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Introduction

Research in nonlinear systems and complexity had made remarkable progress
in the 1970’s and 1980’s, leading to discoveries which were not only new, but
also revolutionary in the sense that some of our traditional beliefs regarding
the behavior of deterministic systems were relentlessly challenged [63, 64,
79, 92]. Most striking of all, simple deterministic systems can behave in
a “random-like” fashion and their solution trajectories can deny “long-term
predictability” even if the initial conditions are practically known [29, 54, 76,
109]. Such behavior is now termed chaos, which underlies the complexity and
subtle order exhibited by real-world systems. Scientists, mathematicians and
engineers from a diverging range of disciplines have found remarkably similar
complex behavior in their systems. The root cause of such complex behavior
has been identified collectively as nonlinearity. Precisely, without exception,
all systems in the real world are nonlinear. In this book, we are concerned
with a particular class of engineering systems, known as power electronics,
which by virtue of its rich nonlinearity exhibits a variety of complex behavior.

In this introductory chapter we will take a quick tour of power electron-
ics circuits and dynamical systems. Our aim is to introduce the basic types
of switching converters, their salient operating features, modeling approaches
and nonlinear behavior. We will also introduce some basic concepts of non-
linear dynamics that are necessary for understanding the complex behavior
of switching converters to be described in the later chapters.

1.1 Overview of Power Electronics Circuits

The basic operation of any power electronics circuit involves toggling among
a set of linear or nonlinear circuit topologies, under the control of a feed-
back system [33, 78, 81, 99, 100, 118, 128]. As such, they can be regarded
as piecewise switched dynamical systems. For example, in simple switching
converters, such as the ones shown in Figure 1.1, an inductor (or inductors)
is/are “switched” between the input and the output through an appropriate
switching element (labelled as S in the figure). The way in which the in-
ductor(s) is/are switched determines the output voltage level and transient
behavior. Usually, a semiconductor switch and a diode are used to implement

©2004 CRC Press LLC



�� ✄ �✄ �✄ �
✁✁ ❆❆✖✕

✗✔
+

−

S

DE

L

C vC

+

−

(a)

��

✖✕
✗✔

+

−

S

E C vC

−

+

(c)

�✁�✁�✁
❍❍
✟✟

✖✕
✗✔

+

−E C vC

+

−

(b)

✄ �✄ �✄ �L ❍❍✟✟

��

D

S

L

D

R

R

R

✖✕
✗✔

+

−E

✄ �✄ �✄ �L1

��S

✄ �✄ �✄ �
D

L2

C2 vC

−

+

R❆❆✁✁

C1

(d)

FIGURE 1.1
Examples of simple switching converters. (a) Buck converter; (b) boost con-
verter; (c) buck-boost converter; (d) boost-buck (Ćuk) converter.

such switching. Through the use of a feedback control circuit, the relative
durations of the various switching intervals are continuously adjusted. Such
feedback action effectively controls the transient and steady-state behaviors of
the circuit. Thus, both the circuit topology and the control method determine
the dynamical behavior of a power electronics circuit.

1.1.1 Switching Power Converters

Most power converters are constructed on the basis of the simple converters
shown in Figure 1.1 [128]. Typically, the switch and the diode are turned
on and off in a cyclic and complementary manner. The switch is directly
controlled by a pulse-width modulated signal which is derived from a feedback
circuit. The diode turns on and off depending upon its terminal condition.
When the switch is closed, the diode is reverse biased and hence open. Under
this condition, the inductor current ramps up. When the switch is turned off,
the diode is forward biased and behaves as a short circuit. This causes the
inductor current to ramp down. The process repeats cyclically. The system
can therefore be plainly described by a set of state equations, each responsible
for one particular switch state. For the operation described above, we have
two state equations:

ẋ = A1x+B1E switch on and diode off (1.1)
ẋ = A2x+B2E switch off and diode on (1.2)
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where x is the state vector usually consisting of all capacitor voltages and
inductor currents, theA’s andB’s are the system matrices, and E is the input
voltage. Furthermore, because the conduction of the diode is determined by
its own terminal condition, there is a possibility that the diode can turn itself
off even when the switch is off. This happens when the diode current becomes
zero and is not permitted to reverse its direction. In the power electronics
literature, this operation has been termed discontinuous conduction mode,
as opposed to continuous conduction mode where the switch and the diode
operate strictly in a complementary fashion.∗ Clearly, we have another state
equation for the situation where both switch and diode are off.

ẋ = A3x+B3E switch off and diode off. (1.3)

In practice, the choice between continuous and discontinuous conduction
modes of operation is often an engineering decision. Continuous conduction
mode is more suited for high power applications, whereas discontinuous con-
duction mode is limited to low power applications because of the relatively
high device stresses. On the other hand, discontinuous conduction mode gives
a more straighforward control design and generally yields faster transient re-
sponses. Clearly, a number of factors determine whether the converter would
operate in continuous or discontinuous conduction mode. For instance, the
size of the inductance determines how rapidly the current ramps up and down,
and hence is a determining factor for the operating mode. We will postpone
the detailed discussion of the operating modes to Chapter 3.

We now examine the control of switching converters. First, as in all control
systems, a control input is needed. For switching converters, the usual choice
is the duty cycle, d, which is defined as the fraction of a repetition period, T ,
during which the switch is closed, i.e.,

d =
tc
T

(1.4)

where tc is the time duration when the switch is held closed. In practice, the
duty cycle is continuously controlled by a feedback circuit that aims to main-
tain the output voltage at a fixed level even under input and load variations.
In the steady state, the output voltage is a function of the duty cycle and
the input voltage. For the buck converter operating in continuous conduction
mode, for example, the volt-time balance for the inductor requires that the
following be satisfied in the steady state:

(E − VC )DT = VC(1−D)T ⇒ VC = DE (buck converter) (1.5)

where uppercase letters denote steady-state values of the respective variables.
Likewise, for the other converters shown in Figure 1.1 operating in continuous

∗For simplicity, we omit details of the other operating modes which can possibly happen in
the Ćuk converter [143].
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conduction mode, we have

VC =
E

1−D
(boost converter) (1.6)

VC =
ED

1−D
(buck-boost converter) (1.7)

VC =
ED

1−D
(Ćuk converter) (1.8)

Thus, we see that as long as the duty cycle and input voltage are fixed, the
output voltage will converge to a value given in the above formulas. Moreover,
in the event of a transient in the load or the input voltage, the output voltage
will experience a corresponding transient before it settles back to the steady-
state value. Furthermore, in the event of an input voltage shift, the duty
cycle value must be changed accordingly if the same output voltage is to be
maintained. Clearly, we need a control circuit for output voltage regulation.

We may imagine that the simplest feedback method compares the output
voltage with a reference and sends a control signal to adjust the duty cycle so
as to minimize the error. Alternatively, a full state feedback can be considered.
For instance, in the second-order buck, boost and buck-boost converters, both
the output voltage and the inductor current can be used by the feedback
circuit. In practice, two particular implementations have become the industry
standard for controlling switching converters, namely, voltage feedback control
and current-programmed control, also known as voltage-mode and current-
mode control, respectively [83]. The former uses only the output voltage in
the feedback process, and the latter uses both the output voltage and the
inductor current.

1.1.2 Voltage-Mode Control

A typical voltage-mode controlled buck converter is shown in Figure 1.2 (a).
The key feature of this control is the presence of a feedback loop which keeps
track of the output voltage variation and adjusts the duty cycle accordingly.
Precisely, in this control scheme, the difference between the output voltage,
vC , and a reference signal, Vref , is processed by a compensation network which
generates a control signal, vcon, i.e.,

vcon(t) = g(Vref − vC) (1.9)

where g(.) is a function determined by the compensation network. This con-
trol signal effectively tells how the duty cycle has to be changed in order to
give the best transient dynamics for the output voltage. In a typical im-
plementation, this control signal is compared with a periodic ramp signal,
Vramp(t), to generate a pulse-width modulated signal which drives the switch.
The ramp signal typically takes the form:

Vramp (t) = VL + (VU − VL)
(
t

T
mod 1

)
, (1.10)
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FIGURE 1.2
Voltage-mode controlled buck converter. (a) Circuit schematic; (b) wave-
forms of control signal and ramp signal; (c) possible implementation of error
amplifier.

where VL and VU are the lower and upper thresholds of the ramp signal.
Figure 1.2 (b) shows the interaction of the control signal and the ramp sig-
nal. Suppose the control signal moves in the opposite direction as the output
voltage, i.e., vcon goes up when the output voltage decreases, and vice versa.
Then, the output voltage can be regulated with the following switching rule:

Switch =
{
on if Vramp(t) ≤ vcon(t)
off if Vramp(t) > vcon(t)

(1.11)
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which can be easily implemented by a comparator, as shown in Figure 1.2 (a).
Thus, the duty cycle at the nth switching period, dn, is given implicitly by

vcon((dn + n)T ) = Vramp((dn + n)T ). (1.12)

We can easily verify in this case that if the control signal goes up as a result of
an output voltage drop, the duty cycle increases.∗ Thus, the feedback action
regulates the output voltage, and the closed-loop dynamics can be shaped by
the compensation network.

1.1.3 Current-Mode Control

For current-mode control, an inner current loop is used in addition to the volt-
age feedback loop. The aim of this inner loop is to force the inductor current
to follow some reference signal provided by the output voltage feedback loop.
The result of current-mode control is a faster response. This kind of control
is mainly applied to boost and buck-boost converters which suffer from an
undesirable non-minimum phase response [83, 128]. A simplified schematic is
shown in Figure 1.3 (a). The circuit operation of the inner loop can be de-
scribed as follows. Suppose the switch is now turned on by a clock pulse. The
inductor current thus rises up, and as soon as it reaches the value of the ref-
erence current Iref , the comparator output goes momentarily high and turns
off the switch. The inductor current then ramps down. The process repeats
as the next clock pulse turns the switch back on. Figure 1.3 (b) describes the
typical inductor current waveform. By inspecting the waveform, we can write
the duty cycle at the nth switching period implicitly as

dn =
Iref((dn + n)T ) − iL(nT )

(E/L)T
(1.13)

To achieve output voltage regulation, an output voltage loop is needed, as
shown in Figure 1.3 (a). This loop senses the output voltage error and adjusts
the value of Iref accordingly. In practice, the inner current loop is a much
faster loop compared to the output voltage loop. Thus, when we study the
inner current loop dynamics, we may assume that Iref is essentially constant
or varying slowly. Details of the analysis of this system are left to Chapter 5.

With the inductor current taken into account, current-mode control gener-
ally performs better. In practice, however, the application of current-mode
control to the buck converter does not gain much benefit over voltage-mode
control. This is because the inductor current information can be readily de-
rived from the output voltage in the case of the buck converter. Thus, with

∗Depending on how the error amplifier is connected, the control voltage can be designed
to react in the same or opposite direction as the output voltage. If the control signal goes
in the same direction as the output voltage, the switching rule (1.11) must be reversed in
order to regulate the output voltage. The choice is arbitrary.
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FIGURE 1.3
Current-mode controlled boost converter. (a) Circuit schematic; (b) wave-
forms of inductor current and reference current.

an appropriate design of the compensation circuit, voltage-mode control can
achieve comparable performance as current-mode control. When applied to
the boost or buck-boost converter, the benefits of current-mode control be-
comes significant. Essentially, since the inductor current is programmed to
follow a reference current (which is in turn derived from the output volt-
age), its averaged dynamics is “destroyed.” Thus, for frequencies much below
the switching frequency, the inductor current dynamics becomes insignificant,
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making the design of the compensator much easier to perform. Besides, with
the absence of the low-frequency inductor current dynamics, the inherent non-
minimum phase problem associated with the boost and buck-boost converters
is automatically eliminated. However, current-mode control is not completely
free from stability problems. In fact, it has been shown that high-frequency
instability in the form of subharmonics and chaos is possible in current-mode
controlled converters, as will be detailed in Chapter 5.

1.1.4 Complexity of Operation

Up till now, switching power converters have always been designed to operate
in only one specific type of periodic operation, commonly known as period-
1 operation, in which all waveforms repeat at the same rate as the driving
clock. Most converter circuits are thus expected to work stably in this regime
under all possible disturbances. However, period-1 operation is not the only
possibility. For instance, under certain conditions, the circuit may operate in
a period-n regime in which the periods of all waveforms are exactly n times
that of the driving clock. We can immediately appreciate the complexity in
the operation of switching converters, where a variety of operational regimes
exist and a large number of parameters may affect the stability of a particular
regime. As parameters vary, the operation can go from one regime to another,
sometimes in an abrupt manner. Such a phenomenon, where one regime
fails to operate (e.g., as a result of a loss of stability) and another one picks
up, is termed bifurcation.∗ Thus, even when a converter is well designed to
work in a particular (desired) regime, it could fail to operate as expected
if some parameters are varied, causing it to assume another regime. If the
newly assumed regime is an undesirable one, locating the bifurcation boundary
becomes imperative. A few basic questions are often posed to the engineers:

1. What determines the operating regime of a given system?

2. How can we guarantee that a circuit operates in a desired regime?

3. When a system fails to operate in its desired operating regime, what is
then the operating regime it would assume?

To answer these questions, we need to develop appropriate simulation and
experimental tools (see Chapter 2). We also need to derive appropriate models
to facilitate analysis (see Section 1.2 and Chapter 3). Most importantly, we
have to identify the basic phenomenology associated with each system under
study. For nonlinear systems, there is no stereotypical result that fits all. We
have to tackle each system separately.

∗Bifurcation literally means splitting into two parts. In nonlinear dynamics, the term has
been used to mean splitting of the behavior of a system at a threshold parameter value into
two qualitatively different behaviors, corresponding to parameter values below and above
the threshold [65].
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1.2 Overview of Modeling Strategies for Switching
Converters

As mentioned before, switching converters are essentially piecewise switched
circuits. The number of possible circuit topologies is usually fixed, and the
switching is done in a cyclic manner (but not necessarily periodically because
of the feedback action). This results in a nonlinear time-varying operating
mode, which naturally demands the use of nonlinear methods for analysis
and design.

1.2.1 From Nonlinear Models to Linear Models

Power electronics engineers are always dealing with nonlinear problems and
have attempted to explore methods not normally used in other circuit design
areas, e.g., state-space averaging [98], phase-plane trajectory analysis [108],
Lyapunov based control [126], Volterra series approximation [159], etc. How-
ever, in order to expedite the design of power electronics systems, “adequate”
simplifying models are imperative. In the process of deriving models, accuracy
is often traded off for simplicity for many good practical reasons. Since closed-
loop stability and transient responses are basic design concerns in practical
power electronics systems, models that can permit the direct application of
conventional small-signal approaches will present obvious advantages. Thus,
much research in modeling power electronics circuits has been directed toward
the derivation of linearized models that can be applied in a small-signal anal-
ysis, the limited validity being the price to pay. (The fact that most engineers
are trained to use linear methods is also a strong motivation for developing
linearized models.) The use of linearized models for analysis is relatively ma-
ture in power electronics. However, it falls short of predicting any nonlinear
behavior.

1.2.2 Back to Nonlinear Models

Since our purpose here is nonlinear analysis, we will not consider linearization
right at the start of the analysis, which effectively suppresses all nonlinear
terms. In fact, linearization is a useful technique only when we need to char-
acterize the system behavior locally around a point in the state space. The
major modeling step prior to linearization is the derivation of a suitable non-
linear model. In this book we will focus on two particularly useful modeling
approaches:

1. Continuous-time averaging approach

2. Discrete-time iterative mapping approach (or simply discrete-time ap-
proach)

©2004 CRC Press LLC



Averaging Approach

Probably the most widely adopted modeling approach for switching convert-
ers is the averaging approach which was developed by R.D. Middlebrook in
the 1970s [98]. This modeling approach effectively removes the time-varying
dependence from the original time-varying model. The ultimate aim is to pro-
duce a continuous-time state equation which contains no time-varying terms.
The key idea in this approach lies in discarding the switching details of the
state variables and retains only their “average” dynamics. In the modeling
process, the state equations corresponding to all possible stages are first writ-
ten down, and the final model is simply the weighted average of all the state
equations. The weightings are determined from the relative durations of the
stages. Typically, an averaged model takes the form:

dx

dt
=

(
N∑
i=1

diAi

)
x+

(
N∑
i=1

diBi

)
E (1.14)

where x is the state vector, N is the number of stages in a period, di is the
fractional period (duty cycle) of the ith stage, Ai and Bi are the system
matrices for the ith stage. Finally, we need to state the control law in order
to complete the model. This is usually given as a set of equations defining
explicitly or implicitly the quantities dj. The general form of such a set of
equations is {

G1(d1, d2, ..., E,x) = 0
G2(d1, d2, ..., E,x) = 0
· · ·

(1.15)

Note that the above equations generally define the duty cycles dj as nonlinear
functions of the system states and parameters. Thus, despite its appearance,
the averaged model is nonlinear. Clearly, the averaged model so derived has
left out all high-frequency details, and hence is not suitable for characterizing
high-frequency or fast-scale dynamics. As a rule, we should only use an aver-
aged model for analysis or characterization of phenomena which occur as fast
as an order of magnitude below the switching frequency.

Discrete-Time Mapping Approach

Another modeling approach that provides fuller dynamical information is the
discrete-time iterative mapping approach. Here, we aim to model the dynam-
ics in a discrete manner. We take the value of the state vector at the start of
a period, say xn, follow its trajectory through all the N stages, and find its
value at the end of the period. The ultimate aim is to produce a difference
equation of the form:

xn+1 = f (xn,d, E) (1.16)

where xn is the state vector at t = nT , E is the input voltage, d is the vector
of the duty cycles, i.e., d = [d1 d2 · · · dN ]T . To complete the model, a
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control equation similar to (1.15) is needed. It is worth noting that the above
description assumes the sampling period be equal to the switching period.
Thus, the model so obtained is capable of describing the dynamical variation
up to the switching frequency.

Needless to say, the two modeling approaches have their own advantages
and disadvantages. Intuitively, the averaged model should be quite easy to
obtain (involving less algebraic manipulation) whereas the discrete-time iter-
ative model would probably involve more tedious algebra. They also deviate
in their capabilities of characterizing dynamical behavior of a given system.
Generally speaking, the averaged model is good for slow-scale (low-frequency)
characterization whereas the discrete-time model is good for fast-scale (high-
frequency) characterization. In Chapter 3, we will take a detailed look at the
modeling processes and their capabilities.

1.3 Overview of Nonlinear Dynamical Systems

As we have seen in the foregoing section, switching power converters can be
modeled by a continuous-time differential equation or a discrete-time differ-
ence equation. In general, any system that can be put in such a form is a
dynamical system in the sense that its behavior varies as a function of time
[44, 55, 56]. More precisely, what constitutes a dynamical system is

• a set of independent state variables; and

• a function which connects the rates of change of the state variables with
the state variables themselves and other inputs.

In an electrical circuit, for example, the inductor currents and capacitor
voltages form a set of independent state variables.∗ The basic constitutive
laws of all elements (i.e., v = iR for resistors, L(di/dt) = v for inductors,
C(dv/dt) = i for capacitors, and other possible nonlinear laws), together with
the relevant independent Kirchhoff’s law equations, give the connecting func-
tion [144]. Thus, with a set of state variables and a connecting function, we
can describe a dynamical system. Further, we may assume that the following
form is universal for describing a dynamical system:

dx(t)
dt

= f(x(t), µ, t) (1.17)

∗We emphasize “independent” here. If a circuit contains dependent inductor currents
and/or capacitor voltages, the number of state variables should be less than the num-
ber of inductors and capacitors. In the circuit theory literature, there are well established
rules to identify independent state variables. See for example the texts by Rohrer [124] and
Tse [144].
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where x is the vector consisting of the state variables, f is the connecting
function, and µ is a vector of parameters. The above system, with f being
dependent upon time, is called a non-autonomous system. Moreover, if the
time dependence is absent in f , i.e.,

dx(t)
dt

= f(x(t), µ), (1.18)

the system is autonomous.
In switching converters, distinction between non-autonomous and autonom-

ous systems can be made conveniently by the presence or absence of a fixed
frequency driving clock. In the past, most converters were constructed in
a free-running mode, typically using a hysteretic or self-oscillating control
circuit. Such systems are therefore autonomous. Nowadays, with the advent
of integrated circuits (ICs), fixed frequency oscillators are easily implemented
and most switching converters are designed to operate periodically under a
fixed frequency clock which comes with most control ICs. Such systems are
therefore non-autonomous. For example, the circuits shown in Figures 1.2
and 1.3 are non-autonomous systems.

1.3.1 Qualitative Behavior of Dynamical Systems

The afore-described dynamical systems are often called deterministic systems,
in the sense that the exact way in which they evolve as time advances is fully
determined by the describing differential equations [4, 53]. Precisely, given
an initial condition, the solution of the system, also known as the trajectory,
is completely determined. For linear systems, we know that closed-form so-
lutions can be found. But for nonlinear systems, closed-form solutions are
almost always unavailable, and numerical solutions must be sought.

After an initial transient period, the system soon enters its steady state.
The solution in the steady state can be regarded as an equilibrium solution,
in the sense that if the system starts at a point on this solution, it stays
permanently on that solution. Thus, we may conceive that there could be
many equilibrium solutions which may or may not be steady-state solutions.
When the system is let go from a point outside these equilibrium solutions, it
converges to only one of them. The equilibrium solution to which the system
converges is called an attracting equilibrium solution or simply an attractor.
In nonlinear systems, the behavior can be further complicated by the selective
convergence to an equilibrium solution depending upon the initial point. In
other words, there may be two or more competing attractors, and depending
on the initial condition, the system converges selectively to one of them. Thus,
to determine the steady-state behavior of a system, we have to know the
possible attractors as well as their respective basins of attraction.

For ease of visualization, we refer to a 3-dimensional state space in the
following discussion of attractors. In general, we may classify attractors under
the following categories:
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(a)

(b)

FIGURE 1.4
Attractors from the Lorenz system [134]: ẋ = 10(y − x), ẏ = −xz + rx − y
and ż = xy − 8z/3. (a) Limit cycle with r = 160; (b) chaotic attractor with
r = 25.

1. Fixed point: The solution is a point in the state space.

2. Limit cycle or periodic orbit: The trajectory moves along a closed path
in the state space. Furthermore, this motion is associated with a finite
number of frequencies, which are related to one another by rational
ratios. The motion is periodic. An example is shown in Figure 1.4 (a).

3. Chaotic attractor: The trajectory appears to move randomly in the
state space. Moreover, the trajectory is bounded and the motion is
non-periodic. An example is shown in Figure 1.4 (b). We will discuss
the properties of chaos in more detail in Section 1.3.3.

4. Quasi-periodic orbit: The trajectory moves on the surface of a torus, as
illustrated in Figure 1.5. The motion is associated with a finite number
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FIGURE 1.5
Quasi-periodic orbit. The trajectory moves on the surface of the torus and
eventually visits every point on that surface. The motion is characterized by
two rotations, one around the large circumference at frequency f1 and the
other around the cross section of the torus at frequency f2. The ratio of f1
to f2 is irrational.

of frequencies, which are related to one another by irrational ratios. The
motion appears “almost periodic” but is not exactly periodic.

1.3.2 Bifurcation

As mentioned before, a dynamical system can have multiple equilibrium solu-
tions. For a given set of parameters and initial condition, the system converges
to one of the equilibrium solutions. This equilibrium solution is the attractor.
If the parameters are allowed to vary, the system may relinquish its presently
assumed equilibrium solution and pick up another equilibrium solution. For
instance, as the parameters vary, the presently assumed equilibrium solution
becomes unstable and the system is attracted to another stable equilibrium
solution. This phenomenon is termed bifurcation, as we have briefly men-
tioned before. In general, bifurcation can be regarded as a sudden change
of qualitative behavior of a system when a parameter is varied. We may
therefore classify bifurcation according to the type of qualitative change that
takes place when a parameter is varied. In the following we briefly summarize
some commonly observed bifurcations in physical and engineering systems
[1, 2, 3, 65, 85, 104, 109].

1. Saddle-node bifurcation: This type of bifurcation is characterized by a
sudden loss or acquisition of a stable equilibrium solution as a param-
eter moves across a critical value. Systems that exhibit a saddle-node
bifurcation can be “normalized” to the form ẋ = µ± x2, where µ is the
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FIGURE 1.6
Saddle-node bifurcation of the system ẋ = µ − x2. As µ goes from negative
to positive, a stable fixed point suddenly appears. Conversely, as µ goes from
positive to negative, the stable fixed point suddenly disappears.

parameter and its critical parameter value is 0.∗ Figure 1.6 illustrates
this bifurcation.

2. Transcritical bifurcation: This type of bifurcation is characterized by an
exchange of stability status of two equilibrium solutions, as illustrated
in Figure 1.7. Precisely, the system initially has one stable equilibrium
solution and one unstable equilibrium solution. As a parameter is varied
and reaches a critical value, the stable equilibrium solution becomes
unstable, while the unstable equilibrium one becomes stable and takes
over. The form of the system equation that exhibits a transcritical
bifurcation can be normalized to ẋ = µx± x2. The critical value of µ is
again 0.

3. Supercritical pitchfork bifurcation: This type of bifurcation is character-
ized by splitting of a stable equilibrium solution into two stable equi-
librium solutions at the critical parameter value. Precisely, the system
exchanges stability status between one equilibrium solution and another
pair of equilibrium solutions. Systems exhibiting this type of bifurcation

∗From the center manifold theorem [53, 77, 138], any local bifurcation of an N -dimensional
system can be analyzed by examining the so-called center manifold at the point of bi-
furcation, which is an M -dimensional (M < N) subspace tangential to the eigenspace
corresponding to zero eigenvalue(s) of the Jacobian evaluated at the bifurcation point. The
normalized system equation shown above describes the dynamics on this center manifold.
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FIGURE 1.7
Transcritical bifurcation of the system ẋ = µx− x2. As µ moves across zero,
stability suddenly exchanges between two fixed points.

FIGURE 1.8
Supercritical pitchfork bifurcation of the system ẋ = µx−x3. As µ goes from
negative to positive, the stable fixed point suddenly forks off into two stable
fixed points. The system is then attracted to one of the stable fixed points.

can be normalized to the form ẋ = µx − x3, where µ = 0 is the critical
parameter value. Figure 1.8 illustrates this bifurcation.

4. Subcritical pitchfork bifurcation: This type of bifurcation is character-
ized by a sudden explosion of a stable equilibrium solution as a pa-
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(a)

(b)

FIGURE 1.9
(a) Subcritical pitchfork bifurcation of the system ẋ = µx + x3. As µ goes
from negative to positive, the stable fixed point suddenly blows up; (b) sudden
“jump” in real systems due to the presence of higher order terms ẋ = µx+x3−
x5. Note that a hysteresis loop exists. When µ moves in backward direction,
the jump occurs at a negative value of µ.

rameter moves across a critical value. The normalized equation takes
the form of ẋ = µx + x3, where µ = 0 is the critical parameter value.
Figure 1.9 (a) illustrates this bifurcation. In real systems, higher order
terms always exist to counteract the explosion, e.g., ẋ = µx + x3 − x5.
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FIGURE 1.10
Period-2 orbit with r = 149 in the Lorenz system (see caption of Figure 1.4).

In this case, the system does not blow up at µ = 0, but “jumps” to
another stable equilbrium solution, as illustrated in Figure 1.9 (b).

5. Period-doubling bifurcation: This type of bifurcation is characterized
by a sudden doubling of the period of a stable periodic orbit or limit
cycle. Using the example of the Lorenz system shown in Figure 1.4, we
may observe period-doubling bifurcation by varying the parameter r.
Specifically, the periodic orbit shown in Figure 1.4 loses stability when
r is decreased to around 149, and at that point, a period-2 orbit takes
over, as shown in Figure 1.10. Further decreasing r to about 147, the
period doubles again, as shown in Figure 1.11.

6. Hopf bifurcation: This type of bifurcation is characterized by a sudden
expansion of a stable fixed point to a stable limit cycle. Systems that
exhibit this bifurcation can be normalized to a second-order equation of
the form ẋ = −y+ x[µ− (x2 + y2)], ẏ = x+ y[µ− (x2 + y2)]. For µ < 0,
the system has a stable fixed point (x = y = 0), which is associated
with a pair of complex eigenvalues having negative real parts. As µ
goes from negative to positive, the pair of complex eigenvalues move
across the imaginary axis, i.e., the real parts become positive. Thus,
the fixed point loses stability. However, due to the second-order terms,
the system has a stable limit cycle of radius

√
µ for µ > 0.

7. Border collision: This type of bifurcation occurs in dynamical systems
where two or more structurally different systems operate for different
parameter ranges. When a parameter is varied across the boundary of
two structurally different systems, an abrupt change in behavior occurs.
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(b)

FIGURE 1.11
(a) Period-4 orbit with r = 147 in the Lorenz system; (b) enlargement of the
small framed area.

This is known as border collision. The exact type of behavioral change
depends on the dynamics of the systems corresponding to the two sides
of the boundary.

It is worth noting that with the exception of border collision, the afore-
described types of bifurcation do not involve structural changes of the sys-
tem. They are sometimes called smooth bifurcation or standard bifurcation.
The meaning of the adjective “smooth” has a mathematical origin, which
relates to the differentiability of the function that describes the system. Co-
incidentally, the term “non-smooth” fits well with the appearance of the bi-
furcation diagrams which manifest rather unusual transitions not resembling
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TABLE 1.1
Qualitative differences between “smooth” (standard) bifurcations and border
collisions.

Characteristics “Smooth” (standard) Border collisions
bifurcations e.g., period-
doubling, Hopf, etc.

Cause Loss of stability Alteration of circuit
operation

Structure of system Structurally unchanged Structurally changed
(topological sequence (topological sequence
unchanged) altered)

Manifestation in Appearance as typified in Abrupt transitions
bifurcation diagrams bifurcation diagrams of not resembling any

standard types standard bifurcation
(e.g., abrupt bendings,
discontinuities, jumps)

those in standard bifurcations, as we will see in later chapters.∗ Furthermore,
a “smooth” bifurcation is normally associated with the loss of stability of one
solution and the picking up of another, whereas border collision is character-
ized by abrupt alteration of the detailed operating principle. In other words, a
“smooth” bifurcation occurs at a stability boundary, whereas border collision
occurs at an operation boundary where the system experiences an operational
change. We will discuss what we mean by an operational change more pre-
cisely in Section 1.4. Table 1.1 summarizes the basic differences between these
two classes of bifurcations.

1.3.3 Deterministic Chaos

As mentioned earlier in Section 1.3.1, chaos is a particular qualitative behavior
of nonlinear systems, which is characterized by an aperiodic and apparently
random trajectory [115]. In addition, the trajectory is unpredictable in the
long term, meaning that knowing the trajectory at this time gives no infor-
mation about where exactly the trajectory will be in the far future. Note that
the dynamics of any deterministic system can be theoretically described by
differential equations, although the derivation of such differential equations
may prove to be difficult for very complicated systems. A classic example of
an apparently random system is the flipping of a coin. The final outcome,
either a head or a tail, appears to be unpredictable. However, the process of

∗Here, we may regard bifurcation diagrams as summary charts of behavioral changes, which
typically record the change of behavior of a system as some parameter(s) is/are varied.
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FIGURE 1.12
Two trajectories of the Lorenz system: ẋ = 10(y−x), ẏ = −xz+25x− y and
ż = xy − 8z/3. At t = 0, the trajectory labelled with “+” starts at (0, –5,
15), and the one labelled with “•” starts at (1, –6, 16). The final points are
taken at t = 1. Note that if the initial points are set closer, a longer time is
needed to observe the divergence of the two trajectories.

generating any particular outcome in this system is unarguably determinis-
tic. First, the initial position of the coin can theoretically be known. Then,
the initial velocity, gravitational force, air viscosity, the mass and moment of
inertia of the coin, etc. are all theoretically known or knowable. Therefore,
deterministic equations can be theoretically written to describe the motion
of the coin as it is thrown up and later falls under the force of gravity. Fi-
nally, its landing position is also theoretically computable. The question is
what makes the outcome random and unpredictable. In fact, this question is
shared by all deterministic systems which exhibit apparent randomness and
deny long-term predictability.

The answer to the above question lies in a key property of chaotic systems,
which is now widely known as sensitive dependence on initial condition. In
brief, two nearby starting points can evolve into two entirely uncorrelated
trajectories. We take the Lorenz system again as an example, and examine
two trajectories beginning at two nearby points. As shown in Figure 1.12,
the two trajectories initially stay close to each other, but quickly move apart.
We should now appreciate the difficulty of predicting where the system will
end up eventually. In other words, the trajectory is unpredictable in the long
run because there is a limit to which the starting condition can be accurately
located. In our earlier example of tossing a coin, we may begin each time
with a slightly different initial condition, including the position of the coin,
upward velocity, spinning speed, etc. The final landing position is therefore
unpredictable, even though the system is deterministic.
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1.3.4 Quantifying Chaos

The afore-described property of being sensitively dependent upon initial con-
dition can be taken as a defining property of chaotic systems [41, 65, 162, 167].
Thus, we may test whether a system is chaotic by evaluating its sensitivity
to a change of initial condition. To illustrate how the sensitivity to initial
condition can be quantified, we consider a first-order system which is defined
by

ẋ = f(x). (1.19)

Suppose x0(t) is the trajectory corresponding to an initial value x0. We
consider another trajectory which starts at a nearby point, say x0 + ε0. We
simply denote this trajectory by x(t). Clearly, what we are interested in is
the difference between x(t) and x0(t) as time elapses. Let this difference be
s(t), i.e.,

s(t) = x(t)− x0(t). (1.20)

If we assume that s(t) grows exponentially, we may write s(t) = s(0)eλt, where
λ can be found empirically to fit the divergence rate. Alternatively, we may
describe the dynamics of s(t) by

ṡ = λs. (1.21)

Moreover, the Taylor’s expansion of f(x) around x0 is

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2!
f ′′(x0)(x− x0)2 + · · · (1.22)

Thus, ignoring higher-order terms in (1.22), the variable s(t) changes at a rate
given by

ṡ(t) =
d

dt
(x(t)− x0(t))

= f ′(x0)(x− x0). (1.23)

Now, from (1.21) and (1.23), we get

λ = f ′(x0). (1.24)

Therefore, we may test divergence of the two trajectories, x(t) and x0(t), by
inspecting the sign of λ. Precisely, a positive value of λ indicates that the
two trajectories diverge at the point x0, whereas a negative value indicates
convergence. The quantity λ has been known as the Lyapunov exponent.
Furthermore, the value of the Lyapunov exponent may change along the tra-
jectory. Thus, we need to look at the average value of the Lyapunov exponent
along a sufficiently long segment of the trajectory in order to tell whether
nearby trajectories diverge exponentially on the average. The test for chaos
should therefore be based on the average Lyapunov exponent. In brief, if the
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average Lyapunov exponent is positive, the system is sensitively dependent
upon initial condition and thus is chaotic [77].

The above concept of measuring the divergence rate of two nearby trajec-
tories can be extended to higher-order systems. If we consider an Nth order
system, the expansion or contraction of s(t) at a specific point must be as-
sociated with specific directions. In general, there should be N Lyapunov
exponents corresponding to N directions in the state space. We note that
f ′(x) in the above first-order system is simply the eigenvalue of the system,
which describes the divergence rate of the error near x. In an Nth order
system, the N Lyapunov exponents at a certain point are the N eigenvalues
evaluated at that point. Each of these Lyapunov exponents is associated with
a direction of expansion or contraction which is given by the corresponding
eigenvector. Thus, at a certain point, the trajectory may expand in some
direction, and contract in another. If any one of the Lyapunov exponents is
positive, nearby trajectories are diverging at that point. Again, we need to
take the average of the Lyapunov exponents along a sufficiently long segment
of the trajectory. For the higher-order case, we conclude that if the “largest”
average Lyapunov exponent is positive, the system is sensitively dependent
upon initial condition and thus is chaotic. In Chapter 2, we will describe the
computation of the average Lyapunov exponents in some detail.

1.3.5 Routes to Chaos

In the foregoing we have shown that randomness and lack of predictability
are the key elements of chaos. However, being random or unpredictable does
not necessarily mean that no systematic study can be pursued on the complex
behavior of nonlinear systems. In fact, behind the complex behavior, there
is always some subtle order that governs the way complexity is organized. In
particular, in studying chaos, we often try to find some traceable precursors
so that we might tell if chaos is likely to happen in an otherwise non-chaotic
system. We have seen earlier that nonlinear systems can exhibit a variety of
behavior, chaos being one particular type. We have also seen that nonlinear
systems can undergo bifurcation whereby qualitative behavior can change
from one type to another. In the literature, the term route to chaos has
been commonly used to refer to the series of bifurcations through which non-
chaotic behavior transmutates into chaotic behavior. Here, we summarize a
few important routes to chaos [109].

1. Route to chaos via period-doubling: As discussed earlier, some nonlinear
systems may undergo period-doubling bifurcation as a certain parameter
is varied. This doubling of the period may continue to occur when the
same parameter is varied in the same direction. Eventually, the behavior
becomes chaotic. In fact, the Lorenz system shown earlier exhibits this
type of route to chaos, as the parameter r is varied. We recall that
when r = 160, the steady-state behavior is periodic (i.e., exhibiting a
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limit cycle), as shown in Figure 1.4 (a). As we reduce r to about 149,
we observe a period-doubling bifurcation, and if we further reduce r to
about 147, we observe another period-doubling bifurcation. Figures 1.10
and 1.11 show the period-2 and period-4 attractors. In fact, period-
doubling bifurcation continues to occur as r is reduced. When r is
about 144, the attractor is chaotic.

2. Route to chaos via quasi-periodicity: Some nonlinear systems may un-
dergo Hopf bifurcation whereby a stable fixed point changes to a limit
cycle as a certain parameter is varied. As the parameter continues to
vary, the system admits another periodicity which is not in a rational
ratio to that of the first limit cycle. The resulting behavior is quasi-
periodic. Under some circumstances, upon further varying the parame-
ter, the behavior becomes chaotic.

3. Route to chaos via intermittency: Some nonlinear systems exhibit chao-
tic behavior intermittently, with bursts of chaotic behavior separated
by long intervals of periodic behavior. Under the variation of a certain
parameter, the bursts of chaotic behavior become progressively longer
while the intervals of periodic behavior become shorter. Eventually, the
behavior becomes fully chaotic.

4. Crisis: Some nonlinear systems may all of a sudden become chaotic
when a certain parameter is varied. There is no traceable route to chaos
in the form of a sequence of events. Crisis may be encountered, for
example, when an attractor “collides” with an unstable chaotic orbit,
causing the attractor to span also the unstable chaotic orbit. The result
is a sudden expansion to chaos.

1.4 Complex Behavior in Power Electronics

Chaos and bifurcation have long been observed by power electronics engineers
in the course of developing power electronics circuits [169]. Problems such as
subharmonic oscillations, intermittent chaos, quasi-periodic and chaotic oper-
ations are not at all uncommon. Because of the complexity of these problems,
most practicing engineers have resorted to quick fixes via some trial-and-error
procedures, the aim being just to get rid of the undesirable operations. With
the success of nonlinear dynamics research in the 1970s, the complex behavior
in power electronics has begun to receive some formal treatments since the
late 1980s, and much of the reported work has focused on switching power
converters. Research in this field has now reached a point where the basic
phenomena associated with some commonly used power converters have been
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identified. Of particular importance is the identification of bifurcation phe-
nomena, which has played a crucial role in improving our understanding of
the complex behavior exhibited by switching converters.

Power electronics can exhibit both smooth bifurcation and border collision,
depending upon whether a structural change is involved. It should be noted
that the switching between one topology to another during the normal oper-
ation of a power converter should not be considered as structural change (for
the purpose of distinguishing between smooth bifurcation and border colli-
sion). Precisely, our definition of structural change as applied to switching
converters is as follows.

A switching converter is said to be structurally changed if its topological
sequence in a switching period is altered.

When no structural changes are involved, power electronics systems may
exhibit a variety of smooth bifurcation such as period-doubling bifurcation,
Hopf bifurcation, etc., as will be detailed in later chapters. Moreover, it
should be apparent that power electronics systems are prone to border collision
since operating boundaries exist to separate various operating modes. Two
situations are particularly relevant to switching converters, as illustrated in
Figure 1.13.

1. Change of operating mode: In any switching converter, a boundary ex-
ists between continuous and discontinuous conduction modes of oper-
ation. Due to the difference in the topological sequence assumed by
the converter for the two conduction modes, the converter undergoes
a structural change when its operation changes from one mode to an-
other. Crossing the boundary of the two conduction modes would cause
a border collision.

2. Saturating nonlinearity: Saturating boundaries naturally exist due to
the inherent limitation of the range of some control parameters. At such
saturating boundaries, the topological sequence is significantly altered.
For example, in the voltage-mode buck converter shown in Figure 1.2,
the control signal is supposed to hit the ramp signal once per switching
period. If this fails to happen due to an excessively wide swing of the
control signal, the topological sequence is altered significantly. A border
collision thus occurs.

In the past two decades, a few important basic findings regarding bifurcation
in switching converters have been established. Some surveys of published work
have been conducted by Hamill [58], Hamill, Banerjee and Verghese [59], Nagy
[102], Tse [145], and Tse and di Bernardo [148]. Here, we give a brief summary.

1. Voltage-mode controlled buck converters typically undergo period-doubl-
ing bifurcations [27, 48, 60], whereas boost converters are more likely to
exhibit Hopf bifurcation [5, 68].
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FIGURE 1.13
Operating boundaries on parameter space separating regions with different
topological sequences. Border collision occurs at the boundaries where the
converter experiences a structural change as its topological sequence is altered.

2. Period-doubling is common in buck or boost-type converters operat-
ing in discontinuous conduction mode [141, 142] and current-mode con-
trolled converters [25, 38, 150].

3. A variety of bifurcations are possible when other nonlinear control meth-
ods are used, e.g., crisis, saddle-node bifurcation, switching-time bifur-
cation, etc. [45, 59, 73, 94].

4. Border collision is often present to organize the overall bifurcation pat-
tern [8, 10, 14, 172].

In the rest of this book, we will take a detailed look at the bifurcation
phenomena that govern the complex behavior of switching power converters.
We will begin in Chapter 2 with some important computer and laboratory
tools for studying the dynamics of nonlinear systems, and in Chapter 3 we
will proceed with the essential modeling techniques for facilitating nonlinear
analysis of switching power converters. From Chapter 4, through the end, we
will examine some selected power converters, with emphasis on bifurcation
phenomena. In the process of studying complex behavior of the various con-
verters, we try to illustrate the investigational approach that we have found
effective in dealing with complex behavior in switching power converters.
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