform intermediate
operations on parameters to speed up simulation time.

Parameters may depend only on other parameters, on arguments, and on
constants: no var s, ref s, val s, or simvar s (other than statistical) may
appear in the Parameters section. Only parameters can be on the left-hand
side of assignment statements. Only parameters may be returned from foreign
functions used in the Parameters section. The Parameters section can include
assignment statements, foreign functions, If statements and messages.
Intrinsic functions, with the exception of d_by_dt and delay , can be used in
this section.

Examples

parameters{
if(model->type==_n){

p=1
}
else if(model->type==_p){

p=-1
}
rb = area * model->rb
MAST Language Reference Manual (June 2003) 7-25
Copyright © 1985-2003 Synopsys, Inc.

Netlist section
work = spq(1,model,rb,temperature)
message("work=%",work)

}

In this example, If statements are used to determine a parameter p based on
the model type . Then a parameter rb is found from the two arguments area
and model->rb . A foreign subroutine, spq , is called with an input list of 1,
model , rb , and temperature . The results are put into the array parameter
work and are printed to the screen and to the .out file using the message
function.

Netlist section

Purpose

The Netlist section calls other templates and specifies their arguments.

Evaluation

This section is loaded during pre-processing (after the declarations), after an
alter command, for each run of a Monte Carlo analysis, and during
extraction, just as for the Parameters section.

Syntax

templatename. refdes connection_pt_list [=argument_assignments]
The templatename is the name by which the template is identified in its
header. The refdes is the reference designator, which is a unique name that
distinguishes this reference to this template from all other such references.
The connection_pt_list is a space-separated list of nodes in the system to
which the connection points of the template are joined. The
argument_assignments is a comma-separated list of assignments of values to
the arguments of the templates. The most general format is
argument=assignment.

Description

The Netlist section contains references (called netlist entries;) to templates
that have already been defined. The netlist components section is required
only in templates that refer to other templates. In fact, the presence or
absence of this section determines whether there is hierarchy below the
current template.
7-26 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
The refdes must be unique among all reference designators for each
component of type templatename. For example, in a given circuit, an npn
transistor may be labeled q1 . If this transistor is described by the template
named npn , the templatename. refdes for this element would be npn.q1 . Then
npn.q2 would refer to a different instance of the same transistor model
implemented by npn . However, the netlist could not have more than one
transistor named npn.q1 on any hierarchical level.

The connection_pt_list is a space-separated list of nodes in the system to
which the connection points of the template are joined. Each connection point
specified in a template must be assigned to a node. One or more connection
points may be connected to each node. Nodes can be specified in two ways:
either the nodes associated with each connection point can be listed in order of
association, or the colon convention can be used. In the colon convention, the
connection point name is listed, followed by a colon (:), and then the node
name. Connection point assignments using the colon convention can occur in
any order.

Specification of arguments can be very complicated, as seen from the
examples . Argument names (and their equals signs, =) are not needed if the
arguments are simple types (refer to Parameter and Argument Declarations
on page 3-8) and are specified in the order they appear in the template header.
The names for composite types must be specified, and each structure and
union must be specified using a set of parentheses, while each array
specification must be enclosed within brackets ([]). To change one or more of
the argument fields in a structure, all arguments to be changed are enclosed
in a single set of parentheses (()), and are assigned to the major parameter
name with an equal sign (=).

The values assigned to arguments can be numbers or parameters. Values need
to be specified for arguments if they have no initializers specified in the
argument declarations. If initializers are specified, values specified in the
argument_list will over-write them.

You can also assign distributions to arguments that will be used during Monte
Carlo analyses.

Examples

The following example uses the template v from the MAST Template Library
to illustrate argument declarations and how they can be assigned in a netlist
to other template instances:
MAST Language Reference Manual (June 2003) 7-27
Copyright © 1985-2003 Synopsys, Inc.

Description
element template v p m = dc,tran,ac
electrical p,m
number dc=0
union {

number off
struc {number vo=0,va,f,td,theta;} sin
struc {number v1,v2,td,tr,tf,pw,per;} pulse
struc {number v1,v2,td1,tau1,td2,tau2;} exp
struc {number vo,va,fc,mdi,fs;} sffm
number pwl[*]
number ppwl[*]
struc {

number v1,v2,period,rtime,width,ftime,delay,sdelay;
}clock

}tran=(off=1)
struc {number mag=0,phase=0} ac=(0,0)
v.v1 p:a m:0 = dc=5
v.v2 b 0 = 5
v.v3 c 0 = vcc
v.v4 d 0 = tran=(sin=(va=1,f=10k,td=0,theta=0))
v.v5 e 0 = tran=(sin=(0,1,10k,0,0))
v.v6 f 0 = tran=(pwl=[0,0,10n,0,11n,5,20n,5,21,0])

v.v7 g 0 = tran=(sin=(0,1,10k,0,0)),ac=(mag=1,phase=0)

The connection_pt_list for v.v1 is specified using the colon convention. P and
m are the pin names in the template; a and 0 (ground) are the nodes to which
these are joined. The p:a and m:0 can occur in the opposite order without
affecting the polarity of the voltage source.

The connection_pt_list for v.v2 is specified by noting the node names in the
same order as the pins in the template. Thus, b would be connected to p, and 0
would be connected to m. The phrase dc= does not have to be used to specify
the DC value because dc is the first argument specified in the template
header and is a simple number.

In v.v3 , the parameter vcc (which was presumably previously defined) is
used instead of specifying a number for dc .

In v.v4 , the first set of parentheses is used for the tran union. The second is
used for the sin structure inside the tran union. In this example, there is no
value specified for vo , which was specified with an initializer, so the names of
all the succeeding argument fields must be listed. Because they are named,
they can occur in any order.

In v.v5 , the arguments for the sin structure are not named, so they will be
assigned in the order in which they are listed in the argument declaration. In
this case, the value of vo must be specified because it precedes the other
arguments of the sin structure.
7-28 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When statements
In v.v6 , a piece-wise linear voltage source is specified. It is declared as a
variable-length array of numbers. The set of parentheses is used when
specifying the tran union, while brackets ([]) specify the pwl array.

In v.v7 , both tran and ac arguments are specified, while dc is not.

When statements

Purpose

When statements are operational sections. These are used to perform discrete
time simulation, to describe digital behavior, to test for analog waveforms
crossing a threshold, and to schedule events and times.

Evaluation

The conditions for When statements are monitored, where the frequency of
monitoring depends upon the specific condition. When a condition is met, the
statements within the body of the When statement are evaluated in order,
from top to bottom, as in a subroutine.

Syntax

when(condition){
statements

}

The When statement uses the when keyword. The when(condition) must be
followed by a brace, as in the Parameters, Values, Control, and Equations
sections. The condition is a logical expression involving one or more of the
intrinsic functions named threshold and event_on or simvar s such as
dc_done and time_step_done . The statements are a collection of one of
more statements, usually with one or more being calls to the intrinsic
scheduling functions such as schedule_event , schedule_next_time , and
deschedule .

Unlike most of the other sections, there may be as many When statements as
needed to model the device.

Assignment statements, if statements, foreign functions, expressions and
messages can be used within When statements. Intrinsic functions (with the
exception of d_by_dt and delay) and are also available. Only states can
appear on the left-hand side (LHS) of assignment statements and in the
output list for foreign functions within When statements. Other than this
limitation, simvar s, across variables, var s, ref s, val s, states , parameters
and arguments can be used in statements in When statements.
MAST Language Reference Manual (June 2003) 7-29
Copyright © 1985-2003 Synopsys, Inc.

Description
Description

When statements are used to perform discrete time simulation, to describe
digital behavior, to test for analog waveforms crossing a threshold, and to
schedule events and times. for more information on the conditions and
statements used with When statements, refer to the chapter on MAST
Functions.

The simulator processes analog and digital events separately, but
communicates between them using the following functions:

• An analog waveform may cause a digital event through the threshold
function.

• A digital event may cause an analog reaction through the
schedule_next_time function.

Examples

This example is a .digital clock. It has a digital output pin named out . The
state of this pin is not be reported to the template because, as an output, its
state may depend on other states connected to its node. For this reason, the
simulator uses a local state variable, wake_up , to relay the information about
out to the template.

There are three When statements in the example.

1. when(dc_init) is used to set the clock to a high state during DC
domain analyses.

2. when(time_init) is used to schedule the first occurrence of the local
state variable.

3. when(event_on(wake_up)) provides the changes of state at the out
pin and to schedule the next wake_up event.

template clock out = hightime, lowtime
this template models a square wave whose duty cycle
can be input using hightime and lowtime

state logic_4 out
number hightime # time in seconds when signal is high
number lowtime # time in seconds when signal is low

{
state nu wake_up
when(dc_init){

schedule_event(time,out,l4_1)
7-30 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Values section
}
when(time_init){

schedule_event(time,wake_up,0)
}
when(event_on(wake_up){

schedule_event(time+hightime,out,l4_0)
schedule_event(time+hightime+lowtime,out,l4_1)
schedule_event(time+hightime+lowtime,wake_up,0)

}
}

Values section

Purpose

The Values section is both a declarative and an operational section. It is used
to set up val s for extraction, to handle foreign functions needed for the
Equations sections, to describe noise sources, and to provide clarity in the
Equations section.

Evaluation

Simulator evaluations after the initial reading are optimized, so that only
statements needing further consideration are evaluated. Templates that are
time-dependent are evaluated at least once per time step. Nonlinear portions
of templates are evaluated during nonlinear iterations, if needed. After
simulation, val s can be extracted from a data file. They are evaluated only as
needed. Certain information about dependencies of val s on system variables
is discovered during compilation; this is the “declarative” nature of the
section.

Syntax

values {

statements
}

The Values section uses the values keyword, followed by a left brace ({),
which encloses the body of the Values section.

Assignment statements, If statements, and foreign functions are allowed in
the Values section. Intrinsic functions (with the exception of d_by_dt and
delay) and are also available. Only val s (and the simvars named
next_time and step_size) can appear on the left-hand side of assignment
MAST Language Reference Manual (June 2003) 7-31
Copyright © 1985-2003 Synopsys, Inc.

Description
statements and in the output list for foreign functions within the Values
section. Other than this limitation, simvars, across variables, var s, ref s,
val s, states , parameters and arguments can be used in statements in the
Values section. Expressions and messages cannot be gainfully used in the
Values section because statements are evaluated only when necessary, and
output statements are generally discarded.

Description

The Values section sets up val s for extraction, handles foreign functions
needed for the Equations section, and promotes clarity in the Equations
section. The Values section can also be used to assign values to the simvars
named next_time and step_size , although the use of
schedule_next_time in When statements is more efficient because it does
not have to be reset for each time step.

All val s can be extracted from the data file after simulation, although they
are not stored there. They can be extracted and put into the plot file using the
Saber extract command. Val s can be grouped so that several may be easily
extracted at once.

Foreign functions that are not declared to return a single number cannot be
used in the Equations section. Therefore, any other manipulation required of
a foreign subroutine for the Equations section must be done in the Values
section.

Noise sources, to be used with the Saber small-signal noise analysis, are
defined in the Values section. Val s can also be used when it would be clearer
to declare and define intermediate variables in your templates.

Examples

1. Val s can be used to define values useful for extraction. The above
voltages can be extracted using the group v, which was declared in the
local declarations section, or individually.

#in the local declarations section
val v vbe,vbc,vce,vbei,vbci,vsi,vbx,vbb
group {vbe,vbc,vce,vbei,vbci,vsi,vbx,vbb}v

#in the values section
vbe = v(b) - v(e)
vbc = v(b) - v(c)
vce = v(c) - v(e)
vbei = v(bp) - v(ep)
vbci = v(bp) - v(cp)
vbx = v(b) - v(cp)
7-32 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
vbb = v(b) - v(bp)

2. The next example shows a foreign function, diodesub , being used in
the Values section to find val s idi and qd , which are then used in the
Equations section.

pins and arguments in header declarations section
electrical p,n
struc{

number is,rs,n,tt,cjo,vj,m,eg,xti,kf,af,
fc,bv,ibv,tnom,gmin,reltol

}model=()
number area=1

in local declarations section
electrical pi
val i idi,id
val q qd
val v vdi,vres
number work[17]
external number temp
foreign diodesub

in values section
vdi = v(pi) - v(n)
vres = v(p) - v(pi)
id = vres/model->rs
(idi,qd)=diodesub(work,model,temp,area,vdi)

in equations section
i(p) += id
i(pi) += idi + d_by_dt(qd) -id

i(n) -= idi + d_by_dt(qd)

3. The following example is a noise source. This example models six noise
sources. They include pairs that represent the constant and the
frequency-varying portions of noise for a voltage noise source and two
current noise sources. The val s for the noise sources are declared in the
local declarations section, described and evaluated in the Values
section, and then specified as noise sources in the Control section.

#in local declarations section
val nv nsv,nsvf
val ni nsim, nsip, nsipf, nsimf
var i i
MAST Language Reference Manual (June 2003) 7-33
Copyright © 1985-2003 Synopsys, Inc.

Control section
#in values section
nsv = 20n nsip = .71 nsim = .71 p
if (freq ~= 0.0) {

nsvf = 200n/freq
nsipf = 70p/freq

nsimf = 70p/freq
}
else {

nsvf = 0.0
nsipf = 0.0
nsimf = 0.0

}

#in control_section
noise_source (nsv,i)
noise_source (nsvf,i)
noise_source (nsim,n2)
noise_source (nsimf,n2)
noise_source (nsip,n3)

noise_source (nsipf,n3)

Control section

Purpose

The Control section is a declarative section. It is used for five specialized
functions:

1. Collapsing nodes.

2. Declaring dependencies between dependent nonlinear variables and
independent nonlinear variables for some templates.

3. Declaring sample points for some independent variables.

4. Limiting the step size in Newton-Raphson iterations for some types of
independent variables.

5. Specifying noise sources.

Evaluation

The different types of statements in the Control section are evaluated after
everything else is read in. The statements are consulted as necessary.

Syntax
7-34 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Control section
control_section{
statements

}

The Control section uses the keyword control_section followed by the left-
hand brace ({). Statements in the Control section can be the following:

collapse(node1, node2)
noise_source(val, pin_or_var[, pin_or_var])
sample_points(variable, sapoints)
sample_points((variable, variable...), sapoints)
pl_set((dep_id[, dep_id...]),(indep_id[, indep_id...]))
newton_step(variable, nsteps)
newton_step((variable, variable...), nsteps)
dc_help (node1, node2)

The collapse statement collapses two nodes, node1 and node2. This is used
to speed up simulation in cases where, for instance, there is no resistance
specified between two nodes.

The noise_source statement applies to the small-signal noise analysis
simulation. The val is the name of a noise source declared as a val and
described by an expression in the values section of the template. The
pin_or_var is a reference to a pin or a var .

A sample_points statement is required for each independent variable in
nonlinear functions. Variable, a var or ref , is the nonlinear independent
variable, while sapoints represents an array that holds the sample points for
the variable. If there is more than one nonlinear independent variable that
has the same set of sample points, a list of the variables, in parentheses, is
substituted for variable.

The pl_set statement declares which dependent variables depend upon
which nonlinear independent variables for the purposes of piece-wise linear
evaluation. The dep_ids are the nonlinear dependent variables, while the
indep_ids are var s or ref s or the differences between var s and/or ref s.
There can be as many dep_ids and indep_ids as needed. The parentheses
around the dep_ids and the indep_ids are necessary only if more than one
dep_id or indep_id is given.

The newton_step statement limits the step size for Newton-Raphson
iterations. This limitation is needed for some nonlinear functions that have
rapidly changing slopes. Variable identifies a single, linear independent
variable (or a list of them in parentheses), and nsteps represents an array of
ordered pairs containing breakpoints and increments.

The dc_help statement specifies two template connection points that will be
affected by Gmin_Ramping selections found in SaberGuide by traversing the
following path:
MAST Language Reference Manual (June 2003) 7-35
Copyright © 1985-2003 Synopsys, Inc.

Description
4. In the Operating Point Analysis form
(Analyses > Operating Point > DC Operating Point...)

5. Under the Algorithm Selection tab

6. Under the Ramping Algorithm Settings... button

7. In the Algorithm Selection for dcanalysis form.

This provides a minimum conductance (leakage path) between the specified
connection points that is gradually reduced as a solution is approached.

Description

Collapsing Nodes

Under some conditions nodes may be collapsed to speed up simulation. For
example, if you set the ohmic collector resistance of a bipolar transistor to
zero, you can create a statement that collapses the internal and external
nodes. You cannot collapse or “uncollapse” nodes using the Saber simulator’s
alter command, because to do so would change the topology of the system
being simulated.

Noise Sour ces

If the noise source is a through variable, then the specification should be

noise_source(val_name, pin[, pin])
where the val_name is the name of the noise source (which must be declared
as a val), and the pins are the names of the pins or internal nodes it is
connected between. If it is connected between a pin and ground, then the
ground pin, 0, need not be specified.

If the noise source is an across variable, then the specification is:

noise_source(val_name, var_name)

where the val_name is the name of the noise source and the var_name is the
name of the var that defines the noise source, appearing in the Equations
section as: var_name: expression = expression.

Appropriate units are defined in the file units.sin for noise voltage and current
sources.

Sample Points

There are several techniques used by simulators for linearization. Of these,
three are described as follows:
7-36 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
• Taking the slope of the characteristic at the guessed point

This technique is used by some simulators. Because the guess is not
known beforehand, you must provide the simulator with both the
characteristic equations and their slopes. This usually results in a
requirement that the slopes are continuous, thus disallowing step
functions.

• Piece-wise linear approximation

This technique depends on the model itself being composed of piece-
wise linear segments between selected points. The simulator does not
linearize because the model itself is linearized. The accuracy of this
model depends entirely on the selection of the points in the model, and
cannot be changed without changing the points in the model.

• Piece-wise linear evaluation

This technique is the one the Saber simulator uses, and is distinct from
piece-wise linear approximation. In this method, the model describes
the nonlinear characteristics, but the simulator approximates the curve
at certain points with a set of straight lines. These points apply to the
independent variables, and are called sample points. For this technique
the simulator needs the characteristic equations and associated sample
points.

In general, there is a trade-off between accuracy and speed. For accuracy, you
should specify sample points close together where the rate of change of the
characteristic is large. They can be further apart where the rate of change is
small.

Sample points should be defined as pairs of numbers in an array. They can be
arguments or parameters.

struc{
number breakpoint, increment

} sample_array = [*]
The first number in each pair, the breakpoint, is the value of the independent
variable that is the starting point for the increment. The increment is the
spacing at which sample points are to be taken until the next breakpoint. The
number 0 must be one of the breakpoints. Values assigned to sample points
may be parameterized, that is, made dependent on some parameters and
assigned in the Parameters section. The last breakpoint/increment pair tells
where sample point specification stops, by specifying the last increment as 0.

The syntax for describing sample points in the Control section needs the name
of the independent variable, and the name of the sample point array, or the
MAST Language Reference Manual (June 2003) 7-37
Copyright © 1985-2003 Synopsys, Inc.

Description
array itself. If there is more than one nonlinear independent variable that has
the same set of sample points, the variable name may be replaced by a group
name, where the group is declared in the local declarations area.

NOTE
The Saber simulator will provide default sample points
for any nonlinear template that does not specify them in
a Control section.

Logsap

The subroutine logsap was created to help generate logarithmic sample
points. You can declare this as a foreign subroutine in the local declarations
section and call it in the Parameters section, according to the following
format:

logsap = (min, max, step_per_decade,
density_per_decade, [sample_points])

where:

min = absolute value of minimum breakpoints (symmetric about 0)

max = absolute value of maximum breakpoints (symmetric about 0)

step_per_decade = logarithmic spacing of breakpoints within a
decade (must be greater than zero)

density_per_decade = used to calculate the increment between
specified breakpoints (increment(i)=
breakpoint (i+1)- breakpoint(i)/density)

Logsap Examples

1. logsap (1u,1meg,1,x) would yield the following breakpoints
(disregarding increments):

-1e6, -1e5, -1e4, -1e3, -1e2, -10, -1, -1e-1, -1e-2,
-1e3, -1e-4, -1e-5, -1e-6, 0, 1e-6,...,1e6

2. logsap (1u,1meg,3,x) would yield the following breakpoints (again
disregarding increments):

-1e6, -4.641e5, -2.154e5, -1e5, -4.641e4, -2.154e4,
-1e4,...0, 1e-6,-4.641e-5, -2.154e-5,...,1e6
7-38 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
3. logsap (1u,1meg,0.5,x) would yield the following breakpoints
(again disregarding increments):

-1e6, -1e4, -1e2, -1, -1e-2, -1e-4, -1e-6, 0, 1e-6,...,1e6

4. logsap (1u,1meg,1,90) would yield the following complete sample
point specification, including increments:

(-1e6,1e4) (-1e5,1e3), (-1e4,1e2), (-1e3,1e1),
(-1e2,1e0), (-1e1,1e-1), (-1e0,1e-2), (-1e-1,1e-3),
(-1e-2,1e-4), (-1e3,1e-5), (-1e-4,1e-6), (-1e-5,1e-7),
(-1e-6,1e-8), (0,1e-8), (1e-6,1e-7), (1e-5,1e-6),
(1e-4,1e-5), (1e-3,1e-4), (1e-2,1e-3), (1e-1,1e-2),
(1e0,1e-1), (1e1,1e0), (1e2,1e1), (1e3,1e2), (1e4,1e3),

(1e5,1e4), (1e6,0)

Pl_Set

The “piece-wise linear set” specification defines dependencies of nonlinear
variables on linear combinations of system variables. It is rarely required,
because the Saber simulator can find these dependencies, but its use is
suggested because it defines what can be extracted from a distortion analysis,
and ensures that dependent variables remain dependent, even when they can
be optimized to be independent variables. (Independent variables may not be
changed with the Saber alter command.)

If you have not specified a pl_set statement, and you have such
dependencies, you can find out what the Saber simulator is using as a pl_set
by using the saber -d pl_set option. This option displays the pl_set to
the screen and places it in the .out file, after the files are read in, as the
topology is being analyzed.

Newton Steps

Newton steps give a way of limiting the size of steps taken in the Newton-
Raphson algorithm. Some nonlinear systems, such as systems with
exponential characteristics, require them to reduce the time the simulator
takes for convergence. However, if they are not needed they slow simulation,
so you should avoid using them unless you know that they are needed. A
recommended approach is to model without Newton steps and then add them
to the model if convergence takes excessive time (or if too many time-step
iterations prevents convergence).

As with sample points, you specify Newton steps using breakpoint-increment
pairs. Increments should be small when the slope of a function is large, and
large when the slope is small. Newton steps need cover only the part of a
MAST Language Reference Manual (June 2003) 7-39
Copyright © 1985-2003 Synopsys, Inc.

Description
function where step-size limitation is helpful. You can terminate a Newton
step sequence at any point by specifying an increment of 0.

DC_help

The dc_help statement specifies two template connection points that will be
affected by GMIN_Ramping selections found in SaberGuide by traversing the
following path:

1. In the Operating Point Analysis form
(Analyses > Operating Point > DC Operating Point...)

2. Under the Algorithm Selection tab

3. Under the Ramping Algorithm Settings... button

4. In the Algorithm Selection for dcanalysis form.

It is used for models with connection points that appear as an open circuit at
DC (e.g., a MOSFET), thus causing the simulation not to converge.

When GMIN_Ramping is selected, the Saber simulator inserts a leakage path
across the specified connction points. The conductances of these paths are
then gradually reduced as a solution is approached. You can specify the
beginning and ending values and the rate of reduction in the appropriate tab.

Examples

Collapse Nodes

#in control section
if(model->rb <= 0) collapse (b,bp)

If the parameter rb in model is less than or equal to 0, the two nodes b and bp
are collapsed.

Noise Source

#header declarations
electrical p,m
#local declarations
val ni nsr
#in control section

noise_source(nsr,p,m)

Nsr is a current noise source attached between pins p and m. It is assigned a
value in the Values section.

#local declarations
val nv nsv
var i i
7-40 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
#in control_section
noise_source(nsv,i)
#in equations section

i: v(a)-v(m)=0

Nsv is a voltage noise source dependent upon i , a var that is defined such
that the voltage between nodes a and m is 0.

Sample points

#in local declarations section
struc{

number point, increment
}sp[*]=[(-100,10),(-10,1),(0,.2),(10,0)]
val v vd
#in control section sample_points(vd,sp)
#or, simplifying,

#sample_points(vd,[-100,10,-10,1,0,.2,10,0])

Pl_set

5. In this example, id is declared to be a function of the independent
variable vd .

pl_set(id,vd)

6. In the second example, idi and qd are declared to be dependent upon
vdi .

pl_set((idi,qd),vdi)

Newton steps

In this example, the val named vdi is given Newton steps from 0.2 to 1 volts.
At 0.2 volts the Newton step is limited to 20mV, at 0.6 volts the Newton step is
limited to 1 mV, and after 1 volt the Newton step is turned off. This would
indicate that vdi had a sharp rise in slope between 0.2 and 1 volts, and then
settled out again.

#in local declarations section
struc{

number breakpoint, increment
}nv=[(0.2,20m),(0.6,1m),(1,0)]
val v vdi

#in control section
newton_step(vdi,nv)

#or newton_step(vdi,[0.2,20m, 0.6,1m, 1,0])
MAST Language Reference Manual (June 2003) 7-41
Copyright © 1985-2003 Synopsys, Inc.

Equations section
DC_help

control_section{
dc_help (gate, drain)

}

Equations section

Purpose

The Equations section is for describing the analog characteristics at the
terminals of the element being modeled. Statements in the Equations section
either define the dependent through var s or ref s in the system in terms of
the across variables or other variables of the system, or the equations
necessary for each var declared in the template.

Evaluation

The Equations section is evaluated when the system is read into the
simulator, to make a “system matrix.” The system matrix is evaluated, as
needed, throughout simulation.

Syntax

equations{

statements
}

The Equations section uses the keyword equations followed by a left-hand
brace ({). Four types of syntax are allowed in the Equations section. The
syntax for the first two are:

through_variable(pin_name) operator expression
through_variable(pin_name -> pin_name) operator expression
Through variables are declared implicitly by the pin declaration. Pin_names
are the names of pins used in the template. In the second case, the symbol
“-> ” indicates a flow of the through variable from the first pin_name to the
second. Operators permitted are += and -= , which mean to add to or subtract
from the node, respectively. Expression is any valid expression. It can contain
any intrinsic functions, including d_by_dt and delay , with the limitations
that d_by_dt and delay cannot be nested and the only binary operators are
+ and -.

The syntax for the third kind of statement is the following:

ref_variable operator expression
7-42 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
The ref_variable is a ref , that is, a var passed in from another template.
Operators permitted are += and -= , which, respectively, mean to add to or
subtract from the var . Expression is any valid expression. It can contain all
intrinsic functions, including d_by_dt and delay , with the limitations that
d_by_dt and delay cannot be nested and the only binary operators are + and
-.

The syntax of the fourth kind of statements is the following:

var_variable : expression = expression
The var_variable is the name of a var . The expression = expression is an
equation, where the simulator is to determine a value of the var such that the
equation can be true. The var must be declared in the header or local
declarations sections.

If statements whose conditions depend on parameters and arguments, and
foreign functions that are declared as numbers are allowed in the Equations
section.

Description

The Equations section is used to describe the analog characteristics at the
terminals of the element being modeled. Statements in the equations section
either define the dependent through var s or ref s in the system in terms of
the variables of the system, or the equations necessary for each var variable
declared in the template.

Expressions

Expressions used in the Equations section can contain all intrinsic
mathematical functions, including d_by_dt and delay , with the restrictions
that d_by_dt and delay cannot be nested and the only binary operators
permitted are + and -. If the argument of either of these functions has a
constant multiplier, it must appear within the argument, rather than as a
multiplicand. Thus, you can write d_by_dt(3*xo) , but not 3*d_by_dt(xo) .

Refs

Ref s may or may not need an equation in the Equations section. This depends
on whether the ref in the template contributes to its referenced var . When
ref s are used in the Equations section, they are summed into the equation for
the referenced var . Therefore, the signs of the operators are opposite of what
they may intuitively seem, because they are summed into the left-hand-side of
the originating var equation, rather than on the right-hand-side.

Vars
MAST Language Reference Manual (June 2003) 7-43
Copyright © 1985-2003 Synopsys, Inc.

Description
There are three reasons to use a var . The first is when the through variable is
not a function of the across variable, as in a voltage source or in an inductor.
(The MAST language offers only derivatives, not integrals, so the equation for
an inductor cannot be written in one of the two forms for the through
variables. Therefore, we declare the current as a var , and express the
equation in the fourth form so we can take the derivative of current.)

The second use of var s is to add them as needed to use the d_by_dt and
delay functions appropriately. These cannot be nested, so to take a second
derivative, for instance, we must declare the first derivative as a var , and
write an equation for it, and then take the derivative of the first derivative.

The third use of a var is to declare a variable which will be used as a ref in
another template.

Examples

1. The first example shows an equation section for a simple resistor.

#in header declarations section
electrical p,m
number resistance
#in equations section

i(p->m) += (v(p)-v(m))/resistance

This could also be written in this way:

#in equations section
i(p) += (v(p)-v(m))/resistance

i(m) -= (v(p)-v(m))/resistance

2. The second example shows equations based on refs in the Equations
section. Note that the signs on the operators are -= instead of +=
because ref s are summed into the left-hand-side of the var equation
rather than the right-hand-side.

template ml i1 i2 = m
ref i i1,i2
number m{

equations{
i1 -= d_by_dt(m*i2)
i2 -= d_by_dt(m*i1)

}
}

3. The third example shows a var used in taking the second derivative of
a function with respect to time. This models a four-port behavioral
7-44 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Description
model for a second-order differential equation. Note that an
intermediate var named dvo is used to avoid nesting the d_by_dt
function.

#in equations section
i(vop->vom) += i
dvo: dvo=d_by_dt(vout)
i: x1*vin = x2*vout + x3*dvo + d_by_dt(x4*dvo)
MAST Language Reference Manual (June 2003) 7-45
Copyright © 1985-2003 Synopsys, Inc.

Description
7-46 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 8
Foreign Functions
Introduction

The MAST modeling language lets you use subroutines, called foreign
functions or foreign subroutines that are outside of all templates. These can be
especially useful when a lot of mathematical manipulation is required.

You can write foreign functions in most high-level languages, but they must
have a special interface because they are not called directly from MAST, but
from the Saber simulator’s interpretation of MAST. This chapter describes the
interface necessary for foreign subroutines written only in C or FORTRAN.

Generally, you must compile foreign subroutines into the Saber environment.
The Saber simulator supports dynamic loading, so you can merely compile
subroutines and make sure the directory they are in the SABER_DATA_PATH.
The Saber simulator loads the routines as needed at run time.

Calling Foreign Subroutines

Whenever you use a foreign subroutine, you must both declare it and call it.

Declaring Foreign Subr outines

There are two types of foreign subroutines in MAST: foreign subroutines that
return a single number, and foreign subroutines that are not restricted in
what they return. These are declared in the local declarations section and
require different syntax. Foreign subroutines can also be declared globally in
the local declaration section of the top-level template.

The syntax for declaring a subroutine that returns a single number is as
follows:

foreign number subroutinename()

The syntax for an unrestricted subroutine is:
MAST Language Reference Manual (June 2003) 8-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
foreign subroutinename
Foreign subroutines that return a single number use two keywords, foreign
and number , and a set of parentheses. The subroutinename is the user
selected name of the subroutine. Foreign subroutines that are not restricted in
what they return use only one keyword, foreign . In either case, the name of
the file containing the compiled subroutine must be subroutinename.o . If a
foreign subroutine itself calls a foreign subroutine in another file, that file
name must also be declared as foreign in the local declarations section. If the
additional subroutine is contained within the same file as the first subroutine,
no additional declaration is necessary.

Calling the Subr outine

Foreign subroutines that return a single number can be used within an
expression. They evaluate to the number. They are called with an input_list as
follows.

subroutinename(input_list)
The input_list consists of a comma-separated list of inputs to the subroutine.
The variable names in the input_list must have been previously declared.
They can be used within an expression as shown in the following example,
where vout , initial , and vin are declared variables, and gain is the
subroutine returning a number.

vout = initial + gain(vin)

This kind of subroutine can be used wherever a built-in mathematical
function can be used.

Foreign subroutines that are not restricted as to what they return are called
with an input and output list as shown:

(output_list) = subroutinename(input_list)
The statement that calls this type of foreign subroutine is similar to an
assignment statement. The input_list and output_list are comma-separated
lists of values. They can also contain the group name of variables declared as a
group. The output_list can consist of only parameters in the parameters
section, states in when statements, and val s in the values section. The
simvars step_size and next_time , can also appear in the output_list in the
values section and in when statements.

There can be one or more returned values. If there are more than one, the
names of the returned values should be enclosed in parentheses. Otherwise,
the parentheses are optional. The input_list can consist of constants, or any
variables which can normally be used in the template section containing the
foreign subroutine call. The names of variables in the input_list and
output_list must be declared before the subroutine is called.
8-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Writing Foreign Subroutines
Examples of calls to foreign subroutines follow:

err = bjt(1,1,work,model)
(svbel,svbcl,svscl,svbxl,svbbl) = sample(temp,area)

In the first case, the foreign subroutine bjt has one variable (err) in the
output_list and four values in the input_list (consisting of two constants and
two variables). In the second case the subroutine sample has five variables in
the output_list and two variables in the input_list. All variables would need to
have been previously declared, and of acceptable types in the template section
containing the subroutine call.

Writing Foreign Subroutines

In general, the name of a foreign function should be the same as the name of
the file containing it. Thus, the name must follow the conventions of both the
operating system under which you run the Saber simulator and the
programming language in which you write the foreign function. In particular,
this means that the number of characters in the name of the function (or
subroutine) must conform to the limits set by the operating system.

In FORTRAN, the header line of the file must have the following form:

subroutine name(arguments)

where name is the name by which the foreign function is called in templates,
and arguments is a specific comma-separated list of argument names, which
are described in Required Interface Arguments on page 8-4.

NOTE
If you want to use an OPEN statement to assign an
output device, set UNIT to a number between 10 and 59
(preferably between 20 and 30). Numbers 1-9 and 60-99
are reserved for use by the Saber simulator.

In the C language, depending on the platform, the header line has one of these
two forms:

name(arguments)
name_(arguments)

The purposes of name and arguments are the same as in FORTRAN. For a list
of platforms requiring the second form, i.e., name followed by an
underscore(_), refer to the SaberDesigner Inatallation manuals; "Using C or
FORTRAN Routines Called by Templates".
MAST Language Reference Manual (June 2003) 8-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
When using other languages, name and arguments have the same purposes
and requirements. Otherwise, you need only follow the normal conventions for
those languages.

Required Interface Ar guments

The MAST language does not directly call the subroutines; instead, the Saber
simulator calls them. The Saber simulator takes the input_list from the
template and translates it into arguments used in the subroutine. The
simulator takes the arguments from the foreign subroutine, and translates
them into the output_list or the single number returned from a foreign
number subroutine. Therefore, since the Saber simulator adds an additional
interface between the templates and the foreign subroutines, the arguments
in the subroutine will not match the input and output_lists in the calling
template.

There are two levels of translation:

7. The inputs and outputs from the templates are translated into ten
arguments (listed below)

8. Because only numerical values are actually passed from template to
foreign subroutine, in many cases the foreign subroutine must decode
the numerical values to discover the variables passed

The arguments are 10 dummy arguments, in a specific order, through which
values are passed between the Saber simulator and the foreign function. You
must use the entire list of 10 arguments whenever you write a foreign function
for use by templates written in the MAST language. The argument names are
arbitrary, but the place for each is fixed. The meanings of these arguments, listed
in order, are:

in is an array of the inputs to the routine. Saber passes only
numerical arguments to foreign subroutines. Therefore, most
variable types are encoded, as described later in this chapter.
Foreign subroutines must be written in such a way as to decode
the input array. All arguments are passed by value, meaning
that even if they are modified, the modification will not appear
in the corresponding variables in the template.

nin is the number of elements of the array in

ifl (reserved for use in a future release)

nifl (reserved for use in a future release)
8-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Writing Foreign Subroutines
NOTE
Even though only in , nin , out , nout , and aundef are
currently used, you must declare all 10 arguments in
the subroutine header.

Interface Examples

In FORTRAN, the foreign function will have the form:

subroutine name(in,nin,ifl,nifl,out,nout,ofl,nofl,

aundef,ier)

integer nin,nifl,nout,nofl,ier

integer ifl(nifl),ofl(nofl)

real*8 in(*),out(nout),aundef

body of function
...

end

In C, the function will have the form:

name(in,nin,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

int *nin,*ifl,*nifl,*nout,*ofl,*nofl,*ier

double *in, *out, *aundef

{

body of function

out is an array of the outputs from the routine. On entry to the
routine, it contains undefined values. Only numerical
arguments are passed out, but these can be decoded by the
Saber simulator to match various variables in the calling
statement’s output_list.

nout is the length of out

ofl (reserved for use in a future release)

nofl (reserved for use in a future release)

aundef is a special constant that indicates undefined quantities. Any
variable that is undefined in the template will have this value
in the in array. This is the same as undef in the MAST
language

ier (reserved for use in a future release)
MAST Language Reference Manual (June 2003) 8-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
...

}

As described earlier, some platforms require name to be followed by an
underscore (_).

Argument Passing

When passing arguments to a foreign subroutine, the simulator enters
numerical values that represent the arguments into the in array, in the same
order in which the arguments are listed in the subroutine call. When
returning a result from a function declared to return only a single number, the
simulator takes its value from the single value in the out array. When
returning results from a subroutine that is not restricted in its output, the
simulator translates the numerical values in the out array into the
output_list, in the order in which the outputs are listed. If a group is used as
the output, the numerical values are translated into those variables in the
order in which they are declared as a group.

Determining the T ranslation of the In and Out Arra ys

It is important, when writing a foreign function, to know the translation of the
in and out arrays. The inputs and outputs of foreign functions can each be any
of the types permitted in the MAST language. The simulator encodes
arguments in specific ways when placing them into the in array of a foreign
function and decodes them in the reverse way when taking them out of the out
array. The following paragraphs describe, by argument type, how the
simulator encodes arguments from a function call to produce a representation
of the argument into the in array of the foreign function -- the reverse of the
encoding process is the decoding process (how it interprets the contents of the
out array. Examples of translations follow this.

number is represented as itself. This holds for variables of types
number , state , val , var , ref , and simvar

enum is represented by an index number, which indicates the
position (starting with 1) of the argument in the enum
declaration

string is represented as a number, which is a string descriptor that
can be used with some Analogy-supported subroutines to pass
the string

struc is represented as a list of the translations of its fields, in the
order in which they are declared in the structure
8-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Argument Passing
Because there is no restriction on the types of the inputs and outputs of
foreign functions, they can be declared as nested composite types. If this is the
case, the elements of each composite type are translated one at a time, taking
into account the fact that for arrays, the first element stored is the number of
members in the array, and for unions, the first element stored is the index
number of the choice used.

The following examples illustrate how to determine the translation of the in
and out arrays. In each example, the first column shows a sample declaration,
and the second column shows the resulting array. These are shown here as
input_list and the in array, but the same translation would apply to the
output_list and out array.

Number

#in local declarations section

number fred=7

foreign foreignsub

#in template section #in in array

output_list = foreignsub (fred) [7]

Because numbers are entered into the array as they are, the in array has a
single member, the number 7, and nin (the number of elements in the array)
is 1.

Enum

#in declarations section

enum {plus, minus} fred = plus

foreign foreignsub

#in another template section #in in array

union is represented by two sets of numbers: the first is an index
number, which indicates the position (starting with 1) of the
current choice in the definition of the union; the second is the
translation of the fields of the choice

array is represented by two sets of numbers: the first is a single
number indicating the number of items in the array; the
second is a sequence of translations, one for each array item.
The translations are in row-dominant order (last index varies
first). An array item may be of any number of fields, and not
all array items need be of the same number of fields. For
example, an array of unions may consist of different types of
array items. Undefined arrays have the length indication
stored as undefined (set to undef).
MAST Language Reference Manual (June 2003) 8-7
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
output_list = foreignsub (fred) [1]

#in declarations section

enum {plus, minus} fred = minus

foreign foreignsub

#in another template section #in in array

output_list = foreignsub (fred) [2]

For enumerated types, each member is associated with a number that
indicates its position in the enumerated list. The number passed to the array
is the number associated with the member selected. In each case nin is 1.

Strings

#in declarations section

string fred=””

foreign foreignsub

#in another template section #in in array

output_list = foreignsub (fred) [a number]

A string descriptor is passed for a string, where a descriptor is defined to be a
number which acts like a memory pointer, but which does not point to the
memory location where the string is stored, but to some encoded location
known by the Saber simulator. The string can be decoded in the foreign
subroutine by using an Analogy-supported subroutine, as explained later in
this chapter. Here nin equals 1.

Struc

#in declarations section

struc {

number a=6,b=5

}fred=()

foreign foreignsub

#in another template section #in in array

output_list = foreignsub (fred) [6,5]

#in declarations section

struc {

enum {plus, minus} mary = minus

number a=6,b=5

}fred = ()

foreign foreignsub

#in another template section #in in array
8-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Argument Passing
output_list = foreignsub (fred) [2,6,5]

For structures, the members of the structure are passed to the in array in
order. Therefore, in the first structure, which consists of two numbers, the in
array has two members, consisting of the values of the two numbers, and nin
equals 2. The second structure has three members, the first number
corresponding to the enumerated type, and the other two to the numbers.

Union

#in local declarations section

union {

number a=10,b=20,c=30

} fred=a

foreign foreignsub

#in another template section #in in array

output_list = foreignsub (fred) [1,10]

A union represents a choice of values (here, a, b, or c). Associated with each
choice is its index number (indicating which choice it is, as with enumerated
types), and additionally, its value. Both the index number and the value are
passed to the array. In the example above, the selection is a, so the index (1)
and the value (10) are passed to the array. If b had been selected, the array
would hold [2,20]. If c had been selected, the array would hold [3,30]. In all
cases, nin equals 2.

Arrays

Arrays can contain any of the types or combinations thereof. Following are
examples for some types. There is an example for one of each type. When an
array is passed through, the first number is the size of the array, and the rest
are values for the array elements.

#in local declarations section

number fred[2]=[7,5]

foreign foreignsub

#in another template section #in in array

output_list = foreignsub(fred) [2,7,5]

Because this is an array of numbers, the result consists only of the size of the
array and the two array numbers, and nin equals 3.

#in local declarations section

enum {plus, minus} fred[2]=[plus,plus]

foreign foreignsub

#in another template section #in in array

output_list = foreignsub(fred) [2,1,1]
MAST Language Reference Manual (June 2003) 8-9
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
The values for this array of enumerated types consist of the size of the array
(2), followed by the indexes of the selection (1,1), and nin equals 3.

#in local declarations section

struc {

number a=6,b=5

} fred[2]=[(),()]

foreign foreignsub

#in another template section #in in array

output_list = foreignsub (fred) [2,6,5,6,5]

Because this is an array of structures, and the structure consists of two
numbers, the resulting consists of the size of the array (2), followed by the
value of the structure (6,5) twice, since the array is initialized to contain the
same values for each member of the array, and nin equals 5.

#in local declarations section

union{

number a=10,b=20,c=30

} fred[3]=[a,b,c]

foreign foreignsub

#in another template section #in in array

output_list = foreignsub(fred) [3,1,20,2,20,3,30]

This array of unions is a three member array, so the first member of the
resulting array is a 3. The array contains members a, b, and c, in turn. This
means that the result array must contain the index number for each, followed
by its value (1,10 for a, 2,20 for b, and 3,30 for c), and nin equals 7.

Multi-dimensional arrays

As mentioned previously, multi-dimensional arrays are passed such that the
last index varies first. That is, the elements of a given array are passed in
sequential order according to their subscripts (preceded by the total number of
elements in the array). This is best illustrated by an example for the
2-dimensional array, d[3,4] , which would have 12 elements as follows:

This would be passed as the following sequence:

[12 d11 d12 d13 d14 d21 d22 d23 d24 d31 d32 d33 d34]

Mixtures of T ypes

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34
8-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Argument Passing
There are no restrictions on mixing types, as long as the rules for each type
are observed. This example is a structure which is composed of an enumerated
type, two numbers, an array of numbers, a structure, and a union:

#in local declarations section

struc{

enum {plus, minus} mary = plus

number a=7,b=6

number mike[4]=[10,11,12,13]

struc{

number c=20,e=40

}jim=()

union {

number e=60,f=70

}ian = e

}fred = ()

foreign foreignsub

#in another template section #in in array

output_list = foreignsub(fred)

[1,7,6,4,10,11,12,13,20,40,1,60]

The members of this structure go into the resulting array in order, following
the rules for each of the types, with each member simply placed into the
resulting array as defined. The first member is 1, the index of the enumerated
type. The second and third members (7,6) are the values of the numbers. The
next five values are for the array of four numbers: the size of the array
followed by the four values (4,10,11,12,13). The next two values are for the
members of the structure jim containing two numbers (20,40). The final two
numbers represent the index and value for the selected member of the union
(1,60); nin equals 12.

Increasing the Siz e of the Output Arra y

In some cases, it is not known in advance how many values will be returned by
the foreign subroutine; for example, if it returns a variable-length array. In
such cases, the foreign subroutine must negotiate with the Saber simulator to
obtain an output array out of appropriate size.

To be able to negotiate with the Saber simulator, the foreign routine must
declare its argument nout as an array of two integers, which, in FORTRAN,
requires the subroutine header to be of the following form:
MAST Language Reference Manual (June 2003) 8-11
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
subroutine name(in,nin,ifl,nifl,out,nout,ofl,

nofl,aundef,ier)

integer nin,nifl,nout(2),nofl,ier

integer ifl(nifl),ofl(nofl)

real*8 in(*),out(nout),aundef

body of function
...

end

No change is needed in the header of C routines. The two entries of nout have
the following form:

A foreign routine returning variable length arrays must be written such that
it first determines the number of values it intends to return and saves this
value in nout(1) (or nout[0]). It then should compare this value with
nout(2) (or nout[1] in C) and return if the out array is too short. The Saber
simulator calls the routine a second time with identical arguments, except
that the out array is now as long as requested. The following is a sample code
fragment in FORTRAN to illustrate this procedure:

subroutine foreign(in,nin,ifl,nifl,out,nout,ofl,

nofl,aundef,ier)

declarations
code to determine number of values to return

nout(1) = storage_need

if (nout(1) .gt. nout(2)) return

code to complete the return values
return

end

Passing Strings

It is possible to pass strings both to and from foreign subroutines. Analogy
provides special subroutines to facilitate this.

FORTRAN C Meaning

nout(1) nout(0) The number of values the routine returns in
out. This number should be set by the foreign
routine before it returns.

nout(2) nout(1) The size of the array out , which is the
maximum number of values the routine can
return in out . This number is set by the Saber
simulator before it calls the foreign routine.
8-12 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Argument Passing
Passing Strings to Foreign Subroutines

You can cause string values to be passed to foreign subroutines by including a
string expression in the input argument list. A double-precision real number,
the string descriptor, is then passed as part of the foreign subroutine’s input
array. By calling a special Analogy-supported subroutine, you can cause a
string to be recovered within the foreign subroutine.

A string descriptor acts like a string pointer, but it does not point to the actual
memory location where the string resides, as a pointer would. Instead, it
directs the Analogy-supported subroutines discussed below to the place where
the strings are stored.

In FORTRAN the string variable that will receive the string must be declared
as a character variable, and then the program must make the following call:

call getstr(descriptor,buffer,nch)

where the input is descriptor , a string descriptor variable name assigned to
the appropriate double precision number from the input array, and the
outputs are buffer , the Fortran character variable which will receive the
string, and nch , the number of characters in the string. The string is
truncated or blank padded to fit the buffer.

In C, the cgetstr function is declared as follows:

char *cgetstr(descriptor)

double descriptor;

It returns a pointer to a null terminated string. Do not modify the string; the
results can be quite unpredictable.

Passing Strings from Foreign Subroutines

Strings are passed from foreign subroutines to templates by using a set string
function (setstr()) on the string, which returns a double precision real
number descriptor that can be passed to the template in the foreign
subroutine’s output array. This descriptor will be automatically interpreted as
a string within the template.

In FORTRAN the descriptor must be declared as a double precision real
number, and then the routine can call setstr .

call setstr(buffer,nch,descriptor)

where the inputs are buffer , the FORTRAN character variable containing
the string to be passed to MAST, and nch , the number of significant
characters in the string. The output is descriptor , a double precision real
number to be used in the output array.

The C function csetstr(string) accepts a null terminated string and
returns its descriptor.
MAST Language Reference Manual (June 2003) 8-13
Copyright © 1985-2003 Synopsys, Inc.

Chapter 8: Foreign Functions
double csetstr(string)

char *string;

Implementing Statistical Distrib utions

You can use foreign routines to define statistical distributions of your own, to
supplement the Saber simulator’s collection of built-in statistical
distributions. Typically, such routines return a single number and should
therefore be declared as such (e.g., foreign number mydist()). The
interface of foreign routines implementing statistical distributions is identical
to other foreign routines, but they may want to get additional information
from the Saber simulator, such as random numbers or an indication whether
they should return statistical or deterministic values.
8-14 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

chapter 9
MAST Functions
Introduction

NOTE
Except where otherwise indicated, variables referred to
in this chapter are state variables.

Saber’s time-domain analyses are continuous, in the sense that the simulator
chooses the size of a time step to be as large or as small as necessary for
accuracy. However, by letting a model schedule exact times for variables to
take on new values or for the integration algorithm to sample the analog
waveforms, the simulator provides discrete time simulation. Scheduling can
dramatically speed up simulation, because the simulator has to check effects
of state changes only at scheduled times, instead of after each time step. You
can easily model many components, especially digital components, using
discrete time simulation. The key to discrete time simulation is the When
statement.

This chapter describes the When statement and the conditions that can
satisfy it. It also describes how you can schedule the assignment of a value to
a variable (an event) and how you can schedule times at which the integration
algorithm samples the analog waveforms. In addition, it describes how to de-
schedule events that are scheduled. For more information on the When
statement and digital modeling in general, refer to Guide To Writing MAST
Templates, Book I.

State variables are an integral part of the When statement and scheduling.
Because the initial values of state variables are important in the DC analysis
and the resulting DC initial point, the chapter gives the DC algorithm used in
mixed-mode simulation.

Finally, the chapter gives some examples that illustrate the main ideas of the
chapter.

The following statements, functions, and simvars are the “tools” of this
chapter:
MAST Language Reference Manual (June 2003) 9-1
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
• The When statement waits for a specified condition to be true. The
condition may be simple or complicated, but it normally includes one or
more of the functions and simvars described in the next four
paragraphs. The when condition is monitored and, when satisfied, the
statement causes a block of one or more specified statements to be
executed immediately and in order.

• The schedule_event function sets (schedules) a time at which a
specified variable is to receive the value of a specified expression.

• The event_on function returns “true” whenever a value is assigned to
a specified state variable, by a schedule_event .

• The threshold function returns “true” whenever the value of a
specified expression crosses, becomes equal to, or becomes unequal to, a
specified value. It is useful for (but not limited to) converting from
analog to digital.

• The schedule_next_time function schedules a time at which the
integration algorithm samples the analog waveforms. That is, if the
integration algorithm yields a time step that would cause the simulator
to go beyond one or more scheduled next_times , the simulator is
required to step ahead only to the first such time. This is the only
means whereby the digital part of the system can change something in
the analog part. It is useful (but not limited to) converting from digital
to analog.

• The deschedule function deschedules a specified event or next_time
that had been scheduled previously by schedule_event or
schedule_next_time .

• The dc_init simvar becomes true at the start of DC analyses, that is,
at the start of DC operating point analysis (dc), DC transfer analysis
(dt), and the DC operating point analysis portion of the combined DC
operating point and transient analysis (dctr).

• The dc_start simvar becomes true at the start of dc and the DC
portion of dctr only. It is not true at the start of the dt analysis. It
becomes true after the dc_init simvar has become true and then reset
to false.

• The dc_done simvar becomes true at the end of a dc analysis, or the
DC portion of a dctr analysis. (It is set to true after the DC algorithm
is completed.)
9-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When Statement
• The time_init simvar becomes true at the start of transient analysis.
It does not become true when a transient analysis is re-started from a
previous transient analysis.

• The tr_start simvar becomes true at the start of any transient
analysis, including one re-started from a previous transient analysis.

• The tr_done simvar becomes true at the end of any transient analysis.

• The time_step_done simvar becomes true at the end of each time
step. It is usually possible to avoid use of time_step_done by using
the threshold condition, and, when possible, it is desirable to do so.

NOTE
You can use the binary operators “&” and “|” with these
simvars as Boolean AND and OR functions (refer to
Expression Types on page 4-1). This allows you to
stipulate the conditions for two or more simvars in a
single When statement (e.g.,
when dc_init|time_init { ...).

When Statement

The general form of the When statement is as follows:

when (condition) {
statements

}

where:

The Saber simulator monitors condition. Whenever the simulator finds
condition to be true, the statements are executed.

condition is a logical expression involving one or more of the
intrinsic functions named threshold and event_on or
the simulator variables named dc_init , dc_start ,
dc_done , time_init , tr_start , tr_done , and
time_step_done .

statements is a collection of one or more statements, usually with one
or more being calls to the intrinsic scheduling functions
named schedule_event, schedule_next_time , and
deschedule .
MAST Language Reference Manual (June 2003) 9-3
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
Two characteristics of a When statement to keep in mind are:

• They are evaluated in the order of appearance in a template

• They cannot be nested

Conditions f or the When Statement

The condition of the When statement usually involves at least one of the
event_on and threshold intrinsic functions and the dc_init , dc_start ,
dc_done , time_init , tr_start , tr_done simvars.

Event_on Condition

The event_on function becomes true when a scheduled assignment
(scheduled using schedule_event) to the specified variable takes place.

The format of the event_on condition is as follows:

event_on (statevar [, oldvalue])
where:

An example is: event_on(flag) .

An output state used as a connection point cannot be used as a statevar in the
event_on statement to detect a scheduled assignment in the template.

Threshold Condition

The threshold condition occurs when an analog waveform crosses a
threshold.

The format of the threshold function is as follows:

threshold (expression, value[, beforestate[, afterstate]])

statevar is the name of a state variable to be monitored for an
assignment. When the assignment takes place, the
event_on condition is true.

oldvalue (optional) is the name of a state variable, which, when
statevar receives a value, it in turn receives the previous
value of statevar. Thus, oldvalue is an output variable.
9-4 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When Statement
where:

expression Is an expression that, with value, determines when the
threshold condition is met. The threshold condition is met
under the following conditions:
When expression changes from less than value to more than
value
When expression changes from more than value to less than
value
When expression becomes equal to value
When expression changes from being equal to value to being
unequal to value.
The expression can involve system variables, such as vars,
across variables, and refs. The threshold condition is
evaluated most efficiently if expression is a linear combination
of system variables. Vals are also available for use in
expression. Vals are evaluated only when necessary. If they
are used as expressions in when statements, they must be
evaluated much more often, so it is often very costly in
simulation time to use vals as conditions.

value Is an expression whose value is the threshold value, i.e., the
reference value to which the threshold function compares
expression.

beforestate (optional) is:
1 -- If the value of expression was greater than value before
the threshold condition was met.
-1 -- If the value of expression was less than value before the
threshold condition was met.
0 -- If the value of expression was equal to value before the
threshold condition was met.
Thus, this variable is an output variable.

afterstate (optional) is:
1 -- If the value of expression was greater than value after the
threshold condition was met.
-1 -- If the value of expression was less than value after the
threshold condition was met.
0 -- If the value of expression was equal to value after the
threshold condition was met.
Thus, this variable is an output variable.
MAST Language Reference Manual (June 2003) 9-5
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
If you are using threshold to detect a rising or falling edge, then beforestate
and afterstate provide that information, and more. The following table gives
the meanings of the eight possible combinations of beforestate and afterstate:

Simvars

The simvars become true as explained previously in this chapter. Their
formats for inclusion in the condition statement are simply the simvar names.
Simvars do not have to be declared in templates. For example, the format of
the dc_init simvar is:

dc_init

Statements

The statements portion of the When statement can include any MAST
language statements, such as assignment statements, If statements, foreign
function calls, and expressions such as message functions. Only states can be
on the left-hand side of assignment statements, or be returned from foreign
subroutines. Other than these limitations, states, vars, refs, across variables,
parameters, arguments, and vals are available for use in When statements.
However, because the primary purpose of the When statement is to schedule
discrete time simulation functions, statements will usually contain at least one
or more of the schedule_event , schedule_next_time , or deschedule
functions.

You can schedule assignments of specified values to specified variables using
the schedule_event function, and you can schedule times at which the
integration algorithm is to sample the analog waveforms using the
schedule_next_time function. Each of these functions can return a unique
identifier that distinguishes the scheduling from all other schedulings. If

beforestate afterstate Meaning

-1 0 rose to equal value

-1 1 rising edge

0 -1 fell from value

0 1 rose from value

1 -1 falling edge

1 0 fell to value

-1 -1 rose to value, then fell again

1 1 fell to value, then rose again
9-6 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When Statement
necessary, you can use these unique identifiers to cancel schedulings with the
deschedule command.

Scheduling Assignments

To schedule an assignment, use the schedule_event function, usually in the
statements portion of the when statement, as follows:

[scheduling_id =] schedule_event (time, statevar, expression)

where:

Scheduling an assignment to take place immediately (time = time) is
different from merely making an assignment, because a scheduled assignment
causes the integration algorithm to sample the analog waveforms, and thus
can affect the state of the system.

The following example (when accompanied by the other required parts of a
template) causes the variable named out to be negated every 10 nanoseconds:

when(event_on(out)) {
schedule_event (time + 10n, out, ~out)

}

Scheduling Analog Waveform Sampling Times

There are two ways to schedule times at which the integration algorithm is to
sample analog waveforms:

• Using the next_time simulator variable

scheduling_id (optional) is an array of two state variables. This array
becomes a unique identifier when the event is scheduled,
and can be used for descheduling the event.

time is an expression whose value indicates the time at which
the assignment is to occur. Typically time is defined as
the sum of the time simvar and some expression that
represents a delay (the delay may be zero).

If the time value is less than the current simulation time,
the simulator ignores the expression.

statevar is the name of the state variable that is to receive
expression as its new value at time time.

expression is an expression whose value statevar is to receive. The
assignment of expression to statevar is the assignment
being scheduled.
MAST Language Reference Manual (June 2003) 9-7
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
• Using the schedule_next_time function

As explained in the chapter on declarations, next_time is a simulator
variable that templates can use in the values section to specify a time beyond
which the simulator must not go in its next time-step. The disadvantage of
next_time is that, at each time-step the simulator checks to make sure that
it is not crossing the next_time barrier, and then the simulator effectively
clears the value of the next_time variable. Thus, the template has to
reassign a value to next_time before the simulator takes its next time-step.
The advantage of next_time is that it gives the template the opportunity to
re-evaluate circumstances, and then assign to next_time either the same
value, a new value, or no value.

With the schedule_next_time function, you have the opportunity to
overcome the disadvantage of next_time without sacrificing its advantage.
Schedule_next_time lets you provide the simulator with a value that it can
schedule (and therefore not forget). The schedule_next_time function has
the following syntax:

[scheduling_id =] schedule_next_time (time)

where:

To see the usefulness of the schedule_next_time function, suppose an
input waveform “turns” suddenly and without warning (i.e., its time
derivative changes abruptly). Normally the simulator has to backtrack and
search around to get back “on track.” Worse, if the sudden turn is the
beginning of a spike, then the simulator might “step over” the spike without
even detecting it.

To keep the simulator close to the waveform, you can schedule time steps at
the places where the time derivative of the waveform changes abruptly. In
particular, telling the simulator to take time-steps precisely at the “turning”

scheduling_id (optional) is an array of two state variables. This array
became a unique identifier when next_time is
scheduled, and can be used to deschedule the next_time .

time is an expression whose value is a time at which the
simulator is to evaluate the system. That is, unless this
scheduling is subsequently de-scheduled, the simulator
will not “step over” this scheduled time, even if the time-
step algorithm indicates that it should. If you are running
an analysis with mon(itor) set to a positive value (every n
steps), scheduled time steps are displayed with an “x” in
column 1 of the display.

If the time value is less than the current simulation time,
the simulator ignores the expression.
9-8 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When Statement
points of the input function, that is, by scheduling time-steps there, you can
keep it close to the curve and thereby increase its efficiency.

DeScheduling

To deschedule a scheduled event, use the deschedule command, which has
the following format:

deschedule (schedule_id)

where:

Initializing Templates

In mixed-mode simulation, state variables in a template can depend upon an
analog waveform or analog waveforms can depend upon a state variable, or
both. For example, in digital-to-analog converters, analog output depends
upon digital state input, whereas in analog-to-digital converters, digital state
output depends upon analog input. Because of this relationship and the
nature of the DC algorithm, state variables should be initialized as if the
corresponding analog waveforms are equal to 0.

When performing discrete time simulations, the Saber simulator treats the
analog and digital portions of the system separately. The analog portion has
continuous time and analog signals, while the digital portion has discrete time
and either discrete or analog signals, represented as states. The declaration of
a discrete state is similar to the following:

state logic_4 statevar
where the logic_4 unit definition permits only four distinct states. In
contrast, the declaration of an analog state is similar to:

state v statevar
where the v (voltage) unit definition permits a continuum of states.

State variables used as connection points in a template cannot be initialized
within the template. These “external” states are automatically initialized to
the initial value specified in a digital state unit definition for digital states, or
to undef for analog states.

If an initializer is not specified, local digital states will be initialized to the
initial value specified in the digital state unit definition and analog states will
be initialized to undef , just as with states used as connection points. However,
there are several cases in which local states should be initialized to alternate
values.

schedule_id is an array of two unitless state variables which becomes
a unique identifier when an event of a next_time was
scheduled.
MAST Language Reference Manual (June 2003) 9-9
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
First, state variables used locally within a template should be initialized so
that they correspond to zero values of any associated analog waveforms. This
is required so that the DC algorithm (described later in this section), which is
used to find an initial point in a circuit containing both analog and discrete
circuitry, will work correctly.

An example of this might be a template that performs a local analog to digital
conversion and an analog to analog-event-driven conversion in the course of
modeling some device. The digital state should be initialized to be whatever it
should be if the incoming analog waveform were to equal zero. (If a zero input
would produce an l4_1 digital state, then the digital state should be
initialized to l4_1 .) Similarly, the analog event-driven state should be
initialized to whatever it should be if the incoming waveform were to equal
zero. (If a zero input would produce an analog state of 2.0 volts, then the
analog state should be initialized to equal 2.0 volts.)

Second, if a local state variable does not have an associated analog waveform,
then it does not have to be initialized, but in many cases the model would be
more realistic if it were initialized. For instance, it would be more pragmatic
for a digital clock to be initialized to some state during a DC analysis, rather
than allowing it to remain indeterminate until the start of ensuing analyses.

For instance, in a clock template you need to decide what its initial value
should be, a logic 0 or a logic 1. There is no reason to propagate a logic x on a
clock for dc, since the purpose of dc is to come up with initialization. The
following is an example of a clock:

when(dc_init){
schedule_event(time,out,l4_1)

}

It is important that templates that generate events, such as clocks, only
generate events during transient analyses, and either not at all or (in some
cases) only once during the DC analyses. This implies that there might be
places in templates where you have to put “if (time_domain)” around events
you plan to schedule.

Initialize state variables in the local declarations section using the following
syntax:

state unit statevar=initial_value
where state is a keyword, the unit refers to a unit definition, the statevar is
the name of the state being declared, and the initial_value is the initial value
to which the statevar should be initialized.

The DC Algorithm

The DC algorithm for mixed-mode simulation proceeds as follows:
9-10 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

When Statement
1. Take the initial point, ip , from the dcip variable of the dc or dctr
command.

2. Initialize variables. Set all analog system variables to zero. Set external
digital states to their initial values as specified in the appropriate unit
definitions, set external event-driven analog states to undef , and set
internal discrete states to any specified initial values, or, if no initial
value is specified, to the initial value specified in the unit definition for
digital states and to undef for analog states.

3. Do all when(dc_init) sections in all templates. Evolve discrete
system appropriately. Do all when(dc_start) .

4. Find the effects of the analog subsystem on the discrete subsystem by
observing all threshold conditions as analog signals go from zero to
their ip values. For any threshold conditions that become satisfied,
execute the statements portion of the corresponding when statement.

5. Evolve the discrete subsystem, ignoring scheduled next times, until
either there are no more scheduled events or until oscillation is
detected. The purpose of “next times” is to convey discrete effects into
the analog subsystem. They are ignored at this point because the
analog signals have not yet advanced beyond their ip values.

6. Solve the analog subsystem, starting with ip and ending with a
new_ip .

7. Again find the effects of the analog system on the discrete subsystem by
observing all threshold conditions as analog signals go from their ip
values to their new_ip values. For any threshold conditions that
become satisfied, execute the associated statements. If no threshold is
crossed, the DC algorithm is complete and ends.

8. Otherwise, evolve the discrete subsystem to find the effects of the
discrete subsystem on the analog subsystem, noting scheduled next
times. If no next times are scheduled, then the DC algorithm continues
until either there are no more scheduled events or oscillation is
detected. If there are no scheduled next times, the DC algorithm is
complete and ends.

9. Otherwise, let ip be new_ip . If the number of DC iterations is less than
the limit, return to step 6. Otherwise, the DC algorithm is complete and
ends, and the remaining scheduled next times go into the DC endpoint
file (dcep).

In step 4, the simulator checks for any effects that the analog subsystem
might have on the discrete subsystem as the analog signals move from zero to
MAST Language Reference Manual (June 2003) 9-11
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
their ip values. The template writer must ensure that the initial values of the
state variables correspond to the initial values of the analog signals, so that
the DC algorithm will produce the correct result.

State Outputs Used as Connection Points

One very important concept to understand about using states and discrete
time simulation is the following:

The value at an output state connection point is not known to a
template internally. You must use an internal state to schedule a state
output as an event.

This is the case because of requirements to resolve conflicts and to include bi-
directional pins. As an example of conflict resolution, imagine two digital
devices with outputs connected. The output of one model is HIGH and the
output of the other is LOW. The actual resulting state at the node may be low,
high, or some other value.

As an example of bi-directional pins, imagine a digital device that usually
drives an analog device. However, if it has a digital state of logical z (high
impedance), it cannot drive the analog device. The analog device can then map
onto the digital device and force the digital part to have a specific logic state.

In both cases, it is not possible to say, in general, that the output state found
by a template will be the resulting state at the connection point. Therefore,
output states are not made known to the template as events, because they
may be incorrect. If you want to model a device in which you rely on an output
state connection point, you must declare an internal state that changes with
the output state, and use the internal state for scheduling. This is shown in
Examples on page 9-14. The example shows a digital clock model.

Mixed Simulator Simulation

The Saber simulator can perform mixed analog and digital simulation using
discrete time simulation. It can also perform mixed-simulator simulation, in
which Saber, as the analog simulator, models the analog sub-system, and
another simulator, as a digital simulator, models the digital sub-system.

There are three new concepts that must be understood for mixed-simulator
simulation: time resolution, foreign states, and hypermodels.

Time resolution refers to the granularity of time in a digital simulator. Events
can happen only at multiples of minimum time resolution. The menus used in
Saber for mixed-simulator simulation have a time resolution variable which
should be set to less than or equal to the digital simulator’s time resolution.
9-12 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Mixed Simulator Simulation
Foreign states are the states that the Saber simulator passes to the digital
simulator. These must be declared locally as foreign states on the analog side.
The invocation of the mixed-simulator sets up the communications path on
which these foreign states are passed between the simulators. One of the first
steps in the mixed-simulator simulation is to check for agreement in the
foreign state declarations.

Hypermodels are the models of devices that are simulated by both an analog
and a digital simulator. Any device with pins common to both simulators must
have those pins modeled for both analog and digital characteristics. Each of
these pins requires two hypermodels -- one for the digital simulator and one
for the analog simulator (Saber).

Examples

The following examples show templates that use discrete time simulation.

Cloc k Template

This template models a simple clock, producing the type of waveform shown
above. It is set to a HIGH state (l4_1) in the DC analysis using the
when(dc_init) statement. An internal state, wake_up , is used to report the
output state of the template, out , within the template, because an output
state used as a connection point will not have its event made known to the
template internally. The wake_up is used to schedule the clock timing and the
next wake_up event.

#**
l4_1 +---------+ +-----
| | |
l4_0 +--------------+ +--------------+
#
|<-----td1---->|<--td2-->|<-----td1---->|

 # lowtime hightime lowtime
#**

template clock out = hightime, lowtime
this template models a square wave whose duty cycle is
input using hightime and lowtime

state logic_4 out
number hightime #time when signal is high
number lowtime #time when signal is low

{
state nu wake_up
when(dc_init){

schedule_event(time,out,l4_1)
}
when(time_init){

schedule_event(time,wake_up,0)
MAST Language Reference Manual (June 2003) 9-13
Copyright © 1985-2003 Synopsys, Inc.

lzz1
Clock Template

Chapter 9: MAST Functions
}
when(event_on(wake_up)){

schedule_event(time+hightime,out,l4_0)
schedule_event(time+hightime+lowtime,out,l4_1)
schedule_event(time+hightime+lowtime,wake_up,0)

}
}

Ideal Sample and Hold T emplate

This template models an idealized sample and hold with a digital gate input
(which could be connected to the previous clock example, for instance). When
the input gate is HIGH, the template holds the previous out waveform. When
the input gate is LOW, the template samples the in waveform. The template
has two arguments, a delay time, dt , and a rise/fall time, rt .

template smplhold in gate out gnd = dt,rt

electrical in, out, gnd
state logic_4 gate
number dt=1n #delay time in seconds
number rt=1n #rise & fall time in seconds

{
var i iout #output current
state v held #held voltage
state time next=0 #time when sample is valid
state nu sample #flag: 1 => sample, 0 => hold
val v vout, #output voltage
vin #input voltage

#detect event on gate - an input state connection point
when (event_on(gate)){

if (gate == l4_1)
schedule_event(time+dt+rt,sample,0)

else if (gate == l4_0)
schedule_event(time+dt,sample,1)

}
#sample input waveform

when (event_on(sample)){
schedule_next_time(time)
if (sample == 1) {

next = time + rt
schedule_next_time(next)

}
else held = v(in) - v(gnd)
9-14 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

lzz1
Ideal Sample and Hold Template

lzz1
This template models an idealized sample and hold with a digital gate input(which could be connected to the previous clock example, for instance). Whenthe input gate is HIGH, the template holds the previous out waveform. Whenthe input gate is LOW, the template samples the in waveform. The templatehas two arguments, a delay time, dt, and a rise/fall time, rt.

lzz1

lzz1

lzz1

lzz1

lzz1

Mixed Simulator Simulation
}
values{

vin = v(in) - v(gnd)
if (time < next & sample==1){

vout = vin - ((next-time)/dt)*(vin-held)
}
else vout = vin
if (sample == 0) vout = held

}

equations{
i(out->gnd) += iout

iout: v(out) - v(gnd) = vout
}

}

The smplhold template has a digital state variable, gate , used as an input
pin. Note that a state connection point which is an input can be used as an
event in a When statement. Only events which are based on output state
connection points cannot be known within a template; thus, they often require
the use of an additional local state variable.

The Values section is used to provide a way for the voltage at the output to
progress continuously from a previously held state to a new sampled state. It
uses the schedule_next_time function to schedule when the change from
holding to sampling should take place, and when full sampling has been
achieved. The template uses event-driven analog states, held , time , and
sample .

Digital In ver ter

This template models a digital inverter that can produce states of logic_4
states of l4_0 , l4_1 , and l4_x . Since there are no analog signals, no
Equations section is necessary to model the device.

template inverter in out

state logic_4 in, out
{

when(event_on(in)){
if (in == l4_1) schedule_event (time,out,l4_0)
else if (in == l4_0) schedule_event (time, out, l4_1)
else schedule_event(time,out,l4_x)

}
}

MAST Language Reference Manual (June 2003) 9-15
Copyright © 1985-2003 Synopsys, Inc.

Chapter 9: MAST Functions
9-16 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

Index
A

Arrays 3-16
Assignment Statements 6-1

C

Calling Foreign Subroutines 8-1
Control section 7-34

D

Deprecated MAST Features 1-2

E

Equations section 7-42
Expression Types 4-1

H

header 7-11
header declarations 7-13

I

Introduction 1-1, 3-1, 4-1, 5-1, 6-1, 8-1

L

local declarations 7-18
Log and Exponential Functions 5-3

M

MAST Keywords 2-5
MAST Modeling Language 1-3

N

Nested Composite Types 3-18
Netlist section 7-26

O

Other Mathematical Functions 5-4

P

Parameter Types 3-8
Parameters Section 6-2
Parameters section 7-24
Pin Definitions 3-6
pin definitions 7-9

T

Template Variables 1-13
Templates and Hierarchy 1-4
Trigonometric and Hyperbolic

Functions 5-2

U

unit definition 7-6
Unit Definitions 3-4

V

Values Section 6-7
Values section 7-31

W

When Statement 6-7
When statements 7-29
MAST Language Reference Manual (June 2003) Index-1
Copyright © 1985-2003 Synopsys, Inc.

Index
Index-2 MAST Language Reference Manual (June 2003)
Copyright © 1985-2003 Synopsys, Inc.

	MAST Language Reference Manual
	Copyright Notice and Proprietary Information
	Right to Copy Documentation
	Destination Control Statement
	Disclaimer
	Registered Trademarks, Trademarks, and Service Marks of Synopsys, Inc.
	Registered Trademarks (®)
	Trademarks (™)
	Service Marks (SM)
	MAST Language Reference Manual
	Overview
	MAST Syntax Rules
	Declarations and Data Structures
	Expressions
	Intrinsic Functions and Values
	Statements
	Templates
	Foreign Functions
	MAST Functions
	Index

