

July 2001

Table of Contents

Introduction & Specifications	
Introduction	2
Materials for "C", "E" and toroids	4
Material selection tables	9
"C" Core tolerances for single phase	11
"E" Core tolerances for three phase	12
Uncased toroid tolerances	13
"C" Core banding instructions	14
Magnetic unit conversions	15
Silicon Steel (Silectron®)	
Essential raw material properties	16
One to twelve thousandths of an inch parts	19
Graphs for silicon steel	31
50:50 Nickel-Iron Alloy (Deltamax)	
Essential raw material properties	40
One and two thousandths of an inch parts	43
Graphs for 50:50 nickel-iron alloy	45
79:15:5 Ni-Fe-Mo (Supermalloy)	
Essential raw material properties	47
One and two thousandths of an inch parts	50
Graphs for 79:15:5 Ni-Fe-Mo alloy	52
49:49:2 Co-Fe-V (Supermendur)	
Essential raw material properties	54
Four thousandths of an inch parts	57
Graphs for 49:49:2 Co-Fe-V alloy	58
Amorphous Alloy (Namglass [®] 1)	
Essential raw material properties	60
One thousandth of an inch parts	62
Graphs for amorphous iron alloy	63
Nanocrystalline Alloy (NAMGLASS [®] 4)	
Essential raw material properties	64
One thousandth of an inch parts	67
Graphs for nanocrystalline alloy	68
Limited warranty, exclusive remedy	Inside back cover
Group Arnold companies listing	Back cover

GROUP ARNOLD® NATIONAL-ARNOLD MAGNETICS

Page 16

3% Grain Oriented Silicon Steel

ESSENTIAL RAW MAT	ERI	AL PROPERTIES ¹
Composition	_	3% silicon, balance iron
Density	_	7.67 grams/cc
Resistivity	_	47 micro-ohm-cm
Curie Temperature	_	1346°F or 730°C
Saturation Induction	_	20.0 kilogauss
Sat. Magnetostriction	1 —	4 ppm at 20°C, Roll Direct.

Three percent grain oriented silicon steel is the most widely used of the soft magnetic materials due to a combination of high saturation flux and relatively low cost. Table 1 shows some typical commercially important magnetic properties for a range of gages. Table 2 shows typical applications for various tape

]	TABLE 2 – TYPICAL APPLICATIONS											
Thick (in)	0 - 10 kHz	> 10 kHz										
0.001	2.4 - 10 kHz xfmr	Pulse xfmr, choke										
0.002	0.8 - 2.4 kHz xfmr	Pulse xfmr, choke										
0.004	0.4 - 0.8 kHz xfmr	Pulse xfmr, choke										
0.004 "Z"	0.4 - 0.8 kHz xfmr	Pulse xfmr, choke										
0.007	60 - 400 Hz xfmr	Pulse transformer										
0.007 "Z"	60 - 400 Hz xfmr	Pulse transformer										
0.009 "Z"	50 - 60 Hz xfmr	Pulse transformer										
0.011 "Z"	50 - 60 Hz xfmr	Pulse transformer										
0.012	50 - 60 Hz xfmr	Pulse transformer										

thicknesses. Especially notable is the 2 thousandths of an inch grain oriented silicon steel provided by **National-Arnold Magnetics**, because of its exceptional pulse permeability, i.e., greater than 2000 for pulse widths greater than one microsecond. Higher flux applications or components designed to saturate should use high "B" materials. "B" is the abbreviation for flux density. We denote high "B" materials with a "Z" suffix. The 11 thousandths of an inch "Z" material has the highest flux density for 50 – 60 Hz magnetic component designs. The remainder of this section discusses some important

Source of properties information is Allegheny Ludlum *SILECTRON®* product information and the book "Ferromagnetism" by Richard Bozorth, IEEE Press, 1993
 The permeability available to the application or *effective*

permeability is a function of impedance permeability and core geometry, which includes path length and number of cuts or

TABLE 1 – TYPICAL VALUES										
Gage	SF	Coercive Force	Usable Flux							
(1n)		(Oe)	(kilogauss)							
0.001	.75 – .83	0.60	14							
0.002	.85 – .89	0.50	16							
0.004	.90	0.40	16							
0.004 "Z"	.90	0.40	18							
0.012	.95	0.30	16							

factors when selecting among the thin gages, i.e., 1 thousandth to 4 thousandths of an inch thickness.

One and Two Thousandths of an Inch Material

Table 2 shows that 1 and 2 thousandths of an inch materials are primarily used for pulse transformers and chokes. These gages are also used in high frequency transformer applications and charging chokes, where significant high frequency components of exciting current are present. The use of 1 and 2 thousandths of an inch gages is advantageous only at comparatively high frequencies, since their core loss and excitation characteristics are relatively poorer than 4 to12 thousandths of an inch gages at lower frequencies. Core loss, impedance permeability² and VA for these gages are shown as a function of flux density and frequency in the "Graphs" section.

Because 1 and 2 thousandths of an inch gages are typically used at higher frequencies, testing for core loss and excitation current must be done under operating conditions. *For this reason application specific specifications for thin gage materials require consultation with customer service.* Our testing capability limits are 250 KHz and 1200 watts for sine wave excitation. Pulse capabilities include pulse widths down to 100 nanoseconds and pulse energies up to 4 joules.

gaps. For filter chokes or inductors the incremental permeability is specifically related to both incremental or AC induction and steady state or DC induction in the core. A text that gives a thorough discussion of the interelationship between permeability and geometry is: "Electronic Tranformers and Circuits", Reuben Lee, Wiley Interscience, 1988

Four Thousandths of an Inch Material

Four thousandths of an inch material is available in two different grades, reflecting differences in performance, i.e., "CH" and "CZ". Both types are typically used in 400 Hz transformer applications. Other uses include filter chokes, reactors and magnetic amplifiers at higher frequencies. Both grades are also used for pulse transformers.

The "CZ" grade is preferred for applications where the operating conditions are greater than 16 kilogauss, because of its higher permeability at high flux density. However the core loss of the "CZ" grade is nearly identical to the "CH" grade.

At lower inductions the 4 thousandths of an inch gage can be used over a wide frequency range. In fact, the choice between 4 thousandths and the 2 or 1 thousandth of an inch gages depends on the specifics of operating frequency and magnetic induction. Usually, choices are made after consulting typical core loss curves as a function of flux density and frequency. Plots of core loss, permeability and VA for this gage are shown as a function of flux and frequency in the "Graphs" part of this section.

Magnetic amplifier applications require a material with a rectangular hysteresis loop or sharp saturation characteristics, i.e., square loop. The standard 4 thousandths of an inch material satisfies this requirement, and is used in many 400 Hz power magnetic amplifiers. In cut cores it is desirable to diamond lap the core for this application category to reduce the air gap as much as possible. This process avoids excessive shearing of the hysteresis loop, which normally results from adding a gap in a core. Shearing can be very significant for small cores, due to the increased ratio of gap to magnetic path length.

3. CCFR settings refer to the drive level (H_m) and flux density, B, for a Constant Current Flux **R**eset test set with sine current excitation. Net area is required for all measurements. In CCFR terms: B_m is the maximum flux of the material in kilogauss measured at the given drive level, H_m . $(B_m - B_r)$ is the difference between the maximum flux, B_m ,

17030 Muskrat Ave., Adelanto, California 92301 www.grouparnold.com Email: contactus@grouparnold.com Pulse transformers may also be able to use the 4 thousandths of an inch gage in many cases with some reduction in incremental induction. This is particularly true in applications having long pulse durations, i.e., 5 microseconds or greater, combined with low duty cycle and longer rise times. The major condition that needs to be satisfied to use 4 thousandths of an inch material in high frequency applications is to keep the core loss and excitation current well within the operating limits for the given design flux density. Where a range of frequencies is encountered, the design needs to be based on the lowest operating frequency.

TABLE 3 - TYPICAL MAGNETIC PROPERTIES AT 60/400 Hz											
Thickness (inches)	CCFR Settings: ³ H	Im = 6 Oe, delta	B = 20 kG								
Gage	$B_m(kG) @ 3 Oe$	$B_m - B_r \; (kG)$	H1 (Oe)								
0.001	13.0 – 15.5	1.0 - 2.00	0.80 - 1.20								
0.002	15.0 - 17.5	1.4 - 2.20	0.40 - 0.70								
0.004	16.0 - 18.0	1.6 – 2.75	0.30 - 0.60								
0.004 "Z"	17.5 – 18.5	1.4 - 2.20	0.30 - 0.60								
0.007	16.0 – 18.5	2.0 - 3.00	_								
0.007 "Z"	17.0 - 19.0	1.8 – 2.75	_								
0.009 "Z"4	17.0 – 19.0	1.5 – 2.75	_								
0.011 "Z"4	17.0 - 19.0	1.5 – 2.75	_								
0.012^4	16.0 – 18.0	2.0 - 3.00									

Summary

Consult the "Introduction and Specification" section of this catalogue for details concerning the specification limits of the offered gages. Contact customer service for further details about how the discussed factors affect core selection and design. Table 3 expands on Table 1, showing typical magnetic properties based on CCFR³ readings.

and the remanence, B_r (residual induction). $(B_m - B_r)$ is a measure of "Squareness" of the hysteresis loop in kilogauss. H_1 is a measure of coercive force (slightly larger) for the given drive level, H_m . Both H_m and H_1 are in oersteds 4. 0.009, 0.011 "Z" and 0.012 gage material were measured at 60 Hz. The other gages were measured at 400 Hz

NATIONAL-ARNOLD MAGNETICS

Introduction to Part Number Listings

The following section lists a selection of part numbers for each available silicon steel gage. The selections are primarily designed to meet the typical needs of transformer cores, and are therefore ranked in order of progressively increasing DEFG product, i.e., $D \times E \times F \times G$. The figure shows the *DEFG* product is the product of the core's magnetic crosssection (net area) and the window area of the coil. Other terminology for the *DEFG* product is the area product, window-area product and relative power handling factor. It directly relates to the power handling capability or "VA".⁵ Since inductors are frequently used with significant air gaps, inductor core designs tend to have narrower strip widths than transformers for a given *DEFG* product to reduce fringing effects.

National-Arnold Magnetics can, within very broad limits, manufacture any strip core geometry required for an application. However for a standard transformer and choke (inductor) design, when the volts per turn are not too high, there are certain ratios that typically apply for the C-Core configuration:

•	Strip width	to buildup:	1:1 <= D/E <= 3:1
---	-------------	-------------	-------------------

• Window dimensions: $2:1 \le G/F \le 4:1$

When the volts per turn become high, then the D/E ratio needs to drop to prevent insulation breakdown between laminations. Most of the core designs that are listed in this section follow these rules. The reasons:

- The core becomes more difficult to build when these ratios become too extreme
- Cores with large strip width to buildup ratios, i.e., D/E » 3, tend to run hotter compared to cores within the given range limits
- Cut cores with either large or small strip width to buildup ratios are difficult to align along the cuts
- Excessively tall windows, i.e., G/F » 4, tend to be less efficient in use of copper space

Depiction of Cut "C" Core Basic Dimensions

• Excessively squat windows, i.e., G/F « 2, tend to run hotter in the copper winding

Table of Contents

"C" and "E" Core Configurations

One thousandth of an inch C-Core	19
Two thousandths of an inch C-Core	20
Four thousandths of an inch (+ "Z") C & E	21
Seven thousandths of inch (+ "Z") C-Core	25
Eleven thousandth sof an inch "Z" C & E	27
Tweleve thousand ths of an inch C & E	29

Graphs for Silicon Steel

·	
One thousandth of an inch	31
Two thousandths of an inch	32
Four thousandths of an inch (+ "Z")	33
Seven thousandths of an inch (+ "Z")	35
Nine thousandths of an inch "Z"	37
Eleven thousandths of an inch "Z"	38
Twelve thousandths of an inch	39

Consult the Introduction and Specifications secton for the standard tolerances and specifications that apply.

5. VA is the Volt-Amp capability of a transformer. It is discussed in "Electronic Transformers and Circuits", Reuben Lee, Wiley Interscience 1988; "Transformer and Inductor Design Handbook", Colonel Wm. McLyman, 2nd Edition, Marcel Decker, 1988

Page 18

CM Series	Strip	Buildup	Win	dow	Outside Dimen. Nominal Dimensions Apply for Calculation							ions
Part Number	D^{l}	E^{i}	F^{l}	G^{\prime}	A^{I}	B^{I}	MGL ²	A_n^3	W_a^4	Sa ⁵	DEFG	Mass
0.001" Gage	inches	inches	inches	inches	inches	inches	inches	in ²	in ²	in^2	in^4	lbs
CM-53	0.125	0.125	0.187	0.375	0.437	0.625	1.34	0.013	0.070	0.705	0.001	0.005
CM-2-D	0.125	0.125	0.250	0.500	0.500	0.750	1.71	0.013	0.125	0.893	0.002	0.006
CM-3	0.250	0.125	0.250	0.500	0.500	0.750	1.71	0.026	0.125	1.34	0.003	0.013
CM-7-D	0.375	0.187	0.250	0.625	0.624	0.999	2.10	0.058	0.156	2.51	0.009	0.036
CM-4	0.375	0.250	0.250	0.875	0.750	1.375	2.73	0.078	0.219	3.66	0.017	0.063
СМ-3-Н	0.500	0.250	0.312	1.000	0.812	1.500	3.10	0.104	0.312	4.95	0.032	0.095
CM-5-F	0.500	0.375	0.375	1.187	1.125	1.937	3.83	0.156	0.445	7.34	0.069	0.180
CM-11	0.750	0.375	0.375	1.187	1.125	1.937	3.83	0.233	0.445	9.44	0.104	0.270
CM-49	0.750	0.437	0.500	1.250	1.374	2.124	4.32	0.272	0.625	11.3	0.170	0.358
CM-14	1.000	0.500	0.625	1.562	1.625	2.562	5.30	0.415	0.976	17.5	0.405	0.669
CM-52	1.000	0.625	0.750	2.312	2.000	3.562	7.32	0.519	1.73	25.6	0.900	1.13
CM-20	1.000	0.875	0.937	2.500	2.687	4.250	8.52	0.726	2.34	35.3	1.70	1.87
СМ-12-Е	1.500	1.000	1.000	3.000	3.000	5.000	9.86	1.25	3.00	54.6	3.74	3.76
CM-2757	1.500	1.000	1.500	3.187	3.500	5.187	11.2	1.25	4.78	61.5	5.95	4.23
CM-24-W	1.500	1.500	1.500	6.000	4.500	9.000	17.7	1.87	9.00	117	16.8	10.1

One Thousandth of an Inch Gage Part Numbers – "CM" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section

2. *MGL* is the adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference

3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.83, the space factor specification for this gage

4. W_a is the gross window area. It is $F \times G$. W_a does not include any correctional factors for coil winding packing density

5. S_a is the total Surface Area of the core

6. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_a$.

NATIONAL-ARNOLD MAGNETICS

Page 20

CL Series	Strip	Buildup	Win	dow	Outside	Dimen.	Nor	ninal Di	mensions	ensions Apply for Calculations				
Part Number	D^{t}	E^{i}	F^{\prime}	G^{\prime}	A^{I}	A^{I} B^{I} .		An^3	W_{a}^{4}	Sa ⁵	DEFG	Mass		
0.002" Gage	inches	inches	inches	inches	inches	inches	inches	in ²	in ²	in ²	in^4	lbs		
CL-1-S	0.125	0.125	0.125	0.375	0.375	0.625	1.21	0.014	0.047	0.643	0.001	0.005		
CL-26-A	0.250	0.125	0.187	0.375	0.437	0.625	1.34	0.028	0.070	1.06	0.002	0.011		
CL-163	0.250	0.156	0.250	0.500	0.562	0.812	1.78	0.035	0.125	1.53	0.004	0.018		
CL-3	0.375	0.187	0.250	0.625	0.624	0.999	2.10	0.062	0.156	2.51	0.010	0.038		
CL-6	0.500	0.250	0.250	0.875	0.750	1.375	2.73	0.111	0.219	4.39	0.024	0.090		
CL-123	0.500	0.250	0.375	1.000	0.875	1.500	3.23	0.111	0.375	5.14	0.042	0.105		
CL-11	0.750	0.375	0.375	1.187	1.125	1.937	3.83	0.250	0.445	9.44	0.111	0.290		
CL-211	0.750	0.375	0.500	1.562	1.250	2.312	4.83	0.250	0.781	11.7	0.195	0.359		
CL-19	1.000	0.500	0.625	1.562	1.625	2.562	5.30	0.445	0.976	17.5	0.434	0.717		
CL-24	1.000	0.625	0.750	2.312	2.000	3.562	7.32	0.556	1.73	25.6	0.965	1.21		
CL-128	1.125	0.687	0.937	2.500	2.311	3.875	8.18	0.688	2.34	32.0	1.61	1.67		
CL-3618	1.125	0.906	1.125	2.875	2.937	4.687	9.70	0.907	3.23	43.2	2.93	2.66		
CL-36	1.250	1.000	1.375	3.000	3.375	5.000	10.6	1.11	4.13	52.5	4.59	3.59		
CL-176	1.500	1.375	1.250	4.250	4.000	7.000	13.4	1.84	5.31	86.9	9.75	7.65		
CL-56	1.625	1.500	2.000	4.687	5.000	7.687	16.1	2.17	9.37	112	20.3	10.7		
CL-3613	2.000	2.000	2.500	4.250	6.500	8.250	16.9	3.56	10.6	157	37.8	19.2		
CL-228-C	2.500	1.750	2.500	6.000	6.000	9.500	20.1	3.89	15.0	189	58.4	23.9		
CL-3812	3.000	2.000	3.000	8.000	7.000	12.000	25.4	5.34	24.0	281	128	41.4		
CL-3802	3.500	2.000	4.500	9.000	8.500	13.000	30.4	6.23	40.5	364	252	56.9		

Two Thousandths of an Inch Gage Part Numbers – "CL" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section

2. *MGL* is the adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference

3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.89, the space factor specification for this gage

4. W_a is the gross window area. It is $F \times G$. W_a does not include any correctional factors for coil winding packing density

5. S_a is the total Surface Area of the core

6. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_a$.

GROUP ARNOLD[®] NATIONAL-ARNOLD MAGNETICS

CH Series	Strip	Buildup	Win	dow	Outside	utside Dimen. Nominal Dimensions Apply for Calculations								
Part Number	D^{l}	E^{\prime}	F^{\prime}	G^{\prime}	A^{I}	B^{I}	MGL ²	A_n^3	W_a^4	Sa ⁵	DEFG	Mass		
0.004" Gage	inches	inches	inches	inches	inches	inches	inches	in^2	in ²	in^2	in ⁴	lbs		
CH-122-L	0.250	0.187	0.281	0.500	0.655	0.874	1.91	0.042	0.141	1.79	0.006	0.024		
CH-172	0.375	0.250	0.250	0.625	0.750	1.125	2.23	0.084	0.156	3.04	0.013	0.057		
CH-246	0.375	0.250	0.312	1.000	0.812	1.500	3.10	0.084	0.312	4.13	0.026	0.077		
CH-39	0.375	0.250	0.500	1.312	1.000	1.812	4.10	0.084	0.656	5.38	0.055	0.100		
CH-187	0.500	0.375	0.500	1.125	1.250	1.875	3.96	0.169	0.563	7.56	0.095	0.201		
CH-4621	0.625	0.375	0.625	1.500	1.375	2.250	4.96	0.211	0.938	10.6	0.198	0.310		
CH-457-F	0.875	0.500	0.500	2.000	1.500	3.000	5.93	0.394	1.00	17.8	0.394	0.702		
CH-16	1.125	0.625	0.625	1.937	1.875	3.187	6.26	0.633	1.21	24.4	0.766	1.22		
CH-63-M	1.250	0.625	0.875	2.250	2.125	3.500	7.44	0.703	1.97	30.0	1.38	1.55		
CH-188	1.500	0.750	1.000	3.000	2.500	4.500	9.42	1.01	3.00	45.6	3.04	2.83		
CH-33	1.750	1.000	1.000	3.000	3.000	5.000	9.86	1.58	3.00	60.1	4.73	4.75		
CH-461	2.000	1.000	1.375	3.000	3.375	5.000	10.6	1.80	4.13	70.1	7.43	5.80		
CH-249-S	2.250	1.000	1.500	4.000	3.500	6.000	12.9	2.03	6.00	90.5	12.2	7.78		
CH-4489	2.500	1.500	2.000	5.000	5.000	8.000	16.7	3.38	10.0	148	33.8	17.2		
CH-4633	3.000	2.000	1.750	7.000	5.750	11.000	20.9	5.40	12.3	236	66.2	35.1		
CH-3083	3.000	3.000	2.500	7.250	8.500	13.250	24.4	8.10	18.1	345	147	64.2		

Four Thousandths of an Inch Standard Gage Part Numbers – "CH" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

15.000

29.2

14.4

 Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section
 MGL is the adjusted Mean Gross Length. It is the magnetic

31.5

566

path length in the direction of the circumference

3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.90, the space factor specification for this gage

4. W_a is the gross window area. It is $F \times G$. W_a does not include any correctional factors for coil winding packing density

5. S_a is the total Surface Area of the core

6. D EFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_a$.

CH-4584

4.000

4.000

4.500

7.000

12.500

454

141

GROUP ARNOLD® NATIONAL-ARNOLD MAGNETICS

Page 22

CTH Series	Strip	Buildup	Win	dow	Outside	Dimen.	Nominal Dimensions Apply for Calculation						
Part Number	D^{I}	$(2 \times E)^{i}$	F^{t}	G^{\prime}	A^{I}	B^{l}	A_n^2	W_a^3	S_a^4	<i>DEFG</i> ⁵	Mass		
0.004" Gage	inches	inches	inches	inches	inches	inches	in ²	in^2	in^2	in^4	lbs		
СТН-43-Е	0.250	0.250	0.250	0.625	1.250	1.125	0.056	0.156	3.85	0.013	0.061		
CTH-53-D	0.375	0.187	0.500	0.625	1.561	0.999	0.063	0.313	5.10	0.030	0.081		
CTH-97	0.375	0.250	0.437	1.000	1.624	1.500	0.084	0.437	7.13	0.055	0.136		
CTH-69	0.500	0.375	0.437	1.000	1.999	1.750	0.169	0.437	11.0	0.111	0.300		
CTH-69-F	1.000	0.375	0.437	1.000	1.999	1.750	0.338	0.437	17.1	0.221	0.599		
CTH-116	1.000	0.500	0.500	1.375	2.500	2.375	0.450	0.688	24.5	0.464	1.05		
CTH-90	1.000	0.500	0.750	2.000	3.000	3.000	0.450	1.50	33.1	1.01	1.40		
CTH-24	0.875	0.750	0.937	2.500	4.124	4.000	0.591	2.34	46.5	2.08	2.38		
CTH-4	1.250	0.750	1.250	2.500	4.750	4.000	0.844	3.13	62.0	3.96	3.70		
CTH-82	1.000	1.000	1.625	3.375	6.250	5.375	0.900	5.48	83.4	7.40	5.27		
CTH-75	1.625	1.000	1.500	5.062	6.000	7.062	1.46	7.59	133	16.7	10.4		
CTH-32-B	2.000	1.000	2.250	4.500	7.500	6.500	1.80	10.1	159	27.3	13.5		
CTH-75-F	2.000	2.000	2.500	5.750	11.000	9.750	3.60	14.4	288	77.6	36.5		
CTH-501	2.750	1.875	2.625	8.000	10.875	11.750	4.64	21.0	394	146	55.6		

Four Thousandths of an Inch Standard Gage Part Numbers – "CTH" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for three phase transformer cores. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. A_n is the Area (Net). It is $(D \times 2E) \times SF$, and is the magnetically active cross-sectional area of the core. SF is 0.90, the space factor specification for this gage

3. W_a is the gross window area for each window. It is F × G. W_a does not include any correctional factors for coil winding packing density

4. S_a is the total Surface Area of the core

5. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times 3.0 \times SF$ or $A_n \times W_a \times 3.0$. The correction factor, 3.0, applies to 3 phase power calculations, where each copper winding occupies half the window area. For this calculation the "E" dimension is half the actual buildup of $2 \times E$.

GROUP ARNOLD® NATIONAL-ARNOLD MAGNETICS

CZ Series	Strip	Buildup	Win	dow	Outside	Dimen.	Nominal Dimensions Apply for Calculations							
Part Number	D^{I}	E^{t}	F^{t}	G^{\prime}	A^{I}	B^{\prime}	MGL ²	A_n^3	W_a^4	Sa ⁵	DEFG	Mass		
0.004" Z" Gage	inches	inches	inches	inches	inches	inches	inches	in^2	in^2	in ²	in^4	lbs		
CZ-121-A	0.250	0.125	0.250	0.500	0.500	0.750	1.71	0.028	0.125	1.34	0.004	0.014		
CZ-121-M	0.250	0.187	0.250	0.750	0.624	1.124	2.35	0.042	0.188	2.17	0.008	0.029		
CZ-4	0.375	0.187	0.375	1.000	0.749	1.374	3.10	0.063	0.375	3.63	0.024	0.056		
CZ-46	0.500	0.250	0.500	1.000	1.000	1.500	3.48	0.113	0.500	5.52	0.056	0.114		
СZ-99-В	0.625	0.625	0.312	1.000	1.562	2.250	3.76	0.352	0.312	11.2	0.110	0.435		
CZ-215	0.875	0.437	0.500	1.312	1.374	2.186	4.45	0.344	0.656	12.8	0.226	0.464		
CZ-34-R	1.000	0.562	0.625	1.750	1.749	2.874	5.78	0.506	1.09	20.0	0.553	0.895		
CZ-3205	1.000	0.625	0.875	1.875	2.125	3.125	6.64	0.563	1.64	23.9	0.923	1.14		
CZ-3214	1.250	0.750	1.250	3.250	2.750	4.750	10.4	0.844	4.06	44.6	3.43	2.60		
CZ-98-F	1.625	0.812	1.750	3.500	3.374	5.124	12.0	1.19	6.13	62.6	7.27	4.21		
CZ-33-R	2.000	1.875	1.000	4.000	4.750	7.750	13.3	3.38	4.00	121	13.5	14.6		
CZ-3270	2.000	2.000	1.750	4.000	5.750	8.000	14.9	3.60	7.00	141	25.2	17.5		
CZ-3181	2.500	2.250	1.750	7.500	6.250	12.000	22.3	5.06	13.1	241	66.4	35.4		
CZ-3175	3.000	2.000	2.500	7.500	6.500	11.500	23.4	5.40	18.8	261	101	38.9		
CZ-479-F	3.750	2.500	3.500	8.000	8.500	13.000	27.2	8.44	28.0	383	236	71.4		
CZ-3216	3.750	3.750	5.000	12.000	12.500	19.500	39.9	12.7	60	684	759	159		

Four Thousandths of an Inch "Z" Gage Part Numbers – "CZ" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. *MGL* is the adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference 3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.90, the space factor specification for this gage 4. W_a is the gross window area. It is F × G. W_a does not include any correctional factors for acil winding machine

include any correctional factors for coil winding packing density

5. S_a is the total Surface Area of the core

6. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_q$.

NATIONAL-ARNOLD MAGNETICS

Page 24

CTZ Series	Strip	Buildup	Window Outside Dimen.					Nominal Dimensions Apply for Calculations						
Part Number	D^{i}	$(2 \times E)^{I}$	F^{i}	G ⁱ	A^{I}	B ¹		An^2	Wa ³	Sa ⁴	DEFG ⁵	Mass		
0.004" "Z" Gage	inches	inches	inches	inches	inches	inches		in^2	in^2	in^2	in^4	lbs		
CTZ-53-A	0.250	0.250	0.250	0.750	1.250	1.250		0.056	0.188	4.22	0.016	0.067		
CTZ-53-D	0.375	0.187	0.500	0.625	1.561	0.999		0.063	0.313	5.10	0.030	0.081		
CTZ-96-C	0.375	0.250	0.437	1.000	1.624	1.500		0.084	0.437	7.13	0.055	0.136		
CTZ-69	0.500	0.375	0.437	1.000	1.999	1.750		0.169	0.437	11.0	0.111	0.300		
CTZ-104-A	0.875	0.375	0.500	1.000	2.125	1.750		0.295	0.500	16.2	0.221	0.545		
CTZ-12	1.000	0.500	0.750	1.000	3.000	2.000		0.450	0.750	24.1	0.506	1.03		
CTZ-90	1.000	0.500	0.750	2.000	3.000	3.000		0.450	1.50	33.1	1.01	1.40		
CTZ-29	1.000	0.500	1.000	3.000	3.500	4.000		0.450	3.00	44.6	2.03	1.88		
CTZ-19	2.000	0.750	1.000	2.250	4.250	3.750		1.35	2.25	75.3	4.56	5.26		
CTZ-85-D	1.500	0.750	1.375	3.875	5.000	5.375		1.01	5.33	90.5	8.09	5.73		
CTZ-14-E	2.000	1.000	1.955	3.032	6.910	5.032		1.80	5.93	126	16.0	10.7		
CTZ-528	1.750	1.250	2.625	9.500	9.000	12.000		1.97	24.9	266	73.6	24.4		
CTZ-607-A	2.000	1.375	5.000	9.000	14.125	11.750		2.48	45.0	356	167	36.5		

Four Thousandths of an Inch "Z" Gage Part Numbers – "CTZ" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for three phase transformer cores. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. A_n is the Area (Net). It is (D × 2E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.90, the space factor specification for this gage 3. W_a is the gross window area for each window. It is F × G. W_a does not include any correctional factors for coil winding packing density 4. S_a is the total Surface Area of the core

5. D = FG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times 3.0 \times SF$ or $A_n \times W_a \times 3.0$. The correction factor, 3.0, applies to 3 phase power calculations, where each copper winding occupies half the window area. For this calculation the "E" dimension is half the actual buildup of $2 \times E$.

Seven Thousandths of an Inch Standard Gage Part Numbers - "CJ" Series Buildup **CJ** Series Strip Window Outside Dimen. Nominal Dimensions Apply for Calculations F^{1} A^{1} D^{l} E^{1} G^{l} B^{l} MGL^2 A_n^3 W_a^4 Sa5 DEFG⁶ Mass Part Number

0.007" Gage	inches	in ²	in ²	in ²	in ⁴	lbs						
CJ-1097	0.375	0.312	0.375	1.187	0.999	1.811	3.72	0.108	0.445	5.49	0.048	0.119
CJ-1075	0.625	0.500	0.750	0.937	1.750	1.937	4.30	0.288	0.703	10.9	0.202	0.384
CJ-1030	0.750	0.750	0.750	1.250	2.250	2.750	5.34	0.518	0.938	18.7	0.485	0.893
CJ-1073	1.250	0.500	1.000	2.562	2.000	3.562	8.08	0.575	2.56	29.7	1.47	1.35
CJ-1032	1.250	0.750	1.250	3.250	2.750	4.750	10.4	0.863	4.06	44.6	3.50	2.65
CJ-1067	1.250	1.250	2.000	5.000	4.500	7.500	16.3	1.44	10.0	88.6	14.4	7.03
CJ-1045	2.000	2.000	2.000	4.500	6.000	8.500	16.4	3.68	9.00	153	33.1	19.4
CJ-1044	2.000	2.000	3.000	5.500	7.000	9.500	20.4	3.68	16.5	185	60.7	23.4
CJ-1055	3.000	2.000	3.500	6.000	7.500	10.000	22.4	5.52	21.0	251	116	38.2
CJ-1031	3.000	2.000	5.000	10.000	9.000	14.000	33.4	5.52	50.0	361	276	55.0
CJ-1095	5.000	4.500	3.000	10.500	12.000	19.500	33.8	20.7	31.5	778	652	234

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section

2. *MGL* is the adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference

3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.92, the space factor specification for this gage

4. W_a is the gross window area. It is $F \times G$. W_a does not include any correctional factors for coil winding packing density

5. S_{i} is the total Surface Area of the core

6. D EFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_q$.

NATIONAL-ARNOLD MAGNETICS

Page 26

CJZ Series	Strip	Buildup	Window Outside Dimen.				Nominal Dimensions Apply for Calculations						
Part Number	D^{l}	E^{i}	F^{t}	G^{\prime}	A^{I}	B^{I}	MGL ²	A_n^3	W_a^4	Sa ⁵	DEFG	Mass	
0.007" "Z" Gage	inches	inches	inches	inches	inches	inches	inches	in ²	in ²	in ²	in ⁴	lbs	
CJZ-1028	0.218	0.218	0.312	1.187	0.748	1.623	3.41	0.044	0.370	3.12	0.016	0.043	
CJZ-1054	0.375	0.312	0.375	1.000	0.999	1.624	3.34	0.108	0.375	4.98	0.040	0.108	
CJZ-1118	0.500	0.250	0.500	1.000	1.000	1.500	3.48	0.115	0.500	5.52	0.058	0.117	
CJZ-1037	0.500	0.500	0.625	1.000	1.625	2.000	4.18	0.230	0.625	9.43	0.114	0.299	
CJZ-1122	0.625	0.375	0.625	1.875	1.375	2.625	5.71	0.216	1.172	12.1	0.253	0.361	
CJZ-1014	1.000	0.375	0.750	2.000	1.500	2.750	6.21	0.345	1.50	18.1	0.518	0.626	
CJZ-1013	1.500	0.625	0.750	2.375	2.000	3.625	7.44	0.863	1.78	34.0	1.54	1.90	
CJZ-1056	2.500	0.875	1.312	3.500	3.062	5.250	11.3	2.01	4.59	82.1	9.24	6.75	
CJZ-1115	2.500	1.750	2.500	7.250	6.000	10.750	22.6	4.03	18.1	211	73.0	27.5	

Seven Thousandths of an Inch "Z" Gage Part Numbers – "CJZ" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. *MGL* is the adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference 3. A_n is the Area (Net). It is (D × E) × SF, and is the magneti-

cally active cross-sectional area of the core. SF is 0.92, the space factor specification for this gage

4. W_a is the gross window area. It is $F \times G$. W_a does not include any correctional factors for coil winding packing density

5. S_a is the total Surface Area of the core

6. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_a$.

17030 Muskrat Ave., Adelanto, California 92301 www.grouparnold.com Email: contactus@grouparnold.com
 TOLL FREE:
 800-877-7641

 PHONE:
 (+1)
 760-246-3020

 FAX:
 (+1)
 760-246-3870

Eleven Thousandthe	s of an Inch "	Z" Gage Part	Numbers –	"CAZ/CSZ"	Series

CAZ/CSZ Series	Strip	Buildup	Win	dow	Outside	Dimen.	Nominal Dimensions Apply for Calculations						
Part Number	D^{I}	E^{i}	F^{i}	G^{\prime}	A^{I}	B^{i}	MGL ²	A_n^3	W_{a}^{4}	Sa ⁵	DEFG ⁶	Mass	
0.011" "Z" Gage	inches	inches	inches	inches	inches	inches	inches	in ²	in ²	in ²	in^4	lbs	
CAZ-42-C	0.500	0.437	0.625	2.000	1.499	2.874	6.07	0.208	1.25	12.2	0.259	0.373	
CAZ-42-D	0.750	0.750	0.625	2.000	2.125	3.500	6.59	0.534	1.25	22.5	0.668	1.11	
CAZ-134-B	0.875	0.562	1.000	4.000	2.124	5.124	11.1	0.467	4.00	33.2	1.87	1.49	
CAZ-1037	1.000	1.000	1.375	3.000	3.375	5.000	10.6	0.950	4.13	46.7	3.92	3.06	
CAZ-1013	1.250	1.250	1.500	5.000	4.000	7.500	15.3	1.48	7.50	83.6	11.1	6.85	
CAZ-300-T	1.500	1.000	3.000	4.250	5.000	6.250	16.4	1.43	12.8	87.1	18.2	6.85	
CAZ-1093	2.000	1.000	4.000	6.000	6.000	8.000	21.9	1.90	24.0	138	45.6	12.0	
CAZ-1106	2.500	2.000	3.500	6.500	7.500	10.500	23.4	4.75	22.8	235	108	34.2	
CAZ-1082	2.500	2.500	4.000	9.000	9.000	14.000	30.2	5.94	36.0	337	214	55.1	
CAZ-1046	3.000	3.000	6.500	12.000	12.500	18.000	41.9	8.55	78.0	555	667	109	
CAZ-1100	3.000	3.000	7.500	15.000	13.500	21.000	49.9	8.55	113	651	962	128	
CAZ-1085	3.000	3.000	11.000	30.000	17.000	36.000	86.9	8.55	330	1,090	2,820	215	

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. *MGL* is the adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference 3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.95, the space factor specification for this gage

4. W_a is the gross window area. It is $F \times G$. W_a does not include any correctional factors for coil winding packing density

5. S_a is the total Surface Area of the core

6. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_a$.

NATIONAL-ARNOLD MAGNETICS

Page 28

Eleven Thousandths of an Inch "Z" Gage Part Numbers - "CTAZ/CTSZ" Series

				_							
CTAZ/CTSZ Series	Strip	Buildup	Win	dow	Outside	Dimen.	Nomina	l Dimens	ions App	ly for Calc	ılations
Part Number	D^{\prime}	$(2 \times E)^{i}$	F'	G^{\prime}	A^{I}	B^{l}	An^2	W_a^3	S_a^4	DEFG	Mass
0.011" "Z" Gage	inches	inches	inches	inches	inches	inches	in ²	in ²	in ²	in^4	lbs
CTAZ-13-C	0.625	0.437	0.500	1.625	2.311	2.499	0.259	0.813	18.4	0.316	0.635
CTAZ-13-B	1.375	0.437	0.625	1.437	2.561	2.311	0.571	0.898	31.0	0.769	1.39
CTAZ-28-S	1.000	0.750	0.750	2.250	3.750	3.750	0.713	1.69	44.8	1.80	2.58
CTAZ-369	1.000	0.500	1.500	3.375	4.500	4.375	0.475	5.06	54.0	3.61	2.40
CTAZ-12	1.500	1.000	0.937	2.500	4.874	4.500	1.43	2.34	76.9	5.01	6.24
CTAZ-3	1.000	0.875	1.625	3.500	5.875	5.250	0.831	5.69	77.3	7.09	4.82
CTSZ-382	1.375	0.875	1.500	3.625	5.625	5.375	1.14	5.44	92.0	9.32	6.58
CTSZ-300	2.000	1.000	1.250	3.125	5.500	5.125	1.90	3.91	111	11.1	9.95
CTAZ-125	2.500	1.000	1.500	2.500	6.000	4.500	2.38	3.75	123	13.4	11.9
CTAZ-3-B	1.750	1.000	1.750	3.875	6.500	5.875	1.66	6.78	125	16.9	10.7
CTAZ-3-E	2.000	1.000	1.625	4.500	6.250	6.500	1.90	7.31	144	20.8	12.9
CTAZ-237-B	2.500	1.000	1.750	4.500	6.500	6.500	2.38	7.88	172	28.1	16.5
CTAZ-281	1.750	2.000	1.625	4.750	9.250	8.750	3.33	7.72	222	38.5	27.8
CTAZ-311	3.000	1.500	2.000	4.000	8.500	7.000	4.28	8.00	237	51.3	31.9
CTSZ-187-H	2.750	1.500	3.000	5.000	10.500	8.000	3.92	15.0	283	88.2	36.8
CTSZ-80-N	2.500	2.500	2.500	7.000	12.500	12.000	5.94	17.5	420	156	70.5
CTSZ-35-D	2.000	3.250	3.750	9.000	17.250	15.500	6.18	33.8	596	313	98.3
CTSZ-35-W	4.500	3.750	4.000	6.500	19.250	14.000	16.0	26.0	859	625	237

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for three phase transformer cores. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. A_n is the Area (Net). It is (D × 2E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.95, the space factor specification for this gage 3. W_a is the gross window area for each window. It is F × G. W_a does not include any correctional factors for coil winding packing density 4. So is the total Surface Area of the core

4. S_a is the total Surface Area of the core

5. DEFG is the area-window product or relative power handling factor: (D × E × F × G) × 3.0 × SF or $A_n × W_a × 3.0$. The correction factor, 3.0, applies to 3 phase power calculations, where each copper winding occupies half the window area. For this calculation the "E" dimension is half the actual buildup of 2 × E.

GROUP ARNOLD® NATIONAL-ARNOLD MAGNETICS

CNICSS	C.									<u>C11</u>	•	
CA/CS Series	Strip	Buildup	W1n	dow	Outside	Dimen.	Nor	ninal Di	mensions	Apply fo	or Calculat	10115
Part Number	D^{I}	E^{\prime}	F'	G'	A^{i}	B^{I}	MGL^2	A_n^3	W_a^4	Sa^5	DEFG	Mass
0.012" Gage	inches	inches	inches	inches	inches	inches	inches	in ²	in ²	in ²	in^4	lbs
CA-6220	0.375	0.375	0.375	1.125	1.125	1.875	3.71	0.134	0.422	6.11	0.056	0.150
CA-6152	0.625	0.625	0.437	1.312	1.687	2.562	4.64	0.371	0.573	13.4	0.213	0.548
CA-204-B	0.750	0.500	0.750	1.562	1.750	2.562	5.55	0.356	1.17	15.2	0.417	0.599
CA-6110	0.750	0.500	1.125	2.250	2.125	3.250	7.70	0.356	2.53	20.3	0.902	0.797
CA-412-D	0.750	0.750	1.125	3.000	2.625	4.500	9.67	0.534	3.38	31.2	1.80	1.53
CA-391	1.000	1.000	1.375	3.000	3.375	5.000	10.6	0.950	4.13	46.7	3.92	3.06
CA-6172	1.250	1.250	1.500	3.500	4.000	6.000	12.3	1.48	5.25	68.6	7.79	5.62
CA-6421	1.250	1.250	2.250	4.000	4.750	6.500	14.8	1.48	9.00	81.1	13.4	6.64
CS-122-H	1.500	1.500	2.500	5.000	5.500	8.000	17.7	2.14	12.5	117	26.7	11.5
CA-6428	2.000	1.000	3.000	8.000	5.000	10.000	23.9	1.90	24.0	150	45.6	13.1
CA-6424	3.000	2.500	2.000	6.500	7.000	11.500	21.2	7.13	13.0	271	92.6	48.5
CA-6341	3.500	2.000	4.500	9.000	8.500	13.000	30.4	6.65	40.5	364	269	60.7
CA-6364	4.000	3.000	5.000	10.000	11.000	16.000	34.9	11.4	50.0	549	570	123
CA-5240	5.000	4.000	5.250	11.625	13.250	19.625	39.9	19.0	61.0	830	1,160	242
CA-6345	5.000	5.000	9.000	17.000	19.000	27.000	59.5	23.8	153	1,350	3,630	442
CA-6254	6.000	6.000	10.000	19.750	22.000	31.750	68.2	34.2	198	1,880	6,750	738
CA-6024	8.000	8.000	10.000	19.750	26.000	35.750	70.5	60.8	198	2,700	12,000	1,417
CA-6040	8.000	8.000	12.000	24.000	28.000	40.000	83.0	60.8	288	3,100	17,500	1,626

Twelve Thousandths of an Inch Gage Part Numbers – "CA/CS" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for transformer cores. Inductor cores may have narrower strip widths for a given *defg* product. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. *MGL* is adjusted Mean Gross Length. It is the magnetic path length in the direction of the circumference 3. A_n is the Area (Net). It is (D × E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.95, the space factor specification for this gage 4. W_a is the gross window area. It is F × G. W_a does not include any correctional factors for coil winding packing

density5. S_a is the total Surface Area of the core

6. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times SF$ or $A_n \times W_a$.

NATIONAL-ARNOLD MAGNETICS

Page 30

CTA/CTS Series	Strip	Buildup	Win	dow	Outside	Outside Dimen.			Nominal Dimensions Apply for Calculations						
Part Number	D^{I}	$(2 \times E)^{I}$	F^{t}	G^{\prime}	A^{I}	B^{I}		A_n^2	W_a^3	Sa^4	DEFG ⁵	Mass			
0.012" Gage	inches	inches	inches	inches	inches	inches		in ²	in ²	in ²	in^4	lbs			
CTA-5-J	0.750	0.250	0.500	1.687	1.750	2.187	Ī	0.178	0.884	16.0	0.225	0.400			
CTA-78-A	1.000	0.500	0.500	1.500	2.500	2.500		0.475	0.750	25.6	0.534	1.15			
CTA-9-G	1.000	0.625	0.625	2.125	3.125	3.375		0.594	1.33	36.8	1.18	1.91			
CTA-47	1.875	0.500	0.625	2.500	2.750	3.500		0.891	1.56	56.2	2.09	2.99			
CTA-20-D	0.875	0.875	1.000	3.750	4.625	5.500		0.727	3.75	66.1	4.09	3.86			
CTA-20-B	2.000	1.125	1.000	2.500	5.375	4.750		2.14	2.50	101	8.02	9.87			
CTA-16-A	2.000	1.500	1.250	3.000	7.000	6.000		2.85	3.75	143	16.0	16.6			
CTA-53	2.375	1.000	2.750	3.500	8.500	5.500		2.26	9.63	172	32.6	16.3			
CTA-307-D	2.000	1.500	2.500	6.250	9.500	9.250		2.85	15.6	246	66.8	28.2			
CTA-1242	3.000	2.125	3.000	5.000	12.375	9.250		6.06	15.0	371	136	62.1			
CTA-311-A	4.000	2.000	2.000	10.000	10.000	14.000		7.60	20.0	558	228	100			
CTS-188-C	4.750	2.375	3.000	7.500	13.125	12.250		10.7	22.5	636	362	136			
CTA-2862	4.125	1.500	6.250	9.000	17.000	12.000	ľ	5.88	56.3	654	496	95.8			
CTA-2586	4.000	4.000	4.000	12.000	20.000	20.000		15.2	48.0	1,117	1,094	299			
CTA-2772	5.750	4.000	4.000	13.000	20.000	21.000		21.9	52.0	1,414	1,704	449			

Twelve Thousandths of an Inch Gage Part Numbers – "CTA/CTS" Series

The listing is a selection of part numbers from a large list of possibilities. The given geometry generally conforms to good design practice for three phase transformer cores. Contact customer service for assistance in your application

1. Nominal dimensions are reported. Standard tolerances are defined in the Introduction and Specifications section 2. A_n is the Area (Net). It is (D × 2E) × SF, and is the magnetically active cross-sectional area of the core. SF is 0.95, the space factor specification for this gage 3. W_a is the gross window area for each window. It is F × G. W_a does not include any correctional factors for coil winding packing density 4. S is the total Surface Area of the core

4. S_a is the total Surface Area of the core

5. DEFG is the area-window product or relative power handling factor: $(D \times E \times F \times G) \times 3.0 \times SF$ or $A_n \times W_a \times 3.0$. The correction factor, 3.0, applies to 3 phase power calculations, where each copper winding occupies half the window area. For this calculation the "E" dimension is half the actual buildup of $2 \times E$.

Graphs – One Thousandth of an Inch Gage Silicon Steel

Graphs – Two Thousandths of an Inch Gage Silicon Steel

17030 Muskrat Ave., Adelanto, California 92301 www.grouparnold.com Email: contactus@grouparnold.com
 TOLL FREE:
 800-877-7641

 PHONE:
 (+1)
 760-246-3020

 FAX:
 (+1)
 760-246-3870

Graphs – Four Thousandths of an Inch Standard Gage Silicon Steel

3% Grain Oriented Silicon Steel

Graphs – Four Thousandths of an Inch "Z" Gage Silicon Steel

Page 34

17030 Muskrat Ave., Adelanto, California 92301 www.grouparnold.com Email: contactus@grouparnold.com

Flux Density (kG)

Graphs – Seven Thousandths of an Inch Standard Gage Silicon Steel

Graphs – Seven Thousandths of an Inch "Z" Gage Silicon Steel

17030 Muskrat Ave., Adelanto, California 92301 www.grouparnold.com Email: contactus@grouparnold.com

Flux Density (kG)

TOLL FREE: 800-877-7641 PHONE: (+1) 760-246-3020 FAX: (+1) 760-246-3870

Graphs – Nine Thousandths of an Inch "Z" Gage Silicon Steel

Graphs – Eleven Thousandths of an Inch "Z" Gage Silicon Steel

17030 Muskrat Ave., Adelanto, California 92301 www.grouparnold.com Email: contactus@grouparnold.com TOLL FREE: 800-877-7641 PHONE: (+1) 760-246-3020 FAX: (+1) 760-246-3870

Graphs – Twelve Thousandths of an Inch Gage Silicon Steel

Limited Warranty and Exclusive Remedy

Limited Warranty and Exclusive Remedy National-Arnold Magnetics Company ("National-Arnold") warrants that these products conform to standards specified herein and will be free from defects in material and workmanship at the time of delivery to buyer. THIS WARRANTY IS EXPRESSLY GIVEN IN LIEU OF ANY AND ALL OTHER EXPRESS OR IM-PLIED WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND IN LIEU OF ANY OTHER OBLIGATION ON THE PART OF NA-TIONAL-ARNOLD. National-Arnold will, at its option, repair or replace free of charge (excluding all shipping and handling costs) any products which have not been subject to misuse, abuse, or modification and which in its sole determination were not manufactured in compliance with the warranty given above.

It is expressly understood that any technical advice furnished by or on behalf of National-Arnold with respect to the use of its goods or services is given without charge, and seller assumes no obligation or liability for the advice given or results obtained. All such advice being given and accepted is at buyer's risk.

THE REMEDY PROVIDED FOR HEREIN SHALL BE THE EXCLUSIVE REMEDY FOR ANY BREACH OF WARRANTY OR ANY CLAIM ARISING IN ANY WAY OUT OF THE MANUFACTURE, SALE, OR USE OF THESE PRODUCTS. In no event shall National-Arnold, its affiliated companies, including the Arnold Engineering Company, and its parent companies, including SPS Technologies, Inc., NAM Acquisition Corp.'s I and II, be liable for consequential, incidental or any other damages of any nature whatsoever except those specifically provided herein for any breach of warranty or any claim arising in any way out of the manufacture, sale, or use of these products. No other person is authorized by National-Arnold to give any other warranty, written or oral, pertaining to the products.

NATIONAL-ARNOLD MAGNETICS

Group Arnold Companies	Products	Group Arnold Companies	Products
World Headquarters300 North West StreetMarengo, Illinois 60152Toll Free: (800) 545-4578Phone: (815) 568-2000FAX: (815) 568-2228		Swift Levick Magnets, Ltd. Barlborough Links, Barlborough Derbyshire S43 4TZ UK USA Toll Free: (800) 545-4578 FAX: (805) 568-2365 EUROPE	Rare Earth Magnets Pressed to Shape and Sliced; Magnetic Assemblies and Cast Alnico Magnets
Alnico Products Division 300 North West Street Marengo Illinois 60152	Cast & Sintered Alnico	Phone: (+44) 1246-570500 FAX: (+44) 1246-573000	
Toll Free: (800) 545-4578 Phone: (815) 568-2000 FAX: (815) 568-2376		Magnetic Technologies Corp. 770 Linden Avenue Rochester, New York 14625-2764 Toll Free: (866) 405-0400	Precision Magnetic Components and Assemblies
Powder Core Division 300 North West Street Marengo, Illinois 60152	MPP, SUPER-MSS [™] and HI-FLUX [™] , Soft magnetic powder	Phone: (716) 385-9010 FAX: (716) 385-5625	
Toll Free: (800) 545-4578 Phone: (815) 568-2000 FAX: (815) 568-2238	cores	Magnetic Technologies Europe Ltd. 101 Laker Road Rochester Airport Industrial Estate Rochester, Kent ME 13QX UK	Precision Magnetic Components and Assemblies
<i>Rolled Products Division</i> 300 North West Street Marengo, Illinois 60152 Toll Free: (800) 545-4578	Precision Rolled Alloy Strip and Foil	Phone: (+44) 1634-864500 FAX: (+44) 1634-867800 E-Mail: mpage@mteurope.com	
Phone: (815) 568-2471 FAX: (815) 578-2477		<i>National-Arnold Magnetics</i> 17030 Muskrat Avenue Adelanto, California 92301	Tape Wound C-Cores E-Cores, Toroidal Cores and Special
<i>Ogallala Electronics Division</i> P.O. Box 59 Ogallala, Nebraska 69153 Toll Eraci (800) 426 5852	Alnico, Hard Ferrite and Rare Earth	Toll Free:(800) 877-7641Phone:(760) 246-3020FAX:(760) 246-3870	Configurations
Find Free: (800) 426-5852 Phone: (308) 284-4093 FAX: (308) 284-4740	Electromagnets	<i>Jade Magnetics Ltd.</i> 2nd Industrial Zone, Yu Lu Gong Ming Town, Bao-An County Shenzhen City, China	Precision Magnetic Components and Assemblies
Plastiform Division 1000 East Eisenhower Avenue Norfolk, Nebraska 68702-1567 Toll Free: (800) 328-1373 Phone: (402) 371-6100 FAX: (402) 371-8495	Flexible, Injection and Compression Bonded Ferrite and Rare Earth Magnets	Flexmag Industries, Inc. 107 Industry Road Marietta, Ohio 45750 Toll Free: (800) 543-4426 Phone: (740) 374-8024 FAX: (740) 374-5068	Extruded Sheet and Strip Ferrite Magnets, Flexible Rolls or Blanks and Die Cuts

Visit us: www.grouparnold.com Contact us: contactus@grouparnold.com