Origin of Low Frequency Harmonic Pollution and Conventional Compensation Techniques

Outline

- (Definitions: PF, THD, DF)
- Diode rectifiers
- (Phase controlled rectifiers)
- Dimmers
- Passive compensation

1

Power Factor - Definition

Input voltage and current are periodic waveforms with period T.

For sinusoidal waveforms, active power P is given by:

$$P = \frac{1}{\tau} \cdot \int V i dt = V I \cdot \cos(\phi)$$

while, for generic waveforms:

$$P = \frac{1}{T} \cdot \text{vidt} = VI \cdot PF$$

where term PF is the POWER FACTOR

 $\cos(\phi)=0.87$

PF=0.74

Power Factor - Definition

By definition, Power Factor PF is given by:

$$PF \equiv \frac{P}{V \cdot I}$$

where P is the average power:

$$P = \frac{1}{T} \cdot \int_{T} v i dt$$

while V and I are the r.m.s. values of line voltage and current:

$$V \equiv V_{rms} \equiv \sqrt{\frac{1}{T} \int_{T} v^2 dt}$$
 $I \equiv I_{rms} \equiv \sqrt{\frac{1}{T} \int_{T} i^2 dt}$

$$I \equiv I_{rms} \equiv \sqrt{\frac{1}{T}} \int_{T}^{12} dt$$

 $\cos(\phi) = 0.87$

PF=0.74

Power Factor - Definition

Case of SINUSOIDAL INPUT VOLTAGE

The average power is given by first harmonic term only

Current terms:

- Instantaneous i
- In-phase first harmonic i1

Power terms:

- Instantaneous p
- First harmonic p₁
- Average P

Power Factor - Definition

Case of SINUSOIDAL INPUT VOLTAGE

$$PF = \frac{P}{VI} = \frac{V_1 I_1 cos(\phi_1)}{V_1 I} = \frac{I_1}{I} cos(\phi_1)$$

D.F. =
$$\frac{I_1}{I}$$
 = Distortion Factor $\cos(\phi_1)$ = Displacement Factor

$$D.F. = \frac{1}{\sqrt{1 + (THD)^2}}$$

THD =
$$\frac{\sqrt{|^2 - l_1^2}}{l_4} = \frac{\sqrt{\sum_{n \ge 2} l_n^2}}{l_4}$$

$$PF = \frac{\cos(\phi_1)}{\sqrt{1 + (THD)^2}}$$

THD = Total Harmonic Distortion

Power Factor - Definition

0 ≤ PF ≤ 1

PF = 1 only if current and voltage are proportional

An ideal line-fed converter is a power interface which takes from the supply a current proportional to the given voltage thus emulating a resistor

This kind of converter is called

Power Factor Corrector (PFC)

Emulated Resistance

Rem -

Small Power Factor Current absorption higher than necessary

Origin of Harmonic Pollution Diode rectifiers with capacitive filter

- Single-phase and three-phase rectifiers show low PF (high Distortion Factor)
- Class D limits have to be considered owing to the high crest factor of line current waveform
- Typical applications exceed standard limits
- Passive filters (inductors) are usually employed to reduce line current THD
- Voltage fluctuations at start-up must be considered

Origin of Harmonic Pollution

SCR rectifiers (inductive load)

Single-phase and three-phase rectifiers show low PF (high Distortion Factor and low Displacement Factor)

Class A limits have to be considered owing to line current waveform

Small power applications do not exceed class A limits

Passive filters (inductors) are usually employed to reduce high-frequency current components

High-frequency pollution must be considered (SCR commutation)

Origin of Harmonic Pollution Traditional Light dimmers

Traditional light dimmers show both low-frequency and high-frequency pollution

Origin of Harmonic Pollution Last-generation light dimmers

Modern light dimmers comply with standards requirements

13

Needs for Power Factor Correction

- Improved source utilization
 - lower loss on line resistance
 - less voltage distortion at the load terminals (cross-coupling)
 - more power available from a given voltage source
- Reduced low-frequency harmonic pollution
- Reduced acoustic noise
- Compliance with low-frequency EMC standards

Power Factor Correction Techniques

PASSIVE METHODS

- high reliability
- suitable for very small or high power equipment
- power factor less than unity
- bulky components

ACTIVE METHODS

(high-frequency switching converters)

- unity power factor
- possibility to use high-frequency transformers
- suitable for small and medium power levels
- high-frequency harmonics pollution (EMI)

Passive Power Factor Correction Passive Filters (L, LC, resonant) Multiphase rectifiers (high power systems)

Passive Power Factor Correction

Inductive filter causes:

- Dependence of voltage drop on load current
- Increase of rectifier output impedance
- Phase lag of line current
- \bullet High frequency EMI due to diode $_{\rm 17}$ reverse recovery

Passive Power Factor Correction

Performances vs Inductive Filter Selection (L_a)

(Line inductance = 200 μH)

L _g [mH]	^ I _g [A]	PF	THD(v _q)	THD(i _q)	U _o [V]
0	7.2	0.48	0.3%	180%	324
1.8	4.3	0.56	0.2%	147%	320
19.8	2.3	0.70	0.1%	95%	306

Passive Power Factor Correction

Modified Passive Filter

- Exploits difference between Class D (relative) and Class A (absolute) standard limits (IEC 1000-3-2) to reduce reactive component size
- · Suitable for low power applications
- · No output voltage regulation

19

PFC Structures: Active Power Factor Correction Techniques

Line-frequency commutation

- Switch commutation at twice the line frequency (minimal switching losses)
- Reduced reactive element volume compared to passive filters
- Reduced EMI compared to high frequency rectifiers
- Limited power factor and output voltage regulation
- , Simple and cheap

Active Power Factor Correction

Line-frequency commutation

- Suitable for higher power (smoother input waveform)
- Limited power factor and output voltage regulation

21

Active Power Factor Correction Line-frequency commutation Input current waveform Input Class D template Torrection Torrection

PFC: Basic Configurations

Two stages PFC: Cascade Configuration

PREREGULATORS: AC/DC converters with high power factor and poor output voltage regulation

- Post regulator, rated for constant input voltage (optimized design), has minimum current absorption, thus allowing minimum converter switch size
- 23 Reduced efficiency (load power is processed twice)

Basic Pre-regulators: Boost Topology

CHARACTERISTICS:

- Simple topology
- Inherent input filter (small input current THD)
- High Power Factor
- Output voltage higher than peak input voltage
- No start-up nor short circuit protection
- No high-frequency insulation