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2.1 Step, Impulse, Ramp, Sinusoidal, Exponential, 
and DC Signals

Richard C. Dorf and Zhen Wan

The important signals for circuits include the step, impulse, ramp, sinusoid, and dc signals. These signals are
widely used and are described here in the time domain. All of these signals have a Laplace transform.

Step Function

The unit-step function u(t) is defined mathematically by

Here unit step means that the amplitude of u(t) is equal to 1 for t ³ 0. Note that we are following the convention
that u(0) = 1. From a strict mathematical standpoint, u(t) is not defined at t = 0. Nevertheless, we usually take
u(0) = 1. If A is an arbitrary nonzero number, Au(t) is the step function with amplitude A for t ³ 0. The unit
step function is plotted in Fig. 2.1.

The Impulse

The unit impulse d(t), also called the delta function or the Dirac distribution, is defined by
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The first condition states that d(t) is zero for all nonzero values of t, while the second condition states that the
area under the impulse is 1, so d(t) has unit area. It is important to point out that the value d(0) of d(t) at t =
0 is not defined; in particular, d(0) is not equal to infinity. For any real number K, K d(t) is the impulse with
area K. It is defined by

The graphical representation of K d(t) is shown in Fig. 2.2. The notation K in the figure refers to the area of
the impulse K d(t).

The unit-step function u(t) is equal to the integral of the unit impulse d(t); more precisely, we have

Conversely, the first derivative of u(t), with respect to t, is equal to d(t), except at t = 0, where the derivative
of u(t) is not defined.

Ramp Function

The unit-ramp function r(t) is defined mathematically by

Note that for t ³ 0, the slope of r(t) is 1. Thus, r(t) has
unit slope, which is the reason r(t) is called the unit-ramp
function. If K is an arbitrary nonzero scalar (real num-
ber), the ramp function Kr(t) has slope K for t ³ 0. The
unit-ramp function is plotted in Fig. 2.3.

The unit-ramp function r(t) is equal to the integral of the unit-step function u(t); that is,

FIGURE 2.1 Unit-step function. FIGURE 2.2 Graphical representation of the impulse Kd(t)
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FIGURE 2.3 Unit-ramp function
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Conversely, the first derivative of r(t) with respect to t is equal to u(t), except at t = 0, where the derivative of
r(t) is not defined.

Sinusoidal Function

The sinusoid is a continuous-time signal: A cos(wt + q).
Here A is the amplitude, w is the frequency in radians per second (rad/s), and q is the phase in radians. The

frequency f in cycles per second, or hertz (Hz), is f = w/2p. The sinusoid is a periodic signal with period 2p/w.
The sinusoid is plotted in Fig. 2.4.

Decaying Exponential

In general, an exponentially decaying quantity (Fig. 2.5)
can be expressed as

a = A e –t/t

where a = instantaneous value
A = amplitude or maximum value
e = base of natural logarithms = 2.718 …
t = time constant in seconds
t = time in seconds

The current of a discharging capacitor can be approxi-
mated by a decaying exponential function of time.

Time Constant

Since the exponential factor only approaches zero as t increases without limit, such functions theoretically last
forever. In the same sense, all radioactive disintegrations last forever. In the case of an exponentially decaying
current, it is convenient to use the value of time that makes the exponent –1. When t = t = the time constant,
the value of the exponential factor is

In other words, after a time equal to the time constant, the exponential factor is reduced to approximatly 37%
of its initial value.

FIGURE 2.4 The sinusoid A cos(wt + q) with –p/2 < q < 0.
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DC Signal

The direct current signal (dc signal) can be defined mathematically by

i(t) = K –¥ < t < +¥

Here, K is any nonzero number. The dc signal remains a constant value of K for any –¥ < t < ¥. The dc signal 

is plotted in Fig. 2.6.

Defining Terms

Ramp: A continually growing signal such that its value is zero for t £ 0 and proportional to time t for t > 0.
Sinusoid:  A periodic signal x(t) = A cos(wt + q) where w = 2p f with frequency in hertz.
Unit impulse: A very short pulse such that its value is zero for t ¹ 0 and the integral of the pulse is 1.
Unit step: Function of time that is zero for t < t0 and unity for t > t0. At t = t0 the magnitude changes from

zero to one. The unit step is dimensionless.

Related Topic

11.1 Introduction

References

R.C. Dorf, Introduction to Electric Circuits, 3rd ed., New York: Wiley, 1996.
R.E. Ziemer, Signals and Systems, 2nd ed., New York: Macmillan, 1989.

Further Information

IEEE Transactions on Circuits and Systems
IEEE Transactions on Education

2.2 Ideal and Practical Sources

Clayton R. Paul

A mathematical model of an electric circuit contains ideal models of physical circuit elements. Some of these
ideal circuit elements (e.g., the resistor, capacitor, inductor, and transformer) were discussed previously. Here
we will define and examine both ideal and practical voltage and current sources. The terminal characteristics of
these models will be compared to those of actual sources.

FIGURE 2.6 The dc signal with amplitude K.
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ALL-PLASTIC BATTERY

esearchers at the U.S. Air Force’s Rome Laboratory and Johns Hopkins University have developed
an all-plastic battery using polymers instead of conventional electrode materials.  All-plastic
power cells could be a safer, more flexible substitute for use in electronic devices and other

commercial applications.  In addition, all-polymer cells reduce toxic waste disposal, negate environmental
concerns, and can meet EPA and FAA requirements.

Applications include powering GPS receivers, communication transceivers, remote sensors, backup
power systems, cellular phones, pagers, computing products and other portable equipment.  Potential larger
applications include remote monitoring stations, highway communication signs and electric vehicles.

The Johns Hopkins scientists are among the first to create a potentially practical battery in which both
of the electrodes and the electrolyte are made of polymers.  Fluoro-substituted thiophenes polymers have
been developed with potential differences of up to 2.9 volts, and with potential specific energy densities
of 30 to 75 watt hours/kg.

All plastic batteries can be recharged hundreds of times and operate under extreme hot and cold
temperature conditions without serious performance degradation.  The finished cell can be as thin as a
business card and malleable, allowing battery manufacturers to cut a cell to a specific space or make the
battery the actual case of the device to be powered.  (Reprinted with permission from NASA Tech Briefs,
20(10), 26, 1996.) 

R

Ideal Sources

The ideal independent voltage source shown in Fig. 2.7 constrains the terminal voltage across the element to a
prescribed function of time, vS(t), as v(t) = vS(t). The polarity of the source is denoted by ± signs within the
circle which denotes this as an ideal independent source. Controlled or dependent ideal voltage sources will be
discussed in Section 2.3. The current through the element will be determined by the circuit that is attached to
the terminals of this source.

The ideal independent current source in Fig. 2.8 constrains the terminal current through the element to a
prescribed function of time, iS(t), as i(t) = iS(t). The polarity of the source is denoted by an arrow within the

FIGURE 2.7 Ideal independent voltage source.
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circle which also denotes this as an ideal independent source. The voltage across the element will be determined
by the circuit that is attached to the terminals of this source.

Numerous functional forms are useful in describing the source variation with time. These were discussed in
Section 2.1—the step, impulse, ramp, sinusoidal, and dc functions. For example, an ideal independent dc voltage
source is described by vS(t) = VS, where VS is a constant. An ideal independent sinusoidal current source is
described by iS(t) = IS sin(wt + f)  or iS(t) = IS cos(wt + f), where IS is a constant, w = 2p f with f the frequency
in hertz and f is a phase angle. Ideal sources may be used to model actual sources such as temperature
transducers, phonograph cartridges, and electric power generators. Thus usually the time form of the output
cannot generally be described with a simple, basic function such as dc, sinusoidal, ramp, step, or impulse
waveforms. We often, however, represent the more complicated waveforms as a linear combination of more
basic functions.

Practical Sources

The preceding ideal independent sources constrain the terminal voltage or current to a known function of time
independent of the circuit that may be placed across its terminals. Practical sources, such as batteries, have their
terminal voltage (current) dependent upon the terminal current (voltage) caused by the circuit attached to the
source terminals. A simple example of this is an automobile storage battery. The battery’s terminal voltage is
approximately 12 V when no load is connected across its terminals. When the battery is applied across the
terminals of the starter by activating the ignition switch, a large current is drawn from its terminals. During
starting, its terminal voltage drops as illustrated in Fig. 2.9(a). How shall we construct a circuit model using the
ideal elements discussed thus far to model this nonideal behavior? A model is shown in Fig. 2.9(b) and consists
of the series connection of an ideal resistor, RS, and an ideal independent voltage source, VS = 12 V. To determine
the terminal voltage–current relation, we sum Kirchhoff’s voltage law around the loop to give

(2.1)

This equation is plotted in Fig. 2.9(b) and approximates that of the actual battery. The equation gives a straight
line with slope –RS that intersects the v axis (i = 0) at v = VS. The resistance RS is said to be the internal resistance
of this nonideal source model. It is a fictitious resistance but the model nevertheless gives an equivalent terminal
behavior.

Although we have derived an approximate model of an actual source, another equivalent form may be
obtained. This alternative form is shown in Fig. 2.9(c) and consists of the parallel combination of an ideal
independent current source, IS = VS/RS, and the same resistance, RS, used in the previous model. Although it
may seem strange to model an automobile battery using a current source, the model is completely equivalent
to the series voltage source–resistor model of Fig. 2.9(b) at the output terminals a–b. This is shown by writing
Kirchhoff ’s current law at the upper node to give

FIGURE 2.8 Ideal independent current source.
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(2.2)

Rewriting this equation gives

(2.3)

Comparing Eq. (2.3) to Eq. (2.1) shows that

(2.4)

FIGURE 2.9 Practical sources. (a) Terminal v-i characteristic; (b) approximation by a voltage source; (c) approximation
by a current source.
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Therefore, we can convert from one form (voltage source in series with a resistor) to another form (current
source in parallel with a resistor) very simply.

An ideal voltage source is represented by the model of Fig. 2.9(b) with RS = 0. An actual battery therefore
provides a close approximation of an ideal voltage source since the source resistance RS is usually quite small.
An ideal current source is represented by the model of Fig. 2.9(c) with RS = ¥. This is very closely represented
by the bipolar junction transistor (BJT).

Related Topic

1.1 Resistors

Defining Term

Ideal source: An ideal model of an actual source that assumes that the parameters of the source, such as its
magnitude, are independent of other circuit variables.

Reference

C.R. Paul, Analysis of Linear Circuits, New York: McGraw-Hill, 1989.

2.3 Controlled Sources

J. R. Cogdell

When the analysis of electronic (nonreciprocal) circuits became important in circuit theory, controlled sources
were added to the family of circuit elements. Table 2.1 shows the four types of controlled sources. In this section,
we will address the questions: What are controlled sources? Why are controlled sources important? How do
controlled sources affect methods of circuit analysis?

What Are Controlled Sources?

By source we mean a voltage or current source in the usual sense. By controlled we mean that the strength of
such a source is controlled by some circuit variable(s) elsewhere in the circuit. Figure 2.10 illustrates a simple
circuit containing an (independent) current source, is , two resistors, and a controlled voltage source, whose
magnitude is controlled by the current i1. Thus, i1 determines two voltages in the circuit, the voltage across R1

via Ohm’s law and the controlled voltage source via some unspecified effect.
A controlled source may be controlled by more than one circuit variable, but we will discuss those having

a single controlling variable since multiple controlling variables require no new ideas. Similarly, we will deal
only with resistive elements, since inductors and capacitors introduce no new concepts. The controlled voltage
or current source may depend on the controlling variable in a linear or nonlinear manner. When the relationship
is nonlinear, however, the equations are frequently linearized to examine the effects of small variations about
some dc values. When we linearize, we will use the customary notation of small letters to represent general and
time-variable voltages and currents and large letters to represent constants such as the dc value or the peak
value of a sinusoid. On subscripts, large letters represent the total voltage or current and small letters represent
the small-signal component. Thus, the equation iB = IB + Ib cos wt means that the total base current is the sum
of a constant and a small-signal component, which is sinusoidal with an amplitude of Ib .

To introduce the context and use of controlled sources we will consider a circuit model for the bipolar
junction transistor (BJT). In Fig. 2.11 we show the standard symbol for an npn BJT with base (B), emitter (E),
and collector (C) identified, and voltage and current variables defined. We have shown the common emitter
configuration, with the emitter terminal shared to make input and output terminals. The base current, iB ,
ideally depends upon the base-emitter voltage, vBE , by the relationship
© 2000 by CRC Press LLC



(2.5)

where I0 and VT are constants. We note that the base current depends
on the base-emitter voltage only, but in a nonlinear manner. We can
represent this current by a voltage-controlled current source, but the
more common representation would be that of a nonlinear conductance,
GBE(vBE), where

Let us model the effects of small changes in the base current. If the
changes are small, the nonlinear nature of the conductance can be
ignored and the circuit model becomes a linear conductance (or resis-
tor). Mathematically this conductance arises from a first-order expan-
sion of the nonlinear function. Thus, if vBE = VBE + vbe, where vBE is the
total base-emitter voltage, VBE is a (large) constant voltage and vbe is a
(small) variation in the base-emitter voltage, then the first two terms in
a Taylor series expansion are

TABLE 2.1 Names, Circuit Symbols, and Definitions for the Four Possible Types of Controlled Sources

Name Circuit Symbol Definition and Units

Current-controlled voltage source (CCVS) v2 = rmi1

rm = transresistance
units, ohms

Current-controlled current source (CCCS) i2 = bi1

b, current gain, dimensionless

Voltage-controlled voltage source (VCVS) v2 = mv1

m, voltage gain, dimensionless

Voltage-controlled current source (VCCS) i2 = gmv1

gm , transconductance
units, Siemans (mhos)

rm

v2
+
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+
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i1 i1
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+
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–
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+

–

i2

v1

FIGURE 2.10 A simple circuit con-
taining a controlled source.

FIGURE 2.11 An npn BJT in the com-
mon emitter configuration.
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(2.6)

We note that the base current is approximated by the sum of a constant term and a term that is first order
in the small variation in base-emitter voltage, vbe. The multiplier of this small voltage is the linearized conduc-
tance, gbe. If we were interested only in small changes in currents and voltages, only this conductance would be
required in the model. Thus, the input (base-emitter) circuit can be represented for the small-signal base
variables, ib and vbe, by either equivalent circuit in Fig. 2.12.

The voltage-controlled current source, gbevbe, can be replaced by a simple resistor because the small-signal
voltage and current associate with the same branch. The process of linearization is important to the modeling
of the collector-emitter characteristic, to which we now turn.

The collector current, iC , can be represented by one of the Eber and Moll equations

(2.7)

where b and I ¢0 are constants. If we restrict our model to the amplifying region of the transistor, the second
term is negligible and we may express the collector current as

(2.8)

Thus, for the ideal transistor, the collector-emitter circuit may
be modeled by a current-controlled current source, which may be
combined with the results expressed in Eq. (2.5) to give the model
shown in Fig. 2.13.

Using the technique of small-signal analysis, we may derive
either of the small-signal equivalent circuits shown in Fig. 2.14.

FIGURE 2.12 Equivalent circuits for the base circuit: (a) uses a controlled source and (b) uses a resistor.

FIGURE 2.14 Two BJT small-signal equivalent circuits (gm = b/rbe): (a) uses a CCCS and (b) uses a VCCS.
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FIGURE 2.13 Equivalent circuit for BJT.
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The small-signal characteristics of the npn transistor in its amplifying region is better represented by the
equivalent circuit shown in Fig. 2.15. Note we have introduced a voltage-controlled voltage source to model
the influence of the (output) collector-emitter voltage on the (input) base-emitter voltage, and we have placed
a resistor, rce, in parallel with the collector current source to model the influence of the collector-emitter voltage
on the collector current.

The four parameters in Fig. 2.15 (rbe, hre, b, and rce) are the hybrid parameters describing the transistor
properties, although our notation differs from that commonly used. The parameters in the small-signal equiv-
alent circuit depend on the operating point of the device, which is set by the time-average voltages and currents
(VBE , IC , etc.) applied to the device. All of the parameters are readily measured for a given transistor and
operating point, and manufacturers commonly specify ranges for the various parameters for a type of transistor.

What Is the Significance of Controlled Sources?

Commonplace wisdom in engineering education and practice is that information and techniques that are
presented visually are more useful than abstract, mathematical forms. Equivalent circuits are universally used
in describing electrical engineering systems and devices because circuits portray interactions in a universal,
pictorial language. This is true generally, and it is doubly necessary when circuit variables interact through the
mysterious coupling modeled by controlled sources. This is the primary significance of controlled sources: that
they represent unusual couplings of circuit variables in the universal, visual language of circuits.

A second significance is illustrated by our equivalent circuit of the npn bipolar transistor, namely, the
characterization of a class of similar devices. For example, the parameter b in Eq. (2.8) gives important
information about a single transistor, and similarly for the range of b for a type of transistor. In this connection,
controlled sources lead to a vocabulary for discussing some property of a class of systems or devices, in this
case the current gain of an npn BJT.

How Does the Presence of Controlled Sources Affect Circuit Analysis?

The presence of nonreciprocal elements, which are modeled by controlled sources, affects the analysis of the
circuit. Simple circuits may be analyzed through the direct application of Kirchhoff ’s laws to branch circuit
variables. Controlled sources enter this process similar to the constitutive relations defining R, L, and C, i.e.,
in defining relationships between branch circuit variables. Thus, controlled sources add no complexity to this
basic technique.

The presence of controlled sources negates the advantages of the method that uses series and parallel
combinations of resistors for voltage and current dividers. The problem is that the couplings between circuit
variables that are expressed by controlled sources make all the familiar formulas unreliable.

When superposition is used, the controlled sources are left on in all cases as independent sources are turned
on and off, thus reflecting the kinship of controlled sources to the circuit elements. In principle, little complexity
is added; in practice, the repeated solutions required by superposition entail much additional work when
controlled sources are involved.

The classical methods of nodal and loop (mesh) analysis incorporate controlled sources without great
difficulty. For purposes of determining the number of independent variables required, that is, in establishing
the topology of the circuit, the controlled sources are treated as ordinary voltage or current sources. The
equations are then written according to the usual procedures. Before the equations are solved, however, the
controlling variables must be expressed in terms of the unknowns of the problem. For example, let us say we

FIGURE 2.15 Full hybrid parameter model for small-signal BJT.
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are performing a nodal analysis on a circuit containing a current-controlled current source. For purposes of
counting independent nodes, the controlled current source is treated as an open circuit. After equations are
written for the unknown node voltages, the current source will introduce into at least one equation its
controlling current, which is not one of the nodal variables. The additional step required by the controlled
source is that of expressing the controlling current in terms of the nodal variables.

The parameters introduced into the circuit equations by the controlled sources end up on the left side of
the equations with the resistors rather than on the right side with the independent sources. Furthermore, the
symmetries that normally exist among the coefficients are disturbed by the presence of controlled sources.

The methods of Thévenin and Norton equivalent circuits continue to be very powerful with controlled
sources in the circuits, but some complications arise. The controlled sources must be left on for calculation of
the Thévenin (open-circuit) voltage or Norton (short-circuit) current and also for the calculation of the output
impedance of the circuit. This usually eliminates the method of combining elements in series or parallel to
determine the output impedance of the circuit, and one must either determine the output impedance from the
ratio of the Thévenin voltage to the Norton current or else excite the circuit with an external source and calculate
the response.

Defining Terms

Controlled source (dependent source): A voltage or current source whose intensity is controlled by a circuit
voltage or current elsewhere in the circuit.

Linearization: Approximating nonlinear relationships by linear relationships derived from the first-order
terms in a power series expansion of the nonlinear relationships. Normally the linearized equations are
useful for a limited range of the voltage and current variables.

Small-signal: Small-signal variables are those first-order variables used in a linearized circuit. A small-signal
equivalent circuit is a linearized circuit picturing the relationships between the small-signal voltages and
currents in a linearized circuit.

Related Topics

2.2 Ideal and Practical Sources • 22.3 Electrical Equivalent Circuit Models and Device Simulators for Semi-
conductor Devices
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