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DYNAMIC MODELLING OF SWITCHING SYSTEMS

H.R. Visser P.P.J. van den Bosch

Delft University of Technology, The Netherlands

Abstract. A generalized approach for obtaining a small-signal model of linear switching
systems is described. Starting from a piece-wise constant linear description of the system,
a concise, discrete-time model is obtained using the augmented state vector method.
This model together with a generalized description of the transition conditions between
the modes is used to obtain the cyclic state of the system. Linearization of both the
model and the transition conditions yields a linear small-signal model, which is valid
in the vicinity of an operating point. Due to the augmented state form of the system,
this linearized model can easily be calculated. This method for obtaining a small-signal
model is applicable to a large class of systems. As an example, the advantages of the
method are shown in an experiment with a DC-motor drive.
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INTRODUCTION

Modelling of power electronic converters has been
subject of intense research activity in recent times
[1)-[6]. These converters contain power sources and
dynamic elements (capacitors and inductors) inter-
connected by resistors and switches. With the
switches the configuration of the network can be al-
tered. Therefore, the model of the system is not con-
stant, but changes discontinuously at the switching
instants. Between the switching moments, however,
the system parameters are considered to be constant.
Thus, a complete model of the system consists of a
set of models, each one valid in consecutive intervals
of time.

For analysing the behaviour of the system the differ-
ential equations governing these models have to be
solved, and the solutions combined. Using the aug-
mented state vector method yields concise models
which can easily be manipulated [1]. Further, mod-
els describing the dynamic behaviour of the network
are obtained via linearization. Due to the augmented
state form of the system, the resulting expressions
can easily be calculated. With these models the be-
haviour of the controlled system can be evaluated
for all operating points. The merits of the proposed
modelling technique are shown in an experiment with
a DC-motor drive.

SYSTEM FORMULATION

In this section a definition of the class of systems
under study will be given. Switching systems have
two main characteristics. First, switching systems
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display a number of operating modes. Each mode
is described by its own set of differential equations.
Second, the transition between modes is abrupt, so
the system parameters change discontinuously. The
state variables of the system (i.e. the physical quan-
tities like inductor currents, capacitor voltages, ve-
locities, positions etc.) are the same for all modes,
and they are continuous in time.

It is assumed that the system is in cyclic operation,
which means that there is a fixed, repetitive sequence
of modes called a cycle. By definition, mode i is ac-
tive in the interval given by t € [t;_y[k),%[k]), in
which k denotes the k-th cycle. The time instants
ti[k] are event times on which a change of modes
takes place. This changing of modes over different
intervals is illustrated in figure 1. Corresponding
modes in different cycles do not have to have the
same duration, nor do consecutive cycles have to
have the same length. Further, all modes are de-
scribed by the same type of linear, time-invariant
model (1). The parameters of these models, how-
ever, vary for each mode. In (1) the matrices A4;
(n x n) and B; (n x ) represent resp. the system
matrix and the input matrix for mode i. The state
vector z(t) (n x 1) is the same for all modes.

() = Aiz(t) + Biu(t) Q)

From this model the behaviour of the state z(t) can
be calculated. First the evolution of the state over
one mode interval is obtained. Starting from ¢ =
ti_1[k], the state vector z;[k] = x(t;[k]) is found,
using some short-hand notations, from

w,[k] = Qi[k]wi_l[k] + F,[k] with (2)

®;[k] = eAi (k] -t 1 [K])
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Figure 1. Definition time intervals

ti[k]
L;fk] = / et Boy(r) dr
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Calculating the state z(t) over more than one inter-
val is done by applying (2) recursively. For systems
fed by DC-power supplies (2) can further be sim-
plified by application of the augmented state vector
method introduced in [1], especially if one (or more)
of the system matrices A; is singular. State vector
augmentation is done by reformulating the system
(1) into

S(0)-(t) () o
8(t) = Aid(t) 4)

With state vector augmentation, the evolution of the
state vector is also calculated from a previous value
of the state vector. The resulting expressions are
simpler, however, because the augmented system is
homogeneous. For each mode 7 (2) can be rewritten
as

#[k] = eAidtFlg, (k] = i[k)#(tie) ()

Appying (5) recursively gives an expression for the
state evolution over a complete cycle.

o[k + 1] = Spufk] - - - &1 [k]20[k]
= Beoe[k]20[k] (6)

Model (6) is a sampled-data model describing the
behaviour of the state vector at the beginning of a
cycle. This model will further be used to investigate
the dynamic properties of the switching system. For
notational simplicity Z and & will from this point
on be written as z resp. $. Augmentation of the
state vector is therefore implicitly assumed for all
variables.

Transitions

In the previous section the switching instants t;[k]
were assumed to be known. In general, the transi-
tions between modes are governed by a set of tran-
sition conditions that explicitly or implicitly deter-
mine when a transition takes place. A transition

condition can be written as a constraint of the form
gi[k] = 0, in which i denotes the transition from
mode i to the next mode in cycle k. Each con-
straint specifies a relation between the transition mo-
ment ¢; and some triggering signal, which may in-
clude control actions, a timing mechanism, a func-
tion of the state vector (e.g. a diode current becom-
ing zero) etc. For example, for Pulse Width Mod-
ulation (PWM) the duration of the first mode of
cycle k, Aty[k], can be dictated by some external
control signal v[k]. This results in a constraint
gi[k] = Ati{k] — v[k] = 0. In principle, any function
could serve as a transition condition, which would
make the analysis of the system difficult. There-
fore, the transition conditions are restricted to be
linear functions of the state vector z;, the time in-
tervals At;, an external input term v and a digital
linear controller z.. Grouping the time intervals At;
into a vector d[k] = ( At [k] Atp,[k] )T, the
transition conditions can be written in a general ma-
trix/vector notation.

0 = G [klzo[k] + Gez[k] + Gad[k] +
+ Gyu[k] + Go ]

The controller state z.[k] in (7) is governed by the
following difference equation

ool + 1) = Bezclk] + TealKlolk] + Toad[k] (8)

In (7) and (8) the parameters G,[k], G¢, G4, G,
Go, ¥, I'ex[k] and Loy are matrices of appropriate
dimensions. The general formulation of (7)-(8) al-
lows the transition conditions to include almost any
linear control scheme. Also, state-dependent mode
transitions (e.g. a diode that stops conducting when
the current drops to zero) are easily modelled this
way.

CYCLIC STATE

In this section the behaviour of the system in cyclic
mode will be analysed. Due to the constant changes
in system parameters A; and B;, the state vector of
the system will not converge to a steady-state, but



to a cyclic state. A system is said to be in cyclic
state if the behaviour of the system is periodic, i.e.
both the state vector and the mode transitions are
periodic. The cyclic state is found by stating that
the state vector at the end of a cycle must equal the
state at the beginning of the cycle, thus

zolk + 1] = zo[k] = =0 9)
Solving this equation yields the periodic state vector
Zo at the beginning of the cyclic period. Using (6),
the cyclic state condition becomes

(@ga(d) - I)ﬂ:o =0 (10)
in which I is the identity matrix. This condition can
easily be solved if the time intervals d are known (see
e.g. [1]). As was shown in the previous section, this
is not the case. The time intervals are determined
by the transition conditions (7) and (8). In cyclic
state, these conditions must still hold, so using the
cyclic state values of all variables, the cyclic state
transition conditions become

0= Gz(d)mo + Geze + Ggd + Gov + Go
0 =T (d)zo + (®. — N + Tegd

(11a)
(11b)

Combining (11) with (10) gives a set of equations
from which the cyclic state values of the state g,
the controller state . and time intervals d can be
solved given the input v. Notice that the equations
are nonlinear in d, but not in ¢ and z.. This makes
it possible to eliminate x4 and z. from the equations,
yielding a reduced order problem of the form F(d) =
0, which can subsequently be solved numerically, e.g.
via Newton-Raphson. Substitution of the resulting d
in (10)-(11) gives a linear set of equations from which
zo and z. can be determined directly.

Using the cyclic state values of 2o and d and (2)-(5),
all values of the cyclic state z., (t) can be calculated
analytically for any ¢. As described in [1], [2] this
cyclic state can be used to calculate average values,
harmonics etc. of the state variables.

SMALL-SIGNAL MODEL

In the previous section the behaviour of the sys-
tem in cyclic state was obtained. The cyclic state
is the equivalent of the steady-state in normal (non-
switching) systems, so it describes the static proper-
ties of the system. For stability analysis and control
purposes it is also necessary to know the dynamic
properties of the system. A dynamical model of the
switching system was given by the equations (6)-(8)
and describes the full (large-signal) behaviour of the
switching in cyclic operation. The problem with this
model is that it is nonlinear, which makes it difficult
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to analyse. Therefore, a description of the system’s
local behaviour around an operating point will be
investigated. In the vicinity of an operating point
the properties of the system are almost constant.
This means that for small deviations of the operating
point the nonlinear system model may be approxi-
mated by a linearized model (see e.g. {7]), the small-
signal model. There are several methods to arrive
at a small-signal model. The two most commonly
known methods are state-space averaging [3], and
exact linearization (e.g. [4], [5], [6]). Here, the latter
will be used. For this, the notion of operating point
has to be defined first. An operating point of a sys-
tem is the set of inputs, outputs and states for which
the system can be in steady-state. For a switching
system the term steady-state must be interpreted as
cyclic state. Characteristic for a switching system in
cyclic state are the state z( at the beginning of a cy-
cle, the controller state x., the duration of the mode
intervals d and the input v. The operating point is
denoted by P = {z¢, z,d, v}.

The exact large-signal model for the behaviour of
state vector xq[k] is given by (6). Linearization of (6)
is obtained by taking the first-order Taylor approxi-
mation, yielding

in which Azolk] = zo[k] — 2o, Ad[k] = d[k] — d and
Va4 denotes the gradient operator with respect to d
in the operating point P. Each of the columns of
the matrix Va(®exzo) = ( 71 Y )T, with di-
mensions dimn x m, is calculated from
8

Y= a—di(‘l’eoezo) = Pmip14i®in - 20 (13)
In (12), the time intervals dfk] were considered inde-
pendent variables of the linearized system. They are,
however, determined by the transition constraints
given by (7) and (8). In cyclic state, the operat-
ing point variables {xo, z, v, d} satisfy the transition
constraints. For deviations from the operating point
the transition conditions still have to be fulfilled, so
any perturbations in the states z,, x. and the in-
put v will result in deviations of d from its operating
point. To calculate these deviations, the transition
constraints are also linearized in the operating point
P. Linearization of the transition constraint (7), the
evolution of the controller state, yields

Azclk + 1] = Top(d) Axo[k] + S Az [k] + (14)
+ (Ted + Va(Teezo)) Ad[k] + Ty Avik]

in which Vg(T'ez20), dimn,. x m, is obtained analo-
gously to (13). Next, the transition constraint (8),
relating the current time intervals d[k] to the states
zo[k] and z[k] and the input v[k] is linearized.

0 = Gy(d)Azolk] + G Az [k] + (15)
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Figure 2. Block diagram of the complete linearized system

+(Ga + Va(Gozo)) Adlk] + G, Av[k]

Combining the linearized model equations (12}, (14)
and (15) into one matrix/vector representation gives

( AX[E+1) ) _ (%‘%) ( AA{:[%] )+ (16)

+ ( . )Av[k] with

AX[K) = ( Asolk] )

Az [k]

Bud) 0 | Va(®eoewo)
(%’%) = ( Twld) 2. rcdivd(rwzo) )

Gw(d) G, I G4+V4(meo)

E=G,

Equation (16) is the relation between all small-signal
variables. Eliminating Ad[k] from the bottom rows
of (16) gives the linearized dynamical model for the
combined state vector AX[k]. A block diagram of
the linearized model is given in figure 2. In the dia-
gram g~ ! denotes the unit delay operator.

AX[k+1]=(A—- BD'C)AX[k] + a7
~ (BD™'E)Av(k]

Notice that given the cyclic state xq all terms of the
linearized model can be calculated directly.

EXAMPLE

As an example that the theory can be applied not
only to switching electrical networks but also to a
more general class of motion systems, a DC-motor
drive is chosen. The drive consists of an electronic
driver circuit, a filter and a DC-motor. The output of
the control system is a PWM signal (Tpwasr = 85us),
which is switched between maximum voltage (40 V)
and zero with duty ratio «. The current through the
motor is restricted to be positive by hardware. The
model of the drive system is given by

() = (= - w(t) +ep i @)/
(1) = (ult) — g - w(t) ~ Run » i (8))/Lom

with w(t) the angular velocity, i, the motor current
and

¢, 0.04Nm/A

L, 07mH

R, 500

J 2.0 10~6 kgm?

f 3.0 10~% Nms/rad

motor parameter
motor inductance
motor resistance
inertia

friction coefficient

Since the motor current iz, can become zero, there
are three possible modes of operation: voltage on,
voltage off and voltage off/current zero. This leads to
three sets of A and B-matrices and three transition
constraints. The transition constraints between the
modes are:

gim2[k]:  Aty[k] = ofk]- T
g2o3lk]:  dr(tz[k]) = 0
g3_,1[k]: Atl[k]+Atz[k]+At3[k] =T

Rewriting these constraints in the form (7), using
an (augmented) state z(t) = ( w(t) ip(t) 1 )T,

yields
0 0 0O -T
GJel=] 0 1 0 Go=|{ 0©
0 0 0 0
100 0
Ga= 00 Gop = 0
11 -T

The other transition parameters in (7)-(8) are zero.
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Figure 3. Angular velocity w versus duty ratio
« in cyclic state

Solving the cyclic state conditions for this system
yields the relation between the duty ratio a and



the cyclic state. Figure 3 shows the nonlinear re-
lation between duty ratio o and angular velocity w.
The gain of the linearized system (=the slope of the
curve) varies by a factor of more than 20! This non-
linearity is mainly due to the fact that the motor
current i;, becomes zero at some point of the cycle,
which strongly depends on the duty ratio a. Figure
4 shows the behaviour of the motor current in cyclic
state.

0.4 v T T
< 03
g 02
Q
‘,g 01
[¢]
0 1 2 3
time [s) x10+

Figure 4. Motor current for a = 0.5

Calculating (17) yields a sampled data model of the
system. With this model a comparison was made be-
tween the exact (nonlinear) solution of the state vec-
tor (via simulation) and the linearized model. The
operating point was chosen as a = 0.5. In the sim-
ulation the duty ratio was varied between 0.45 and
0.55. Figure 5 shows that the linearized model (solid
line) is a good approximation of the exact solution
(dashed line), which is also confirmed by measure-
ments.
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Figure 5. Comparison exact and linearized model

CONCLUSIONS

Modelling of the system systems with an augmented
state vector yields concise models which can easily
be manipulated. The transition conditions between
the modes of the switching system are formulated
in a structured way, allowing most practical (linear)
control schemes to be included directly. From this
system formulation the cyclic state of the system is
obtained. Also, linear dynamic models of the small-
signal behaviour are easily calculated using this for-
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mulation. Simulations show that the small-signal
model gives a good description of the system be-
haviour.
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