# A High Efficiency HPF-ZCS-PWM Sepic for Electronic Ballast With Multiple Tubular Fluorescent Lamps 

Fabio Toshiaki Wakabayashi

Carlos Alberto Canesin

Paulista State University<br>UNESP - FEIS - DEE<br>LEP - Power Electronics Laboratory<br>P.O. Box 31 - 15385-000<br>Ilha Solteira (SP) - Brazil<br>Fax: +55 (18) 3742-2735


#### Abstract

This paper presents a high efficiency Sepic rectifier for an electronic ballast application with multiple fluorescent lamps. The proposed Sepic rectifier is based on a Zero-CurrentSwitching (ZCS) Pulse-Width-Modulated (PWM) softcommutation cell. The high power-factor of this structure is obtained using the instantaneous average-current control technique, in order to attend properly IEC61000-3-2 standards.

The inverting stage of this new electronic ballast is a classical Zero-Voltage-Switching (ZVS) Half-Bridge inverter.

A proper design methodology is developed for this new electronic ballast, and a design example is presented for an application with five fluorescent lamps 40 W -T12 ( 200 W output power), $\mathbf{2 2 0 V}_{\text {rms }}$ input voltage, $\mathbf{1 3 0}_{\text {dc }}$ dc link voltage, with rectifier and inverter stages operating at 50 kHz .

Experimental results are also presented. The THD at input current is equal to $\mathbf{6 . 4 1 \%}$, for an input voltage THD equal to $\mathbf{2 . 1 4 \%}$, and the measured overall efficiency is about $\mathbf{9 2 . 8 \%}$, at rated load.


## I. INTRODUCTION

In the last years, electronic ballasts have been implemented in order to overcome some drawbacks of conventional electromagnetic ballasts, namely: significant size and weight, presence of stroboscopic effect, audible noise, and low efficiency.

Usually, electronic ballasts present a rectifying stage followed up by a high frequency inverting stage. This high operating frequency can provide conditions to reduce the size and weight of the required reactive devices (capacitors and inductors), and, in addition, the stroboscopic effect and the audible noise can be suppressed. Moreover, when fluorescent
lamps are fed up with high frequency currents, their luminous efficiency (lumens/Watts) can be increased when compared to fluorescent lamps operating at low frequencies [1].

In order to improve even more the electronic ballasts, rectifying stages with power factor correction techniques have been analyzed in several papers [2-4].

However, operating semiconductor devices at high frequencies can cause significant commutation losses. In this way, new rectifying and inverting stages, which incorporate soft-commutation techniques, have been proposed.

Finally, in order to reduce inherent costs of electronic ballasts, improving the attractiveness of these lighting systems, the concept of electronic ballasts applied to multiple fluorescent lamps has been developed [4].

According to this context, this paper presents a new high-power-factor electronic ballast applied to a set of five tubular fluorescent lamps (40W-T12). The input stage of this ballast is a zero-current-switching (ZCS) pulse-width-modulated (PWM) Sepic rectifier, controlled by the instantaneous average current technique. Its output stage is a classical zero-voltage-switching (ZVS) Half-Bridge inverter, controlled by a low cost IC (IR2155).

## II. The New HPF Electronic Ballast

The new electronic ballast is shown in Fig. 1. According to this figure, it can be seen that the rectifying stage presents a ZC commutation cell, derived from [5, 6], with two active switches $\left(\mathrm{S}_{1}\right.$ and $\mathrm{S}_{2}$ ), two diodes ( $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ ), two small resonant inductors $\left(\mathrm{L}_{\mathrm{r} 1}\right.$ and $\left.\mathrm{L}_{\mathrm{r} 2}\right)$, and one resonant capacitor $\left(\mathrm{C}_{\mathrm{r}}\right)$.


Figure 1 - New high efficiency Sepic rectifier applied at an electronic ballast for multiple tubular fluorescent lamps.

The main advantage of this commutation cell, when compared to that one presented in [6], is the position of $D_{1}$ : in the non-isolated application proposed in this paper, $S_{1}$ and $S_{2}$ present one single reference point to their gate drives. Furthermore, diodes $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ are not associated in a series connection in any operating stage, preserving the main characteristics of the cell presented in [6].

Regarding to the inverting stage, it can be verified that it is a Half-Bridge converter connected to asymmetrical voltage fed resonant filters ( $L_{\text {sn }}, \mathrm{C}_{\mathrm{sn}}$, and $\mathrm{C}_{\mathrm{pn}}$ ).

## III. Theoretical Analysis

## III.A. New HPF-ZCS-PWM Sepic Rectifier

The analysis of this Sepic rectifier can be simplified, maintaining a satisfactory accuracy, if the following conditions are assumed:

- all components are ideal;
- the switching frequency ( $\mathrm{f}_{\text {Sepic }}$ ) is much higher than the ac line frequency ( $\mathrm{f}_{\text {line }}$ ), so the input voltage can be considered practically constant during one switching period ( $\mathrm{T}_{\text {Sepic }}$ );
- the input filter $\left(L_{i n}\right)$ associated with the input rectifier $\left(D_{r 1}\right.$
until $D_{\mathrm{r} 4}$ ) are replaced by an input rectified current source $\left(\left|\mathrm{I}_{\mathrm{in}}(\omega \mathrm{t})\right|\right)$, and it is assumed constant $\left(\left|\mathrm{I}_{\mathrm{in}}\left(\omega \mathrm{T}_{\mathrm{i}}\right)\right|\right)$ during a generic Sepic switching period $\left(\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\text {Sepic }}\right)$;
- the accumulation inductance $\left(\mathrm{L}_{\mathrm{M}}\right)$ is large enough to be considered as a constant current source $\left(\mathrm{I}_{\mathrm{M}}=\mathrm{I}_{\mathrm{o}(\mathrm{nom})}\right.$, where $\mathrm{I}_{\mathrm{o} \text { (nom) }}$ is the nominal value of the output current);
- the accumulation capacitance $\left(\mathrm{C}_{\mathrm{e}}\right)$ is replaced by a constant voltage source $\left(\mathrm{V}_{\mathrm{Ce}}(\omega \mathrm{t})=\left|\mathrm{V}_{\mathrm{in}}(\omega \mathrm{t})\right|\right.$, where $\mathrm{V}_{\mathrm{in}}(\omega \mathrm{t})$ is the instantaneous value of the input voltage), during a generic Sepic switching period ( $\mathrm{T}_{\mathrm{i}}$ );
- the output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$ is constant.


## III.A.1. Topological Stages

The main ideal waveforms and topological stages of this proposed rectifier, during a generic Sepic switching period, are presented in Fig. 2. From this figure, it can be verified that the main switch $S_{1}$ is turned on at $\omega t=\omega \mathrm{t}_{0}$, and the auxiliary switch $S_{2}$ at $\omega t=\omega t_{2}$, both at zero-current (ZC). Furthermore, $S_{1}$ and $S_{2}$ are turned off simultaneously, in the sixth stage $\left(\Delta \mathrm{t}_{6}=\omega \mathrm{t}_{6}-\omega \mathrm{t}_{5}\right)$, at zero-current and zero-voltage (ZCZV). Diodes $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ present zero-voltage (ZV) turn-on processes, at $\omega t=\omega \mathrm{t}_{3}$ and $\omega \mathrm{t}=\omega \mathrm{t}_{8}$, respectively.


Figure 2 - (a) Main ideal waveforms; and (b) Topological stages for the HPF ZCS-PWM Sepic rectifier, during a generic Sepic switching period ( $\mathrm{T}_{\mathrm{i}}$ ).

## III.A.2. Analysis of Commutation

The analysis of this Sepic rectifier is similar to the analysis presented in [6], for its isolated version. So, in the following, the main constraints and relevant equations are summarized:

$$
\begin{gather*}
\beta=\frac{L_{r 2}}{L_{r 1}}<1  \tag{1}\\
\alpha_{\max }=\frac{I_{o}}{V_{o}} \sqrt{\frac{L_{r 2}}{C_{r}}}<\beta  \tag{2}\\
\Delta t_{o f f}=\Delta t_{6}=\frac{2}{\omega_{02}}\left(\frac{\pi-a \cos (-\beta)}{\sqrt{1+\beta}}\right)  \tag{3}\\
\Delta t_{S 2}=\frac{1}{\omega_{02}}\left[\frac{\pi}{2}+\frac{\pi}{\sqrt{1+\beta}}\right] \tag{4}
\end{gather*}
$$

where:

$$
\begin{equation*}
\omega_{02}=\frac{1}{\sqrt{L_{r 2} C_{r}}} \tag{5}
\end{equation*}
$$

As commented in $[5,6]$, values of $\beta$ near to the unity leads to significant volume for the resonant inductors, and very low values of $f$ are responsible for high resonance frequencies, increasing magnetic losses and problems of electromagnetic interference. In this way, it is necessary to choose values for $\beta$ and $f$ that will provide conditions to obtain a weak
influence from resonance over the output regulation, and will also avoid the problems of increasing volume, magnetic losses, and electromagnetic interferences.

## III.B. Resonant Half-Bridge Inverter <br> III.B.1. Topological Stages

Fig. 3 shows the four topological stages and main ideal waveforms, from one operating period of the resonant HalfBridge inverter. $S_{3}$ and $S_{4}$ are complementary operated.

It is necessary to take into account that, in the resonant Half-Bridge inverter, the active switches will perform ZV turn-on processes if the Half-Bridge switching frequency ( $\mathrm{f}_{\mathrm{HB}}$ ) is higher than the resonant frequency from the series branch ( $\mathrm{f}_{\mathrm{SB}}$ ), where:

$$
\begin{equation*}
f_{S B}=\frac{1}{2 \pi \sqrt{L_{S} C_{S}}} \tag{6}
\end{equation*}
$$

and:

$$
\begin{aligned}
& L_{s}=L_{s 1}=L_{s 2}=\ldots=L_{s n} \\
& C_{s}=C_{s 1}=C_{s 2}=\ldots=C_{s n}
\end{aligned}
$$

The characteristic of a fluorescent lamp operating at high frequencies is similar to a resistive load [7]. So, in order to simplify the analysis of this circuit, the lamp connected to the output of this inverting stage is replaced by an equivalent resistance ( $\mathrm{R}_{\text {lamp }}$ ).


Figure 3 - (a) Main ideal waveforms; and (b) Topological stages for the resonant Half-Bridge inverter, during one Half-Bridge switching period ( $\mathrm{T}_{\mathrm{s}(\mathrm{HB})}$ ).

## III.B.2. Lamp Ignition Process

In the lamp ignition process, it is necessary to ensure the preheating process, in order to avoid damages in the lamp electrodes. After it, a proper ignition voltage must be applied across the lamp for the development of the first arc. As mentioned in [6], the obtaining of high voltage values across the lamp can be achieved by setting up the switching frequency of inverting stage ( $\mathrm{f}_{\mathrm{HB}}$ ) equal to, or near to, the resonant frequency during ignition (fr), where:
and:

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L_{s} \frac{C_{s} C_{p}}{C_{s}+C_{p}}}} \tag{7}
\end{equation*}
$$

The theoretical waveforms of the voltage over the lamp are shown in Fig. 4, for different values of $f_{H B}$.
When $\mathrm{f}_{\mathrm{HB}} \neq \mathrm{f}_{\mathrm{r}}$ it can be seen that the peak value of the voltage over the lamp can be limited, avoiding damages in the circuit components if the ignition process fails.

(a) $f_{H B}=f_{r}$

(b) $\mathrm{f}_{\mathrm{HB}}=1.065 \mathrm{f}_{\mathrm{r}}$

(c) $\mathrm{f}_{\mathrm{HB}}=1.135 \mathrm{f}_{\mathrm{r}}$

Figure 4 - Theoretical voltage waveform over the lamp, during ignition process.

Also, according to the analysis presented in [6], the higher the difference between $f_{H B}$ and $f_{r}$, the lower will be the peak value of the voltage over the lamp. This fact implies in the possibility of slowing down the obtaining of high peak values of voltage, providing conditions to the evolution of the preheating process. The desired Half-Bridge switching frequency variation can be obtained using the parallel capacitor switching technique [8].

## IV. DESIGN EXAMPLE

The new electronic ballast is designed according to the input and output data presented in Table I.

The rectifying stage is designed according to the procedure presented in [6]. The following parameters are adopted:

$$
\beta=0.43, f=0.10, \text { and } \alpha_{\max }=0.342
$$

So, the resonant devices are:

$$
\mathrm{C}_{\mathrm{r}}=11 \mathrm{nF}, \mathrm{~L}_{\mathrm{r} 1}=21.4 \mu \mathrm{H}, \text { and } \mathrm{L}_{\mathrm{r} 2}=9.2 \mu \mathrm{H}
$$

From the procedure proposed in [5], the input filter is:

$$
\mathrm{L}_{\mathrm{in}}=5 \mathrm{mH} .
$$

The accumulation inductance $\left(\mathrm{L}_{\mathrm{M}}\right)$ must provide a ripple lower than $20 \%$ at its current. The accumulation capacitance $\left(\mathrm{C}_{\mathrm{e}}\right)$ is obtained from a trade-off between the need of low high frequency voltage ripple and low input current THD. So, were specified:

$$
\mathrm{L}_{\mathrm{M}}=2 \mathrm{mH}, \text { and } \mathrm{C}_{\mathrm{e}}=330 \mathrm{nF}
$$

Finally, the output filter $\left(\mathrm{C}_{\mathrm{o}}\right)$ is designed for a ripple restricted to no more than to $2 \%$ of $\mathrm{V}_{\mathrm{o}}$ nominal value:

$$
\mathrm{C}_{\mathrm{o}}=1360 \mu \mathrm{~F}
$$

Details for designing a classical resonant Half-Bridge inverter are presented in [6]. However, the following equations are more accurate for designing the required resonant devices:

$$
\begin{equation*}
f_{i g n}=\frac{f_{H B}}{f_{r}}>1 \tag{8}
\end{equation*}
$$

TABLE I

| InPuT AND OUTPUT DATA |  |
| :--- | :---: |
| Input voltage $220 \mathrm{~V}_{\mathrm{rms}} \pm 15 \%$ <br> Line frequency 60 Hz <br> Sepic switching frequency 50 kHz <br> Dc link voltage $\left(\mathrm{V}_{\text {o(nominal) }}\right)$ $130 \mathrm{~V}_{\mathrm{dc}}$ <br> Nominal Half-Bridge switching frequency 50 kHz <br> Lamp voltage $\left(\mathrm{V}_{\text {lamp(rms) }}\right)$ $120 \mathrm{~V}_{\mathrm{rms}}$ <br> Preheating frequency 85 kHz <br> Minimum pre-heating time interval 200 ms <br> Lamp ignition voltage $500 \mathrm{~V}_{\mathrm{pk} \text {-pk }}$ <br> Minimum input stage efficiency $95 \%$ <br> Nominal Output power (five $40 \mathrm{~W}-\mathrm{T} 12$ <br> fluorescent lamps) 200 W |  |

$$
\begin{gather*}
f_{z v s}=\frac{f_{H B}}{f_{S B}}>\sqrt{\frac{f_{\text {ign }} V_{A B(r m s)}}{V_{A B(r m s)}+\left(1-f_{\text {ign }}^{2}\right) V_{\text {lamp }(r m s)}} ;} ;  \tag{9}\\
C_{s}=F \frac{P_{\text {lamp }}}{V_{A B(r m s)} V_{\text {lamp }(r m s)}} ;  \tag{10}\\
L_{s}=\frac{f_{z v s}^{2}}{\left(2 \pi f_{H B}\right)^{2} C_{s}} ;  \tag{11}\\
F=\frac{C_{p}=\frac{f_{i g n}^{2}}{f_{z v s}^{2}-f_{i g n}^{2}} C s ;}{2 \pi f_{H B} \sqrt{1-\left[\frac{1-f_{z v s}^{2}}{\left[\frac{f_{z v s}^{2}\left(1-f_{i g n}^{2}\right) V_{\text {lamp }(r m s)}}{\left(f_{z v s}^{2}-f_{i g n}^{2}\right)} V_{A B(r m s)}^{2}\right.}\right.} .} . \tag{12}
\end{gather*}
$$

where:
$\mathrm{V}_{\mathrm{AB}(\mathrm{rms})}=$ rms value of voltage over the resonant tank.
Then, adopting: $\quad f_{i g n}=1.075$;

$$
f_{z v s}=4 ;
$$

the resonant devices of the Half-Bridge inverter are obtained:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s} 1} \text { until } \mathrm{C}_{\mathrm{s} 5}=330 \mathrm{nF}, \\
\mathrm{~L}_{\mathrm{s}}=\mathrm{L}_{\mathrm{sl}} \text { until } \mathrm{L}_{\mathrm{s} 5}=500 \mu \mathrm{H} \text {, and } \\
\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p} 1} \text { until } \mathrm{C}_{\mathrm{p} 5}=22 \mathrm{nF} \text {. }
\end{gathered}
$$

## V. Experimental Results

The main results obtained from an implemented prototype for the new electronic ballast are presented in the following figures. The input current of the rectifier, at nominal input voltage and full load is shown in Fig. 5, as well as its frequency spectrum. The measured input current THD is equal to $6.41 \%$, when the input voltage THD is equal to $2.14 \%$. Its measured power factor is almost the unity ( 0.995 ).

These results can be verified observing that the waveform of the input current is very similar to the waveform of the input voltage. In addition, the phase displacement between input current and input voltage is negligible, attending all requirements from IEC61000-3-2 standards.
The commutation details for the active switches of the Sepic rectifier are shown in Figs. 6 and 7, obtained when the instantaneous input voltage was near to zero $\left(\mathrm{V}_{\mathrm{in}}(\omega \mathrm{t}) \cong 0\right)$, and when it was near to its peak value $\left(\mathrm{V}_{\text {in }}(\omega t) \cong \mathrm{V}_{\text {in }(\mathrm{pk})}\right)$.
From the analysis of Figs. 6 and 7, it is possible to note that both switches perform ZC turn-on processes, and ZCZV turn-off processes. Moreover, it can be observed that these commutations are preserved during an ac system period, minimizing the commutation losses associated to these devices, and implying in a high efficiency for this stage.
Fig. 8 shows the current through $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$, during one generic switching period. In this figure, it is possible to note that they do not present a series connection, during any operating stage.


Figure 5 - (a) Input voltage and input current, and (b) frequency spectrum of $\mathrm{I}_{\mathrm{in}}$, at rated load.


Fig. 6 - Commutation details in the new HPF-ZCS-PWM Sepic rectifier, for main switch, at full load: (a) near to $\mathrm{V}_{\text {in }}(\mathrm{t})=0$, (b) near to $\mathrm{V}_{\text {in }}(\mathrm{t})=\mathrm{V}_{\text {in(pk) }}$.


Fig. 7 - Commutation details in the new HPF-ZCS-PWM Sepic rectifier, for auxiliary switch, at full load: (a) near to $V_{\text {in }}(t)=0$, (b) near to $V_{\text {in }}(t)=V_{i n(p k)}$;


Fig. $8-$ Currents through $D_{1}$ and $D_{2}$, respectively.
The commutation details of the switches employed in the Half-Bridge inverter are shown in Fig. 9, where it can be seen that both semiconductors presents a ZV turn-on process.

The overall efficiency measured in this prototype is equal to $92.8 \%$, at full load.

After ignition, the voltage over the lamp and the current across $\mathrm{L}_{\mathrm{s} 1}$ assume the waveforms shown in Fig. 10. The measured crest factor of the current acroos the lamp is equal to 1.44 .


Figure 9 - Commutation details in the Half-Bridge inverter, at full load: (a) switch $\mathrm{S}_{3}$, and (b) switch $\mathrm{S}_{4}$.

The ignition process, including the preheating process and the obtaining of high peak values of voltage over the lamp, is shown in Fig. 11. According to this figure, the preheating time interval is about 250 ms . For obtaining this preheating process, the control of the inverter stage was implemented following the steps described in [6]. It can be seen that the voltage evolves through two stages, until it reaches the required value to provide the lamp ignition (in this case, near to $500 \mathrm{~V}_{\mathrm{pk}-\mathrm{pk}}$ ).
Finally, one detail of the limit imposed to the evolution of the voltage over the lamp is shown in Fig. 12.


Figure 10 - Voltage and current across one of five fluorescent lamps.


Figure 11 - Lamp ignition process.


Figure 12 - Limit imposed to the peak value of the voltage over the lamp.

## VI. CONCLUSIONS

This paper presented a new electronic ballast for multiple tubular fluorescent lamps, employing a high-efficiency Sepic rectifier as a high power-factor input stage.

The active switches of this Sepic rectifier perform ZC commutations during their turn-on processes, and ZCZV commutations during their turn-off processes. Also, $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ present ZV commutations during their turn-on processes, and their reverse recovery effects over actives switches are minimized.

This new arrangement for the soft-commutation cell provides a single reference point to the active switches, simplifying the control circuitry, when compared to that one required to the commutation cell presented in [6].

The input current of this new electronic ballast presented low THD $(6,41 \%)$ and low phase displacement, due to the average-current mode control employed in this preregulator stage, resulting in a power factor near to the unity, and attending IEC 61000-3-2 standards.

In the resonant Half-Bridge inverter, the active switches performed ZV turn-on process, as expected. Also, the obtaining of a desired preheating time interval and the limitation of the maximum voltage across the lamp during the ignition process was possible, using a proper design procedure and a low cost IC (IR2155).
Finally, the measured overall efficiency of this new electronic ballast is equal to 92.8 , at full load.

## AcKNOWLEDGMENTS

The authors would like to thanks to FAPESP for supporting this work.

## REFERENCES

[1] M. S. Rea, "The IESNA Lighting Handbook - Reference and Application", Illuminating Engineering Society of North America, in CD-ROM.
[2] J. Spangler, B. Hussain, and A. K. Behera, "Electronic Fluorescent Ballast Using a Power Factor Correction Techniques for loads Greater Than 300 Watts", in Proc. IEEE APEC Rec., 1991, pp. 393-399.
[3] M. A. Có, D. S. L. Simonetti, and J. L. F. Vieira, "High-Power-Factor Electronic Ballast operating in Critical Conduction Mode", IEEE Transactions on Power Electronics, vol. 13, no. 1, January 1998, pp. 93-101.
[4] R. Gules, E. U. Simões, and I. Barbi, "A 1.2kW Electronic Ballast for Multiple Lamps, with Dimming Capability and High-Power-Factor", in Proc. IEEE APEC Rec., 1999, pp. 720-726.
[5] M. J. Bonato, F. T. Wakabayashi and C. A. Canesin, "A Novel Voltage Step-Down/Up ZCS-PWM Zeta Converter", in Proc. IEEE IAS Annual Meeting Rec., 2000, in CD-ROM.
[6] F. T. Wakabayashi, and C. A. Canesin, "Novel High-Power-Factor isolated Electronic Ballast for Multiple Tubular Fluorescent Lamps", in Proc. IEEE IAS Annual Meeting Rec., 2001, in CD-ROM.
[7] E. E. Hammer, "High Frequency Characteristics of Fluorescent Lamps up to 500 kHz ", in Journal of IES, Winter 1987, pp. 52-61.
[8] J. Parry, "Variable Frequency Drive using IR215X Self-Oscillating IC's', in Lighting Ballast Control IC - Designer's Manual 2001, International Rectifier, pp. 331.

