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Cost-Constrained Selection of Strand Diameter and
Number in a Litz-Wire Transformer Winding

Charles R. Sullivan, Member, IEEE

Abstract—Design of litz-wire windings subject to cost con-
straints is analyzed. An approximation of normalized cost is
combined with analysis of proximity effect losses to find combina-
tions of strand number and diameter that optimally trade off cost
and loss. The relationship between wire size, normalized cost, and
normalized loss is shown to have a general form that applies to a
wide range of designs. A practical design procedure is provided.
Applied to an example design, it leads to less than half the original
loss at lower than the original cost, or, alternatively, under one
fifth the original cost with the same loss as the original design.

Index Terms—Eddy currents, inductors, litz wire, magnetic de-
vices, optimization costs, power conversion, power transformers,
proximity effect, skin effect.

I. INTRODUCTION

L ITZ WIRE1 can be used to reduce the severe eddy-current
losses that otherwise limit the performance of high-fre-

quency magnetic components. But litz wire is often avoided by
designers because it can be very expensive. In this paper, we
develop a design methodology considering cost. This approach
enables significant cost reduction with no increase in loss, or
more generally, enables a designer to select the minimum loss
design at any given cost. In a design example, the cost is reduced
by better than a factor of five with no increase in loss, compared
to a design based on a conventional rule of thumb.

Losses in litz-wire transformer windings have been calculated
by many authors [1]–[6], but relatively little work addresses
the design problem: how to choose the number and diameter of
strands for a particular application. In [7], the optimal stranding
giving minimum loss is calculated. However, this can result in a
very expensive solution with only slightly lower loss than is pos-
sible at considerably lower cost. Although [7] also addresses the
choice of stranding under constraints of minimum strand diam-
eter or maximum number of strands, the real constraint is more
likely to be cost rather than one of these factors.

Analysis of cost is performed at two levels in this paper. First,
a general form for functions describing the cost of litz wire is
hypothesized. This leads to general analytical results describing
the best choice of litz wire for a given transformer winding, in
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1Sometimes the termlitz-wire is reserved for conductors constructed
according to a carefully prescribed pattern, and strands simply twisted together
are called bunched wire. We will use the termlitz-wire for any insulated
grouped strands.

Fig. 1. Types of eddy-current effects in litz wire.

terms of a cost function. At the second level, results that are
less general but are more explicit are obtained through making
the cost function explicit with a polynomial curve fit to man-
ufacturers’ price quotations. A design methodology, applicable
to the general case, but fleshed out in terms of the specific cost
function, is outlined and illustrated with a design example.

Many analyses of winding loss address only sinusoidal cur-
rent waveforms, but magnetics in high-frequency power con-
verters rarely have waveforms that approximate sinusoids. A
number of authors have developed methods of extending the
analysis of winding loss to nonsinusoidal waveforms [7]–[13].
Of particular interest is the use of an “effective frequency” [7],
[10], [11], [13] because that approach allows the use without
modification of optimizations based on sinusoidal waveforms
(including the optimization described here), as explained in the
appendix of [7]. Particularly useful is [13] for a thorough discus-
sion and a compilation of the relevant data for a large number
of common waveforms.

II. L OSSMODEL

Skin effect and proximity effect in litz-wire windings may be
divided into bundle-level and strand-level effects, as illustrated
in Fig. 1. With properly chosen construction, strand-level prox-
imity effect is the dominant effect that needs to be considered
for choosing the number of strands [7].

We represent winding losses by

(1)

where is a factor relating dc resistance to an ac resistance
which accounts for all winding losses, given a sinusoidal current
with rms amplitude . As discussed in Appendix A, internal
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and external strand-level proximity effect loss can be accounted
for with the approximate expression

(2)

where
radian frequency of a sinusoidal current;
number of strands;
number of turns;
diameter of the copper in each strand;
resistivity of the copper conductor;
breadth of the window area of the core;
factor defined in Appendix A, accounting for field dis-
tribution in multiwinding transformers, normally equal
to one.

For waveforms with a dc component, and for some nonsinu-
soidal waveforms, it is possible to derive a single equivalent fre-
quency that may be used in this analysis [7]. In an inductor, the
field in the winding area depends on the gapping configuration,
and this analysis is not directly applicable [14].

III. COST ANALYSIS

Attempting to quantify cost for academic analysis is problem-
atic; prices change with volume, manufacturer, time, and negoti-
ation. However, many important results depend only on the gen-
eral form of the cost function. In particular, the general solutions
derived in the Appendix for optimal cost/loss tradeoff designs
depend only only the assumption that the cost of a length of litz
wire can be approximately described by

(3)

where
base cost per unit length associated with the
bundling and serving operations;
cost basis function proportional to the additional
cost per unit mass for a given strand diameter;
number of strands;
length of the wire.

Since we have not specified a form for , the only loss
of generality in assuming this form (3) is in the assumption that

depends only on , and not on . Examination of pricing
from litz-wire manufactures indicates that this assumption is a
valid approximation. Note that for the purpose of optimization
with a fixed winding length, we can ignore , and consider
only the cost variation which is proportional to .

In order to gain intuition about the variation of cost, and to
provide specific numerical results, it is useful to find an approx-
imate expression for . From manufacturers’ pricing, we
find that the following function, normalized to a value of one for
large-diameter wire, is a good approximation for a wide range
of values of and

(4)

where is in meters, m , and
m . This function, proportional to cost per unit mass,

Fig. 2. Normalized cost per unit mass and normalized cost per unit length,
as modeled by (4). Both are normalized such that the minimum values are
one, for the purpose of display in this graph. The cost per unit mass increases
monotonically, reflecting the cost of drawing a given quantity of copper into
finer and finer strands. The cost per unit length is found by multiplying cost per
unit mass by mass per unit length, as described in the text. Below 44 AWG, the
decreasing mass dominates the trend, making the cost per unit length decrease
as the wire gets smaller. Above 44 AWG the cost per unit mass increases
rapidly enough that the increased manufacturing cost dominates the decreased
material cost, and cost per unit length increases. Both 38 AWG and 48 AWG
cost about twice as much as 44 AWG. For 38 AWG, this cost increase is a
result of the larger mass of copper required. For 48 AWG, the cost increase is
due to the expense of forming the wire into very fine strands.

is shown in Fig. 2, along with the normalized cost per unit
length, . is approximately constant for large di-
ameters, but by around 40 AWG it has started rising signifi-
cantly. 44 AWG is notable as the size at which the cost per unit
length is a minimum. At 48 AWG, cost per unit length has in-
creased significantly and cost per unit mass has increased dra-
matically. Few manufacturers will provide constructions using
finer strands than this, and though (4) is not based on data be-
yond this point, it does appropriately rise very rapidly. Although
(4) represents a smooth function, wire based on standard sizes
is cheaper than arbitrary choices, and the actual cost function
has significant ripples because of this. In particular, even-num-
bered sizes are generally cheaper and more readily available
than odd-numbered sizes. The extent of this variation is highly
sensitive to volume—at sufficiently high volumes, there would
be no penalty for using odd, or even custom sizes. Thus, such
variations are omitted from this analysis; we assume the cost is
described by the smooth function shown.

IV. CHOOSINGNUMBER AND DIAMETER OF STRANDS

The design choice of number and diameter of strands can
be conceptualized and illustrated as a two-dimensional (2-D)
space. In the case of a full bobbin, the choices in this space form
a line, and the tradeoff between cost and loss becomes a simple
matter of evaluating both cost and loss along this line, which
can be described by using calculations in [7]. However, with
cost constraints, a full bobbin often is not optimal, and we must
choose a point in 2-D space rather than simply a point on a line.
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Fig. 3. Equal-cost contour lines.

Fig. 4. Equal-cost contours shown with equal-loss contours. Designs with an
optimal cost/loss tradeoff are found at points where lines from these two sets are
tangent. The diagonal solid line curving up from the lower left indicates these
points. The dotted line indicates a full-bobbin constraint.

In this section, we explore this strand diameter/number space
graphically, using the approximate curve-fit cost function (4).
An algebraic derivation of equivalent but more general results,
independent of the particular cost function (4), is provided in
the Appendix.

We can represent the total cost, given by (3) and (4), as a set
of contour lines in the size-of- and number-of-strands space
(Fig. 3). These are curves of constant cost, having shapes that
can be understood by considering the shape of the dashed
cost-per-unit-length curve in Fig. 2. As the size approaches
44 AWG, the cost of the wire per unit length decreases, so
the number of strands that can be bought for the same price
increases. Thus, the curves in Fig. 3 go to a maximum number

Fig. 5. Cost and loss, normalized to an optimal cost/loss design using 44 AWG
strands. This graph applies to any design in which the bobbin is not full, given
the cost function (4). Points are indexed with the AWG strand size used. Note
that a point on this graph does not represent the minimum-loss design for that
strand gauge; rather, it represents the minimum-loss design at a given cost; the
strand size used to achieve this is indicated.

of strands at the wire gauge where cost per unit length is a
minimum.

Along any given constant-cost curve, the best design choice
is the point giving minimum loss. In Fig. 4, contour lines for loss
are shown with the cost contours from Fig. 3. These are based on
an example design of a 14-turn winding on an RM5 size ferrite
core, with 1 MHz current in the winding. The breadth of the
bobbin is 4.93 mm, and the breadth of the core window 6.3 mm.
The loss is proportional to , and so the loss contours can
be computed from (2) and a simple dc resistance calculation. On
each cost contour, the tangent point to the set of loss contours
is the minimum loss point. This set of points is also the set of
minimum cost points for any given loss constraint. The set of
these points is also shown in Fig. 4. The same set of points can
be plotted on axes of cost and loss, from which a designer may
chose the appropriate tradeoff (Fig. 5).

The cost/loss tradeoff curves, such as in Fig. 5, have the same
shape regardless of design parameters. Thus, normalized to the
loss and cost for the same reference strand diameter, they are
identical to the curve in Fig. 5, where cost and loss are normal-
ized to that for 44 AWG strands. This curve can be used to eval-
uate the cost/loss tradeoffs in any design as long as the bobbin
is not full. Note that a point on this graph does not represent the
minimum-loss design for that strand gauge; rather, it represents
the minimum-loss design at a given cost; the strand size used to
achieve this is indicated.

The remaining information needed to realize a design for any
given point chosen on Fig. 5 can be provided in the form of a
plot of values for optimal cost/loss designs (Fig. 6). Like
Fig. 5 (but unlike Fig. 4), Fig. 6 shows general results that apply
to any transformer design, in the region where the bobbin is
underfilled. The results depend only on the cost function, (4).
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Fig. 6. AC-resistance factorF for optimal cost/loss tradeoff designs as a
function of strand diameter. These data are valid for any geometry or frequency,
given the cost function modeled by (4).

In the Appendix, the results shown in Figs. 5 and 6 are derived
analytically. To plot the equivalent of Fig. 6, we can use

(5)

with any given cost function .
Also from the Appendix

(6)

where is the cost with the constant term subtracted, and

total loss (7)

Equations (6) and (7) can be used withas a parameter to
generate plots such as Fig. 5 for any cost function .

V. DESIGN EXAMPLE

In this section, we illustrate the use of the above results with a
design example; a general method will be outlined in Section VI.

The design example is a 30-turn to 30-turn transformer on a
EC-70 ferrite core with a 150 kHz, 8 A rms sine-wave current in
both windings. While for present purposes it is not necessary to
know the voltage, we can, for the sake of concreteness, assume
a 300 V square-wave voltage (600 V p-p), as would occur in
a parallel-loaded resonant converter. This would lead to a flux
amplitude of 60 mT, a core loss around 1.4 W in a typical power
ferrite material, and a power output of 2160 W. The breadth of
the core window is mm; the bobbin allows a winding
area of mm by 24 mm high; each of the two windings
may then take up a height of 12 mm.

A standard design procedure might be to start with a manu-
facturer’s catalog, which recommends 40 AWG strand litz wire
for the 100 to 200 kHz range. Fitting 30 turns in the allotted
window area, we find the largest permissible standard bundle

TABLE I
PARAMETERS FOUND FOR OPTIMAL

COST/LOSSDESIGNSUSING STANDARD STRAND SIZES

of 40 AWG strands has 1100 strands. An analysis of internal
proximity effect losses [15], as outlined in wire manufacturers’
application notes predicts a mild ac resistance factor of 1.19 for
this construction, seemingly confirming the catalog recommen-
dation. However, this is only correct for an isolated litz bundle,
and it does not take into account the external proximity effect
that dominates ac resistance in a typical transformer. Using (2)
to accurately predict the ac resistance of this bundle, we obtain
an ac resistance factor of . This leads to 5.6 W of loss
in each winding, and a total temperature rise of 87C including
both windings and the core loss, based on an empirical thermal
resistance of 7C/W [16].

The calculation used here (2) is not valid for strands much
larger than a skin depth. Strands will very rarely be that large
in a good litz design, but the design calculated above is far
enough from a good design that checking is wise. The skin depth
in copper at 150 kHz is about 0.17 mm—the diameter of 33
or 34 AWG wire—and so (2) is valid in the range of interest.
Note that even for this poorly chosen design, the ac resistance
is lower than it would be for any single-strand design; the op-
timum single-strand design in this case is a single-layer winding
that would have almost triple the ac resistance of the first design.

We now apply the results obtained in Section IV to this
transformer. First, we assume 44 AWG wire, and calculate
the number of strands to obtain the corresponding ac resis-
tance factor shown in Fig. 6 (also shown in Table I). We find

with 1131 strands of 44 AWG. Although this
has higher dc resistance than the first design (1100 of #40),
its overall ac resistance is 59% lower, and furthermore, the
predicted relative cost is 25% lower.

Table II collects data on these and further designs. The cost
and loss figures are shown normalized to both the original
design based on manufacturers’ data, and to this new optimal
cost/lost design using 44 AWG wire. With this latter normaliza-
tion, the cost/loss possibilities are mapped out by Fig. 5. One
can now select, on this plot, the desired cost/loss tradeoff. For
example, one could chose to keep the loss constant at the level
in the original design, or could optimize for minimum total
cost including the cost of the energy dissipated over the life of
the equipment, and other costs that indirectly result from lower
efficiency and higher heat production.
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TABLE II
STRANDING OPTIONS FOREXAMPLE DESIGN

The designs in Table II include 100 strands of 38 AWG wire,
for about the same loss as the original design at about 13% of
the cost, and 1050 strands of 44 AWG, a standard catalog con-
struction close to the calculated choice of 1131 strands for this
size, and providing similar cost and loss reductions. With this
design, the temperature rise would be reduced from the original
87 C to 42.5 C with no increase in cost.

For comparison, the minimum loss design calculated using
the methods of [7] is also included in Table II; for this trans-
former, that method indicates that 220 000 strands of 63 AWG
would produce the minimum loss. The cost estimate produced
by (4) for this strand size is not expected to be at all accurate,
but it is certain that the cost would be extreme if it were pos-
sible to produce such litz wire. However, if it were possible, the
63 AWG construction would allow reducing the loss to about
one quarter the loss obtained with 1050 strands of 44 AWG
wire. A 48 AWG design is included to illustrate a more prac-
tical high-cost, low-loss construction.

Also included on Table II are the predicted relative cost based
on (4) and the actual relative cost based on quotes from two
manufacturers. These quotes were obtained separately from the
quotes used to generate the curve fit in (4), and so provide an op-
portunity to independently assess the accuracy that can typically
be expected from (4). For the 38 AWG design, the two manu-
facturers’ normalized costs, at 0.17 and 0.12, differ by 35%, and
the estimate of 0.13 falls between them. For the 1050-strand 44
AWG design, the two manufacturers’ normalized costs, at 0.98
and 0.75, differ by 27%, and the estimate of 0.69 is below either
actual cost, off by 35% or 8%. Overall, one should not count on
(4) to give cost predictions accurate to better than 35%. Rather
it should be used as a guide to general trends. As described in
Section III, the smooth curve of (4) is an idealization that does

not include the many quirks that one can find in a particular sup-
plier’s pricing. A wise designer will explore these issues with a
supplier. If a slightly smaller number of strands allow the use
of a different machine, or a slightly higher number of strands
would be a standard product produced and stocked in large vol-
umes, there could be cost savings opportunities that are not cap-
tured in this analysis. Looking into possible adjustments like this
after finding the theoretical optimum design as described here
is recommended.

Another limitation on the accuracy of the cost predictions is
that in (3), we dropped the constant portion of the cost. This
does not affect the loci of the optima, but it does affect the ac-
curacy of the predicted prices, and determining this constant
for the quoted prices could improve the accuracy our predic-
tions. But given that the maximum error in our predictions,
35%, is equal to the maximum difference between the normal-
ized pricing from the two manufacturers, a great improvement in
cost accuracy could not be expected. In any case, we have con-
firmed the usefulness of the model and methodology to reduce
cost, loss, or both. In particular, the 1050 strand 44 AWG de-
sign achieves a 58% loss reduction at less than the original cost,
and the 100 strand 38 AWG design achieves under one-fifth the
original cost at the same loss.

The total cost including energy was also evaluated for this
design, assuming continuous operation and an energy price of
US$0.1/kWh. Annual costs and capital costs were compared
using at capital recovery rate of 0.15, representing, for example,
a 10 year life with a discount rate of 8.5%. This results in the
present value of total energy cost being US$5.84 for each watt
of dissipation. The AWG 44 design then has the lowest sum of
wire and energy cost for this particular example. This analysis
ignores other costs associated with the extra dissipation, ranging
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Fig. 7. Design procedure that allows the user to choose cost/loss tradeoff and guarantees minimum loss for the selected cost (and the lowest cost for that loss).

from the heating effect that may degrade reliability or may in-
crease costs by requiring additional heatsinking, fans, etc., to
the environmental impacts of the electric power generation. In-
cluding these costs could show a lower-loss design with higher
wire cost to be worthwhile.

VI. DESIGN PROCEDURE

A flowchart for a recommended design procedure is shown in
Fig. 7. This procedure will provide designs with the minimum
loss for any given cost (and the lowest cost for that loss), making
use of the data presented in previous plots, and collected for
standard strand sizes in Table I. The procedure can be imple-
mented on a computer; however, it cannot be completely auto-
mated, as it requires the user to make decisions regarding the
cost/loss tradeoff. In addition, consulting a manufacturer to ob-
tain actual current price quotes is valuable, and in cases with
a full bobbin, it may be necessary to experimentally measure
packing factor.

The choice of construction under the constraint of available
wire sizes is explored further in Fig. 8, which includes the ideal

cost/loss tradeoff curve of Fig. 5, but also has curves for each
wire size. It is apparent that the exact wire size is much less im-
portant for smaller gauge numbers (below 40 AWG)—similar
cost and loss performance is available with nearby sizes. How-
ever, with finer wire, there is more incentive to consider an odd
strand size. The actual cost of the wire with an odd strand size
may depend on the quantity purchased, and so it is not possible
here to determine when it is economically advantageous. But
Fig. 8 highlights where it is worth considering.

VII. CONCLUSION

Combined analysis of loss and cost of litz-wire windings can
lead to substantial improvements in cost, loss, or both. The anal-
ysis leads to general expressions describing the relationship be-
tween cost and loss in optimal designs, in terms of a cost func-
tion. In addition, this cost function can be approximated by a
polynomial, leading to numerical data that facilitates a simple
design process that leads to minimum loss designs at any given
cost, or minimum cost designs for any given loss.
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Fig. 8. Cost and loss, normalized to an optimal cost/loss design using 44 AWG strands. The ideal relationship shown as the bottom curve assumes any strand
diameter is available. Curves for individual even wire sizes are also plotted to show the penalty for using a standard wire size. For large diameter wire, the curves are
close to one another, indicating that the exact choice of diameter is unimportant. However, for fine wire, the choice of a standard even size may entaila significant
penalty.

APPENDIX I
LOSSCALCULATION

The origin of the expression used for , (2), is discussed
in [7], and is reviewed here for the reader’s convenience. First
consider loss in a conducting cylinder in a uniform field perpen-
dicular to the axis of the cylinder, with the assumption that the
field remains constant inside the conductor, equivalent to the as-
sumption that the diameter is small compared to a skin depth.
This results in power dissipation in a wire of length

(8)

where is the peak flux density (see, for example, [17] for a
more detailed derivation of this expression). This is equal to the
first term of an expansion of the exact Bessel-function solution
[18].

Combining this with the assumption of a trapezoidal field dis-
tribution in a winding results in (2). The linear increase of the
field across the winding is a result of considering the effect of all
the current in the winding; separating the effect of other strands
within a particular bundle from the effect of other bundles is
not required and would only complicate the calculation [7]. For
configurations in which the field is not zero at one edge of the
winding, a factor is used to account
for the resulting change in losses, where [4].
We assume equal current sharing between the strands in the litz
wire. This is a good approximation if the construction of the
litz wire has been chosen to control bundle-level skin effect and
proximity effect [7].

APPENDIX II
DERIVATION OF OPTIMAL COST-LOSSCURVE

Lumping constant terms as, we can express (2) as

(9)

At a given cost, , we wish to find the choice of and
that gives minimum total loss. Total loss is proportional to total
resistance factor

ac resistance of litz-wire winding
dc resistance of single-strand winding

(10)

where is the ratio of dc resistance of the litz wire to the dc
resistance of a single strand winding, using wire with the same
diameter as the litz-wire bundle. Based on this definition

(11)

where is the diameter of the largest single-strand wire that
would fit. This constant may be dropped for the purposes of
optimization; we work with

(12)

To minimize total loss, holding cost constant, we can elimi-
nate from (12) by using (3), to obtain

(13)
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where is the specified cost, with the constant termin (3)
subtracted. Setting the derivative of this expression with respect
to equal to zero, we obtain

(14)

where is the derivative of with respect to .
Given a representation of and a cost specification ,

(14) could be numerically solved for a optimum value of.
However, it is possible to derive several more general results that
provide additional insight and lead to Figs. 5 and 6. Solving (14)
for , substituting that result into (11), and again eliminating
using (3) leads to

(15)

This expression describes the relationship between wire size and
the optimal cost/loss value of , denoted , as shown
in Fig. 6. The generality of the result is indicated by the inde-
pendence of (15) from the design details lumped in the constant
.
The generality of the relationship shown in Fig. 5 can be seen

as follows. From (14)

(16)

or

(17)

Using the relationship , we can
write

(18)

Thus, using (17)

(19)

If (19) and (17) are normalized as in Fig. 5, the constants
specific to a particular design problem,and , drop out.
Thus, with as a parameter, (19) and (17) can be used to plot
a curve of normalized cost and loss for any given cost function,
as shown in Fig. 5 for (4).
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