

Design Guidelines for Iron Powder Cores

- * Maximum Ambient Temperature
- * Loss Distribution between Core & Copper
- * Temperature Rise of Magnetic Device
- * Thermal Conductivity of Core Material
- * Availability of Air Flow, Static or Forced
- * Thermal Aging Considerations
- * Mechanical Mounting Precautions
- * Micrometals Design Software Disc

Maximum Ambient Temperature Limits

- * Most applications for Iron Powder cores have a maximum ambient temperature of +55°C or less
- * Some designs are safe in a +70°C ambient provided Thermal Aging is considered and the life expectancy meets end of life goal for the product
- * The higher the ripple current in a specific design the lower the energy storage capability is for a given size core
- * As the % of Ripple Current increases, the greater the core loss will become. A larger core, lower permeability or a completely different core material may be necessary to assure longevity
- * Temperature Rise of the Magnetic component will set the maximum safe ambient temperature

Loss Distribution between Core & Copper

- * A design dominated by core loss is not a prudent thing to do regardless of core material
- * As a starting point, consider a 50-50 split between core and copper loss
- * A better design is on the order of 20-80 split between core and copper loss
- * Core loss is expressed in mW/cm³ of volume
- * Copper loss is expressed as I² x Resistance
- * It is much easier to remove heat from the copper winding than from the core material

Temperature Rise of the Magnetic Device

- * Assuming a +55°C ambient, a good design practice to follow is +40°C temperature rise or less
- * This rule will keep UL and Product Safety people very happy
- * The design will have a built in safety margin which will tolerate abnormal overloads
- * Again, reduce the core loss at the expense of the copper loss
- * A 25°C reduction in temperature will improve the life expectancy of the core by one order of magnitude

Thermal Conductivity of Various Materials

Material Mix No.	Permeability µi	Thermal Conductivity mW/cm°C
-2	10	10.8
-8	35	29.9
-10	6.0	10.3
-17	4.0	13.3
-18	55	21.2
-26	75	42.6
-28	22	16.3
-33	33	20.2
-40	60	34.0
-52	75	34.0
-0	1.0	5.6

Approximate Values of Other Materials for Reference

Material Description	Thermal Conductivity mW/cm°C
Aluminum	450
Solid Iron	120
Ferrite	10

Availability of air Flow, Static or Forced

- * Good thermal data is not always easy to obtain
- * The placement of thermocouples and connections is critical for reliable and repeatable data
- * Static Air means just that, no air flow at all. A closed box may take 3 5 hours in order to reach temperature equilibrium
- * Do not be fooled by adding Forced Air to solve an overheated Magnetic Component problem
- * Variable speed fans can be **Deadly** for a design that is dominated by core loss. Even at reduced power, a PFC choke still has constant core loss and heat
- * Thermal Conductivity of a given core material may mask an internal core temperature that is +5°C to +30°C hotter on the inside Vs measured on the outside surface
- * Iron Powder Cores allow for easy placement of a thermocouple inside the core. A small diameter hole is drilled into the core. The thermocouple is installed into the hole and glued in position
- * Improperly designed and not adequately tested Magnetics can lead to Thermal Runaway of the core material

Thermal Aging Considerations

* The Micrometals Web Page will have the latest Thermal Aging information.

Our address is http://www.micrometals.com

- * Thermal Aging is generally not a problem at frequencies below 10 KHz
- * Eddy current losses become increasingly significant at higher frequencies. Thermal Aging increases the eddy current loss of the core
- * Hysteresis loss is the major loss at low frequencies but is not effected by Thermal Aging
- * The Volume of the core is directly related to how quickly a material will age. Larger cores age at a faster rate than smaller cores
- * Micrometals has developed an expression for increasing Core loss Vs Time and Temperature that takes into account Peak AC Flux, Frequency and Core Volume
- * Micrometals can provide Design evaluation free for the asking
- * The next version of our Design Software will have the evaluation feature included in it

Mechanical Mounting Precautions

- * Iron Powder cores have a distributed air gap structure
- * The placement of ferrous materials around or under E-cores, U-cores and HS-cores will short the gap structure and dramatically increase the core loss
- * Cores can be secured by the following
- * Phosphor bronze or nonmagnetic stainless steel banding material
- * Brass hardware
- * Various electrical tapes
- * Cable tie wraps
- * Filled epoxy or filled super glue. Pay close attention to the upper thermal limits of these materials

Micrometals Design Software Disk

- * Is available from our Web page or free by requesting it
- * The Design Software presently contains four inductor design aids
- * Design of DC output inductors and Differential mode inductors
- * Design of controlled inductance swing or limited inductance value change Vs current
- * Design of 10:1 or 20:1 swinging inductors using a Composit core of Ferrite and Iron Powder
- * Design of PFC Boost or Buck inductors
- * This is a fast and accurate software program that allows for rapid design. The default is set for +40°C temperature rise that results in conservative designs
- * Revised Design Software will be released in Q1 of '98