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Analysis of Tap-Changer Dynamics and 
Construction of voltage 

Stability Regions 
CHEN-CHING LIU AND KHOI T. VU 

Abstruct -The destabilizing behavior of on-load tapchangers (OLTC) 
is an important mechanism responsible for the voltage collapse of intercon- 
nected power systems. This paper employs a nonlinear dynamic model of 
the OLTC, impedance loads, and decoupled reactive power-voltage rela- 
tions to reconstruct the voltage collapse phenomenon. Trajectories leading 
to a monotonic fall of bus voltages are obtained from initial conditions 
outside the stability region of a simple power network. The construction of 
voltage stability regions is desirable for the prevention of voltage collapse. 
Based on the proposed M-bus power network model, this research results 
in (1) a simple criterion for stability of an equilibrium, and (2) a method to 
obtain a stability region by forming the union of hyperbox subsets of the 
hue region. The theoretical foundations of the proposed method, i.e., 
characteristics of the equilibria, monotonic behavior of system trajectories, 
are thoroughly studied. 

I. INTRODUCTION 
AJOR POWER system blackouts occurred in M France and Belgium in December 1978 and August 

1982, respectively [l], [2]. Both events are characterized by 
a progressive fall of voltages and shortage of reactive 
power supply. The phenomena of these catastrophc events 
are now referred to as a “voltage collapse” [3], [4]. A 
voltage collapse is a slow event relative to the traditional 
power system machine instability problems. It can occur 
over a period of minutes to hours, starting with a gradual 
increase in load demand and decrease in system voltage. 
Inappropriate control actions due to on-load tap-changers 
(OLTC‘s) can aggravate the situation when the system 
voltage is already low. 

Although some theories were proposed to interpret the 
voltage collapse, there is still no consensus about the 
mechanisms leading to the problem; a major issue is 
whether it is a static or dynamic event. A review of the 
literature is given in the following. Several authors ana- 
lyzed the phenomena based on the steady-state power 
network models. Barbier and Barret [ l]  proposed the calcu- 
lation of maximal real power transfer over a transmission 
line and the corresponding voltage level at the load bus. 
Their main idea is to use the obtained critical voltage as a 
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security limit. Apparently, the reactive power relations are 
important for the voltage analysis. Carpentier developed a 
voltage collapse proximity indicator from the optimal 
power flow calculation [ll]. The indicator is defined as the 
ratio between the incremental reactive power generation 
and the change in reactive power demand in an area. 
Galiana [3] proposed the use of feasibility regions, which 
are defined as the set of all real and reactive power 
demands for whch power flow solutions exist. A measure 
of the security margin for an operating point inside the 
feasibility regions is defined. In [ 5 ] ,  Kessel and Glavitsch 
derived a practical security margin for large-scale power 
systems based on the proximity of an operating point to 
the boundary of the power flow feasibility region. 

At present, the dynamic mechanisms of a voltage col- 
lapse are not fully understood. Apparently, the generator 
excitation, load characteristics are important considera- 
tions. The effects of OLTC’s were analyzed from the 
stability point of view by Liu and Wu [6] based on a 
linearized dynamic tap-changer model, which was pro- 
posed by Abe et al. [7]. Stability of the discrete model of 
OLTC‘s is investigated in [8]. Other works concerning 
voltage problems of power systems are included as refer- 
ences [9]-[18]. 

This paper extends the results of [6 ] ,  [9] in several 
respects. Since the voltage collapse involves large devia- 
tions of system variables, the nonlinear stability techniques 
are used to analyze the dynamics. In other words, issues on 
the equilibria and the global stability region are the main 
concerns here. To reconstruct effects of the OLTC on the 
collapse phenomena, a simple power system with a single 
tap-changer is thoroughly analyzed. System trajectories 
corresponding to a monotonic fall of voltages are obtained 
from instability of the system. 

Based on a general power system model with multiple 
tap-changers and the reactive power relation of the decou- 
pled power flow equations, qualitative properties of the 
stable equilibria are derived. It is shown that for a system 
with M tap-changers, the stable equilibria can exist in only 
one of the total of 2 M  classes of equilibria. T h s  is a partial 
result of uniqueness of equilibrium for the proposed dy- 
namic model. The proof relies on the monotonic behavior 
of system trajectories that is characterized in this study. 
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Fig. 1. A simple power system with an OLTC. 

Also, this particular class of equilibria is shown to contain 
the smallest equilibrium, which is denoted by a. A simple 
criterion for stability of a is derived, namely, the Jacobian 
matrix is non-singular at a. For the prevention of voltage 
collapse, this study results in a method for the construction 
of a voltage stability region around a, which is formed by 
union of hyperboxes. The concept of constructing hyper- 
box approximation of stability or feasibility regions has 
been used in the literature, e.g., [19]-[21]. The derivation 
of stability regions using Lyapunov method has been in- 
vestigated extensively, e.g., [22]. In this study on voltage 
collapse, our results are derived directly from qualitative 
behavior of the system trajectories and therefore does not 
apply Lyapunov method. 

The organization of this paper is as follows. Section I1 
presents the dynamic model of the OLTC and the recon- 
struction of voltage collapse from a simple power system. 
The general M-bus power system dynamic model is pro- 
vided in Section 111. Section IV describes the stability 
results, including construction of stability regions. 

The notation used in this paper is as follows. In general, 
boldfaced capital letters are reserved for matrices and 
boldfaced lowercase letters for vectors. The components of 
a vector are in subscripted letters, e.g., a, is the ith 
component of vector a. Inequalities are also used for 
vectors, e.g., a Q b(a < b) means a, Q b,(a, < b,) for each 
component i. Complex phasors are denoted by underlined 
letters. 

11. A RECONSTRUCTION OF DYNAMIC 
VOLTAGE COLLAPSE 

2.2. A Power System with an OLTC 
A simple power system is given in Fig. 1. The purpose of 

this study is to analyze the effect of OLTC‘s on system 
voltages. Therefore, the generator is modeled by a constant 
voltage source _E. Note that this simplification implies that 
the generators possess adequate reactive support for the 
system. The load demand is modeled by an impedance _Z. 
For the dynamic study, a more complete load model would 
incorporate real and reactive power demands which vary 

section, the transmission line is modeled by an impedance 
- Z,. For the general case, which will be treated in Sections 
I11 and IV, the a-equivalent line models are incorporated. 

The OLTC‘s are used to regulate the load voltage mag- 
nitude. In the case of Fig. 1, the secondary voltage magni- 
tude V’ would be regulated at a reference value V,. In an 
actual OLTC, the taps are discrete. However, in practice, a 
step in the tap position contributes a relatively small 
amount of voltage correction, e.g., 0.625 percent (1 /8  of 5 
percent) of the nominal voltage. In a recent numerical 
study [26], it is concluded that the rounding of transformer 
taps to their nearest discrete values is practically accept- 
able. Therefore, in this study the following continuous 
model [7] is adopted. 

. 

dn 1 
dt 
- = ?( V, - V’) 

where n is the turn ratio, V’ and V, are the secondary 
voltage measurement and reference voltage, respectively, 
and T is the time constant of the OLTC. 

2.2. Dynamic Equation 
In the case of Fig. 1,  the network is assumed to be in a 

sinusoidal steady state, and the network relationship is 
given by 

Also, it is easy to see that the load voltage 

Based on (1)  and (3) the system equation can be obtained 
as 

where zL = Z,/dL and z = Z / e .  
Since the model of (4) is nonlinear, a systematic ap- 

proach to the stability analysis would follow the steps of 
calculating the equilibrium points, analyzing the local (lin- 
earized) stability, and determining the region of attraction 
for the stable equilibrium. In [9],  the single OLTC system 
is analyzed by this approach. The result on local stability 
provided in [6] was used in the derivation. In this paper, 
only a qualitative interpretation of the voltage collapse is 
provided. The reader is referred to [9] for proofs. 

with the system frequency and bus voltages [25]. For a 
study on the voltage behavior, the constant complex power 
load model usually adopted in a power flow study is not 
appropriate. Also for the purpose of the analysis in this 

2.3. Equilibrium 

For convenience, the equilibrium points of (4), solutions 
of dn/dt = 0, are given here. It is noted that the system 

- 1  il - 

n I 
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described by (4) has at most two equilibria, i.e., 

For this study only real, positive solutions of n,,, n 2 ,  are 
of interest. From (9, this requires the condition 

( ~ ~ . ~ ~ - ~ - ; z z ~ c o s ( e ~ -  e))2>4z2z;v;. (7) 

To guarantee the above condition to hold for all possible 
load power factor angles 8,O G 8 f 7r/2 the following as- 
sumption will be made. 

E 2Z > 4Z,V: (Al) 
It is easy to show that if assumption (Al) holds, then the 
condition of (7) is true regardless of whether the load is 
inductive, resistive, or capacitive. As a result, the system of 
(4) will have two real positive equilibria, say n,, and n,,, 
where n,, < n20.  The inequality of (Al) is not restrictive 
from a practical point of view. Normally the load 
impedance Z would be much greater than the line 
impedance Z,. 

2.4. Stability Analysis 
As indicated earlier, this section will emphasize the 

physical interpretation of the voltage collapse mechanism 
due to an OLTC. Therefore, only the qualitative explana- 
tion will be given. Referring to (4), it is straightforward to 
plot the right hand side as a function of the tap ratio n. 
The plots of dn/dt  and V’ (the second term in the paren- 
theses of (4)) are presented in Fig. 2(a) and 2(b). 

Based on the sign of dn/dt in the intervals of (0, n,,), 
(n , , ,  n20)  and ( n 2 , ,  CO), the dynamic behavior of the tap 
changer can be described by the curve of Fig. 2(c). In other 
words, if the initial position of the tap falls within (0, n 2 , ) ,  
then the trajectory of (4) will converge to n,,, whch 
indeed is the stable equilibrium. 

On the other hand, in case the initial value n(0) of the 
tap position falls beyond n20,  then, according to Fig. 2(a), 
dn/dt  > 0, and, therefore, n will increase monotonically. 
The curve of Fig. 2(b) then shows that the load voltage V’ 
will also decrease monotonically. Without restriction on 
the maximally allowable tap position, the load voltage V’ 
would approach zero! The voltage behavior for the interval 
( n  20r 00)  provides an analytical interpretation for the ac- 
centuating voltage drop during a voltage collapse [l]. 

Practically, the tap position would reach the highest 
possible ratio, nmm, and stay at that position. In this case 
the dynamics of the OLTC will no longer affect the system 
voltage. Other mechanisms of voltage collapse may cause 
the system voltage to deteriorate; for example, other 
OLTC’s, generator excitation, line switching, switched ca- 
pacitors, etc. 

A comparison between the behaviors of the discrete and 
continuous tap-changer models is made here. The dynam- 
ics of an OLTC can be represented by the discrete model 
[81 

A n  = f ( - v + V,) 

where V’ is the load voltage magnitude as shown in Fig. 1, 
V, is the reference, and f is defined by 

1, if X > E  

f(x) = 0 ,  I X l < E  I -1, x <  -E. 

It is assumed here that, as in [8], a one-step change in the 
tap-ratio results in a voltage deviation less than 2 ~ .  Ths is 
to prevent oscillation between tap positions. 

Equilibrium is attained when 1 - V’ + V,I E. Note that, 
under Assumption (Al), the equation - V(n) + V, = 0 has 
two (real) solutions n,, and n 2 0 ,  as given by (5)-(6). 
However, these values of n,, and n20 may not be physi- 
cally meaningful in the discrete model. In this case the 
actual equilibrium positions should lie beside n,, and n,, 
in such a way that the resulting voltages deviate from V, 
by no more than E. Without loss of rigor, it can be 
assumed that within E of the voltage reference V,, there is a 
unique equilibrium e, close to n,,, and similarly e, close 
to n2 , .  

Depending on the values of n, there are two cases: 
(1) e, < n < e2:  In this case, the corresponding voltage 

V‘ is higher than V, by more than E. Therefore, n tends to 
decrease until e ,  is reached, as shown in Fig. 2(d). 

(2) 0 < n < elj or n > e2:  If this is the case, the tap 
position increases as time go on. For n > e,, t h s  tendency 
implies a monotonic fall of load voltage. 

The similarity of the dynamic behavior predicted by the 
continuous and discrete models can be seen by comparing 
Fig. 2(c) and (d). For a general power system, the compari- 
son between the dynamic behaviors of the two models is 
yet to be investigated. 

The approach developed in this section can be general- 
ized to the M-bus power systems. In the next section, the 
general case will be discussed. The analysis will start by 
finding the equilibrium points of the dynamic model. The 
state space of tap positions will be partitioned into stable 
or unstable regions, each corresponding to some equilibria. 
This is illustrated in Fig. 2(c) for the simple power system. 
Also note that each of the three regions in Fig. 2(c) is 
invariant in the sense that a trajectory will not cross an 

~ - -- 
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dn/dt 

4 
Lodr Gnmmn 

I 1 

0 

Fig. 2. Plots of dn/dr, load voltqe V’, and “potential energy” versus 
tap-ratio n for the smple power system. 

equilibrium to reach another segment of n. This is due to 
the monotonic behavior of first-order differential systems. 

There are major differences between the simple and the 
general cases. The latter case deals with much greater 
complexity in mathematical analysis. Explicit calculation 
of the exact stability region for the general case would be 
extremely difficult, if possible at all. 

111. DYNAMIC POWER NETWORK 

1 Transmission I B’ 
N m f k  

YH 

M+N+r M+ I 

- 1  -tkYH.N 
Fig. 3. Power network model for the case of M OLTC‘s. 

- Y ,  admittance of the load connected to OLTC i ,  i =  
1,2; ‘ *, M .  

In the analysis that follows, it will be assumed that the 
loads are complex admittances x, but inductive in nature, 
i.e., y,  = Im {x i }  > 0, which is normally the case in a 
power system. To model the reactive power and voltage 
relation the so-called decoupled power flow equations are 
used. The power system network under consideration is 
interconnected. 

For each load bus i ,  i = 1,2; - e ,  M ,  the dynamic equa- 
tion is 

dni 1 
dt q 
_-  - - (yo  - 5’ )  

and the decoupled power flow equation is 
M + N + r  MODEL- M OLTC CASE 

y’b,, - y‘kb,k = - y‘”, (9) Referring to the M-tap-changer model in Fig. 3, the k - 1 ,  k # r  

where the shunt susceptances of the a-equivalents of trans- notation will be defined below. 

mission lines are included in the br,. M number of OLTC‘s buses (i.e., nodes). These buses 
are numbered from 1 to M .  Replacing y ,  = n,y in (8), one obtains 

dn, 1 
(10) _-  N number of intermediate buses that are neither OLTC 

from M +  1 to M +  N. 

bered f r o m M + N + l  t o M + N + r .  

nor generator buses. These buses are numbered dt --(v;o-n,v;) .  T, 

number of generator buses. These buses are num- Substituting y’ = n,y into (9) and manipulating the res& 
tant equation, it can be shown that 

tap ratio of OLTC i, i = l , 2 , . - - ,  M. 
time constant associated with OLTC i ,  i = l ,  
2, - - * M. 
nominal voltage of the secondary side of OLTC i ,  
i = 1,2, e, M .  
voltageatbus i ,  i = 1 , 2 , - - . , M + N + r .  
voltage on secondary side of OLTC i ,  i = 
1,2,-  * -, M .  
self-susmptance at bus i, i = 1,2, * * *, M + N + r.  
Note that b,, > 0 
mutual susceptance between bus i and bus k ,  where 
i ,  k = l , 2 , - . - , M + N + r  and i # k .  Note that b,, 
>/ 0. It is assumed that b,, = bkr, i.e., no phase 
shifting transformers. 

M M + N  

y ( b , z + n ? y ~ ) -  c ‘kbrk- k = M + l  ‘kbzk 
k = l ,  k + z  

M i N i r  

- c Vkbrk=O. (11) 
k = M + N + l  

Since generators are treated as perfect voltage sources in 
this study, ‘k = constant for each k = M + N + 1, - . . , 
M + N + r;  thus the last term on the LHS of (11 )  is a 
constant for each i .  Equation (11) can be written as 
follows: 

M M + N  

y ( b ~ , + X ? ) -  ‘kb1k- 1 ‘kbrk=qr (12)  
k = l ,  k + r  k = M + 1  

1 -  ~ il - 

n I 
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where 
M + N i r  

4, := (13) 

x, := n,G. (14) 

k =  M +  N + l  

and 

Note that the assumption of y ,  > 0 makes the change of 
variable in (14) possible. In the proposed model, each load 
bus i, i = 1,. . . , M is represented by a dynamic equation 
(10) and an algebraic equation (12). 

For each intermediate bus j ,  j = M + 1,. . . , M + N ,  the 
corresponding decoupled power flow equation is given by 

M + N + r  

y2bJJ - yVkbJk = 0 (15) 
k = l , k # j  

which can be rearranged to yield 
M M + N  

Ybjj- 'kbjk- 'kbJk=qj (I6) 
k = 1  k =  M i l ,  k # j  

where 
M + N + r  

qJ '= 'kbjk (17) 
k = M + N + 1  

To obtain a state-space dynamic representation in state 
variables x,, z = 1; . ., M the algebraic constraints of (12) 
and (16) will be eliminated. This is possible because one 
can solve for the voltages Vi7. . . , VM explicitly from these 
equations and substitute them into (10). An outline of the 
above process is presented below. 

Putting (12) and (16) together, a linear matrix equation 
can be obtained, i.e., 

519 

dynamical equations results: 

where 

X =  

xv =q (18) 

v =  ( V I /  

. . .  x: + bll 
. . .  - b21 x i +  b22 

for i = 1,2; . . , M. Note that (21) represents a nonlinear 
dynamic system in the state space. 

Remarks: 
1) The generator rotor and excitation system dynamics 

are ignored in the proposed model. The assumption of 
constant voltage source implies that the generators can 
provide the necessary amount of reactive power and that 
the exciter response is fast enough. For a more realistic 
model, if a maximum Var limit is reached, one may be able 
to model the corresponding bus as a PQ-bus, or perhaps 
the dynamics of exciters and field windings should be 
added [27] .  At present, it is not clear whether the rotor 
dynmaics play a key role in a voltage collapse. Reference 
[lo] presents a linearized analysis of the effects of reactive 
power/voltages on the rotor stability. 

2) At this point, a general load model for the voltage 
collapse analysis is not available. The familiar constant-PQ 
load model for power flow studies is clearly inadequate 
since bus voltages are sensitive to reactive power injec- 
tions. A mechanism of collapse due to induction motor 
dynamics is proposed in [28]. In the future, various mecha- 
nisms such as tap-changers and unduction motors should 
be combined to acheve a more complete load model. 

3 )  The decoupled power flow model (9), is an approxi- 
mation of the full load flow model whch is valid when line 
angles and line (real power) losses are small. The real 
power relations may also be important, since the voltage 
collapse may occur when a maximal real power limit is 
exceeded [l]. this paper is concentrated on the effects of 

- b m  I -b2,,+1 
. I  

I 
I 

I 

. . .  

. . .  

. . .  

. . .  
. .  

b M +  N ,  M+ N 

and q is a vector of size M + N whose components are 
defined by (13) or (17). To obtain a set of dynamical 
equations, (18) needs to be solved for Vi, V2; . -, VM and 
the result is then plugged into (10). Cramer's rule gives for 
each i, i =1,2;. s 7  M ,  

M + N  v =  ZlJ qJ (20) 
1-1 detX 

where X,,, is the ij cofactor of the symmetric matrix X .  
Substituting (14) and (20) into (lo), the following set of M 

the OLTC's. It is believed that the Q-V relation of (9) 
serves as a reasonable nonlinear approximation of the 
steady state power system as far as the voltage behavior is 
concerned. It is further pointed out that, for the one 
tap-changer case, as one varies the impedance angle of the 
load, (6), results in the smallest value when the impedance 
is purely inductive. T h s  implies that the stability region 
(0, nzo)  is the smallest, i.e., the worst case of the tap-changer 
effect is being analyzed when a purely reactive load is 
considered. + 

1 ___ I-- 
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Iv. DYNAMIC ANALYSIS OF M OLTC CASE , 
In this section, the stability analysis will be treated fbr 

the general case, for which M OLTCTs are involved. It is 
shown that at most one class of equilibria out of 2M classes 
can contain a stable equilibrium. This class contains the 
smallest equilibrium a (i.e., there is an equilibrium a with 
a < e for all other equilibria e), whose stability is guaran- 
teed if the associated Jacobian matrix is non-singular. 
Furthermore, a method is developed for the construction 
of stability region in terms of hyperboxes for the above- 
mentioned equilibrium. 

4.1. Characterization of Equilibria 
The equilibria of (21) can be obtained from roots of the 

system of nonlinear algebraic equations dx, /dt  =0, i =  
1,2, - - -, M, i.e., they belong to the set 

From (21) the set of points satisfying dxi/dt  = 0 for a 
particular i is represented by the following equation: 

r M + N  i 
0 = x:[Jj;yOxii] - x;l xijqj I 

L I = ~  J 
M + N  

+ ~ ~ I Y O  b ~ ~ X ~ ~  + c - b i k x l k )  (2j) i k - 1 ,  k # r  

which is quadratic in x, with coefficients in terms of 
xl,* -, x , -~ ,  x ~ + ~ , -  - e, x M .  As a remark, although the M 
nonlinear algebraic equations (23) take the form of poly- 
nomials, there is no guarantee that the number of solutions 
is finite. 

From (23) for a given (x1;-., x l - l ,  x , + ~ , - - - ,  x M ) ,  
dx , /d t  = 0 has at most two real solutions which can be 
denoted implicitly as 

and 
X, = L,(xl , .  * ~ ~ - 1 ,  x I + l , ’  * 9 x M )  (24) 

x ~ = ~ , ( x ~ , . . . , x , - ~ , x , + ~ , ~ . - , x ~ )  (25) 
where L, and HI are real-valued functions defined on a 
certain subset of RM-’ and L, Q HI.  (The names L and H 
refer to “Lower” and “Higher” real solutions (if exist), 
respectively, of a quadratic equation.) 

Since for each i ,  either (24) or (25) must hold for 
an equilibrium point, the intersection of either x,= 

x I ~ l , x I + l , -  - -, x M ) ,  i = 1 , - - . ,  M ,  forms a class of equilib- 
ria. Hence, the maximally possible number of equilibrium 
classes would be 2M. In this subsection, it will be shown 
that theclass for which ~ ~ = L , ( x ~ ; ~ ~ , x , ~ ~ , x , + ~ ; ~ ~ , x ~ )  
for all i ,  i = 1,. - , M, may yield a stable equilibrium and 
all other classes can only contribute unstable equilibria. 
Even if the total number of equilibria is finite, there is no 
guarantee that each class has no more than one equilib- 
rium. In fact, an example in the case of 2 OLTC‘s was 
found for which the class determined by x1 = L1(x2)  and 
x2 = L2(x1) yields two equilibria (see Appendix 1). 

L , ( x l , .  . - 9  x1-1, x,+1,’ ’ ‘ 3  x M )  or = H i ( x l , *  * * ,  

U 
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TO examine the stability characteristic of a given equilib- 
rium, geometric properties of the “surfaces” Li and Hi 
will be examined. First the domain of these functions is 
characterized. 

Lemma 1: 
(1) For each i = 1; - *,  M ,  the functions Li and Hi of 

M - 1  variables are well-defined over the following subset 
of RM-’:  

M + N  

M + N  

biiXii + - bikXik 
k = l ,  k # i  

d 

where X i j  is the ij-cofactor of X. 

if and only if 
(2) The domain defined in (26) occupies the whole space 

where qi is given in (13). 
(3) If the functions Li and Hi are defined at b E RM-’ 

then they are defined for all a 4 b. # 
Proof: Recall that (23) must be satisfied by any equi- 

librium for all i = 1,2; e, M. Since (23) is a quadratic 
equation in x i ,  the necessary and sufficient condition for 
(23) to have roots (or in other words, for which Li and Hi 
to be well defined) is that the discriminant is nonnegative, 
i.e., 

M + N  M + N  

[ J - 1  ]’ [ k = l , k # i  
O Q ,  X i j q j  -4yiy:,2Xii biiXii+ - bikXik]  

r M + N  12  

4y:,2&, b ~ ~ X ~ ~  + c - ’ ,kXik]  L k = l ,  k # r  

The RHS of (29) is independent of y,  and has the form 
gI(-)/4y: where g,(.)  is defined in Appendix 4. There it is 
shown that the infimum of the RHS of (29) over RM-’ is 
q; / (4y : ,2bII ) .  This proves (27). Also, since the RHS of (29) 
is strictly decreasing (Appendix 4), if (29) is satisfied by b 
it is also satisfied for all a Q b. Thus (3) follows. 

Note that since tap-ratios are assumed to be non-nega- 
tive, only the first-quadrant portion of the domain is of 
concern here. Also, unless (27) is satisfied for each i ,  care 

+ 

r--- 
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should be taken when dealing with these L- and H-func- 
tions. Practically, the condition of (27) may not be satis- 
fied. Consider the case when an OLTC is not connected to 
any generator. Then the mutual susceptance b,, = 0 for all 
k ,  k = M + N + l ; . . , M + N + r .  Hence q, would be 0 
from its definition in (13). Since y,  > 0 by assumption and 
q, = 0, (27) cannot be satisfied. Consequently, the domain 
of L- and H-functions is restricted to a bounded region in 
R M -  1 , given by (26) .  

The relation between dx,/dt and the surfaces L,(-), 
H, (a) is summarized in the following. 

Property 1: 
(a) For each i, i =1; * * ,  M ,  L, and H, are positive. 
(b) Wherever L, and HI are defined, 

<H;(x,  , . . . , X ; - l , X , + , ; . . ,  x,). 

(c) dxi/dt > 0 at points outside the set defined in (26). 
# 

Proof: Note that dx,/dt = 0 is equivalent to (23) whch 
takes the form 

ax,? - bx, + c =  0 

where a ,  b and c are positive. Since x, = L,(.) and x, = 

HI(  .) are solutions, L, * H I  = c / a  and L, + H, = b/a.  
Therefore, both L, and HI are positive whenever they are 
defined. Also, since the sign of dx,/dt is the same as that 
of ax; - bx, + c= a(x, - L,(.))(x, - H I ( - ) ) ,  condition (b) 
is true. Condition (c) follows from the fact that when 
ax: - bx, + c has no roots, it has the same sign as the 
leading coefficient a. + 

In other words, Property 1 asserts that the surfaces 
defined by x, = L,(.) and x, = H I ( . )  lie in the first quad- 
rant of R‘, and divide ths quadrant into 3 different 
regions: the region sandwiched by the surfaces correspond- 
ing to dx,/dt < 0, the surfaces given by dx,/dt = 0, and 
the remaining region, which satisfies dx, /dt  > 0. 

An important characteristic of the L, and HI functions, 
namely monotonicity, is presented in the following lemma. 

Lemma 2: For each i = 1,2; * ., M ,  the function L, is 
strictly increasing, the function H, is strictly decreasing 
over their domains. # 

Proof: See Appendix 5. + 
An illustration of L- and H-functions for the case of 2 

tap-changers is shown in Fig. 4. Note that each function is 
monotonic over the appropriate domain. 

In the stability analysis, invariant sets are of impor- 
tance; they are closely related to the characteristics of 
equilibria. Two invariant sets are exhibited in the following 
lemma. 

Lemma 3: 
The sets N and P defined by 

N = { x E R Mldxi /dt  < 0 for i = 1 ,. . . , M } 
P =  { x ~ R M ~ d x , / d t > , O f o r i = 1 ; . . , M }  (30) 

are invariant sets of the dynamic system defined by (21). 
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t x2 

~ 

# 1; . ., M (with at least one strict inequality), and if there is 

Fig. 4. L- and H-functions for 2 tap-changers 

Proof. See Appendix 6. + 
Based on Lemmas 2 and 3 ,  one can judge the instability 

of almost all classes of equilibria. This is stated in the 
following Proposition. 

Proposition 1: Stable equilibria must be contained in 
the intersection of the surfaces L,, i = 1,2,. . . , M .  # 

Proof: See appendix 7.  + 
For convenience, the class of equilibria associated with 

the surfaces L,, i = 1,2; . ., M ,  is denoted by L. In the 
remaining of this subsection, it is shown that the class L 
contains the smallest equilibrium, i.e., the one with small- 
est coordinates (infimum) in every dimension. The follow- 
ing definition greatly simplifies the future developments of 
t h s  section. 

Definition: 
{ a k ,  k = 0,1, . 
(1) L,(x,,. . . , x,-,, x, +,,. . . , xM) exists for each i, i = 

} is the L-sequence starting at x if 

1;. .)  M .  
( 2 )  a , =  x. 
(3) is defined recursively as follows: 

In other words, starting at a,, one takes the projection 
of a, onto each surface L,, i = l ; . . , M ,  to get the ith 
component ( a , ) ,  of a,. The process repeats with a ,  and so 
on. Note that according to this definition, an L-sequence 
need not have an infinite number of elements, which is the 
case when at some iteration k ,  the projection ceases to 
exist because the exterior of the domains of L,’s is reached. 
Suppose an L-sequence has infinitely many elements, its 
convergence is guaranteed by the following lemma. 

Lemma 4: The following statements are true for the 
L-sequence starting at x: 

(1) If x, 2 L,(X,;.., x,-,, x , + ~ ; - - ,  x,), Vi, i = 
1,. . ., M ,  with at least one strict inequality then the L- 
sequence starting at x converges (decreasingly) to a E L 
and a < x. 

( 2 )  If x, G L,(x,;.., xIp1, x,+,;.., x,), Vz, i = 

I __-_______ -__ 
--- - ~ 
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b E L such that x 4 b then the L-sequence starting at n 
converges (increasingly) to some a E L and x < a 6 b. # 

Remark: The existence of b in (2) of Lemma 4 is 
important to guarantee that the exterior of the domains of 
L, ’s is never reached. 

In the following Proposition, the class L is shown to 
contain the smallest equilibrium denoted by a. Note that 
a,, the ith component of a, is defined to be the infimum 
over all points in N. It will be shown that a is an 
equilibrium in L. 

Proposition 2: 
Assume that the set N as defined in (30) is non-empty. 

Then N has the smallest element a, i.e., a < x, Vx E N and 
x # a. Furthermore, a E L. # 

Proof: Assume that N # 0. Define a as follows: 
a,=inf{x,:  x E N } ,  f o r i = l ; - - , M .  

Note that U is well-defined since for each component i ,  
{ x,: x E N} is non-empty and bounded from below (by 0). 
It shall be shown that a E L  (hence, (YE N). 

Given an c > 0 arbitrary. For each i ,  i = 1,. e ,  M, there 
is x E N so that a, + c > x, z L, (x l , - - - ,  xrPl, x , + ~ ,  

- ,xM) 3 L,( al , .  - , a,- 1, a,+ 1, - . , aM) where the first 
inequality is due to the property of infimum, the second to 
the fact that x E N, and the third to monotonicity of L,. 

Thus a, 2 L,(al,.  - a ,  a,+1,- e ,  aM) for i = 1,. ., M. 
By contradiction, assume strict inequality holds for some i 
then from (1) of Lemma 4, the Lsequence starting at a 
converges (decreasingly) to an equilibrium e, e < a. But 
e E N, a contradiction follows. Therefore, a, = L,(al, .  ., 
a , - l , a l + l , - -  .,aM) for i = l , . . - ,  M .  In other words a E L .  

From the definition of a, a < x,Vx E N. It remains to 
show that x > a ,  V x € N - { a } .  Let x € N - { a } ,  then 
a < x with a, < x, for some component j. For i # j, 

Proof: See Appendix 8. + 

a, = L, (q,. * 9 %-I ,  a,+1, * ., aM) 
< L,(Xl,. * * ,  x,-1, X I + l , ’  * , XM) < x ,  

which implies that a < x. + 
Remarks: 
1) For the case of two tap-changers (i.e., M = 2) in Fig. 

4, a is the intersection of x1 = L,(x2) and x2 = L2(x1).  
2) The “infimum” a defined in Proposition 2 is the limit 

of the Lsequence starting at 0. This follows from the 
second statement of Lemma 4. 

3) In the general case, a is the point around which a 
stability region will be constructed. 

4.2. Construction of Stability Regions 
The use of a voltage stability region for on-line opera- 

tion is explained here. As the system equilibrium is per- 
turbed, say, due to generator tripping or load shedding, the 
post-disturbance equilibrium and the stability region will 
both vary. If the initial tap positions of the post distur- 
bance system fall outside the stability region, a voltage 
collapse would occur. From the operational point of view, 
it is desirable to lock the relevant tap positions in order to 
prevent further aggravation in the system voltage. 

In this subsection, it is shown that (1) this smallest 
equilibrium a is asymptotically stable if the associated 
Jacobian matrix is non-singular, and (2) a method to 
construct a stability region in terms of hyperboxes is 
proposed. 

Lemma 5: 
The set Pa = { w: 0 6 w G a} n { w:  d r / d t ( x  = w )  2 0} is 

an invariant set of the dynamical equations (21) and each 
trajectory in Pa converges (increasingly) to a. # 

Proof: See Appendix 9. + 
Using the case of two tap-changers (Fig. 4) as an exam- 

ple, the set Pa is the region surrounded by the curves 
x1 = L1(x2), x2 = L2(x1) and the xl-, x2- axes. 

The asymptotic stability of a is established in the fol- 
lowing lemma. 

Lemma 6: 
Suppose that the set 

N, = {z :  z E N- {a}, and there is no equilibrium e 

with a < e G z } (31) 

is non-empty. Then for each w E Pa, z E N,, the hyperbox 
{ x: w < x < z}, is a region of attraction. As a result, a is 
asymptotically stable. # 

Proof: See Appendix 10. + 
Note that the set N, in Fig. 4 is enclosed by the curves 

x1 = L1(x2), x2 = L2( xl) and x2 = H2( xl). 
According to Lemma 5 ,  a region containing trajectories 

that converge increasingly to a always exist. Lemma 6 
states that, in addition, there is a region containing trajec- 
tories that converge decreasing4 to a and that a is asymp- 
totically stable. When the conditions of Lemma 6 are 
satisfied, regions of attraction can be approximated by 
hyperboxes. Naturally, the union of all such hyperboxes is 
also a region of attraction. Since 0 can always be taken as 
the “lowest” vertex of the hyperbox, one arrives at the 
following Proposition. 

Proposition 3: 
Assume that the set N, as defined in (31) is non-empty 

then a is asymptotically stable and the union 

A =  U ( x : O G x < z )  
z E N, 

is a region of attraction of a. 
To construct a hyperbox, two vertices need to be found. 

As mentioned previously, the origin can always serve as 
the lower one. The upper vertex can be any point from N, 
with all negative or zero derivatives. If the location of a is 
known, one can choose a point z with coordinates larger 
than a in all dimensions. From Lemma 6, it is necessary to 
ensure that no equilibrium lies inside the hyperbox deter- 
mined by a and z .  If all equilibria are known, it is easy to 
check whether any one lies inside the hyperbox being 
constructed here. In fact, one can choose an appropriate 
unstable equilibrium to be the upper vertex. 

In general, however, finding the upper vertex would 
require some search. A suitable search algorithm remains 
to be investigated. The computational cost of the proposed 

# 
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Fig. 5.  The mappings F and G. 

method is mainly the time to find vertices that satisfy the 
conditions of Lemma 6. 

A sufficient condition for N,#0 is that the Jacobian 
matrix at a is non-singular. If the condition is satisfied, 
then according to Lemma 6, a is asymptotically stable. 
The following proposition states the sufficient condition. 

Proposition 4: 
If the Jacobian matrix of the dynamical system (21) is 

nonsingular ut a then the set Nu as defined by (31) is 
nonempty. # 

Proof: For convenience, define the following map- 
ping: 

F:  x--t (f,(X),-,f,&)) 

where f,(.) is the RHS of (21), i.e., dx,/dr = f , ( x ) ,  Vi.  
Note that a is a solution to F ( x ) = O ,  and the jacobian 
matrix of the dynamical system at a is a F / a x ( x  = a). If 
this matrix is non-singular then by the Inverse Function 
Theorem, F as a local inverse around 0, which is denoted, 
e.g., by G in Fig. 5. Let the domain of G be D, and define 
D- = { d :  d E D, d < O } .  Note that G(D-) C N,. Thus 
N , # 0 .  + 

Remark: It may seem that the condition given in Propo- 
sition 4 can be relaxed to isolation of a. However this may 
not be true. It has been found that for the 2-OLTC case, 
i.e., the power system used in Appendix 1, if there is only 
one equilibrium, it must be unstable [24]. This occurs when 
the curves x,=L,(x,) and x,=L,(x,) are tangent to 
each other. The Jacobian matrix is singular at this equilib- 
rium, and N, = 0. 

By investigating the Jacobian matrix explicitly, a much 
more simplified version of Proposition 4 can be obtained 
as follows: 

Proposition 5: 
If the matrix X( - a:, * ,  - a$), where X(x:, . . . , x;) 

is the matrix defined in (19), is nonsingular then the set N, 
is non-empty. # 

Proof: It can be shown that the Jacobian matrix of 
(21) can be written in the following form: 

aF/ax(at x)  = diag(l/T,;. . , l / T M )  

. Z (  x )  Sdiag ( VI( x) ,  * . . , V,( x)) 

where y(x) is the voltage at bus i due to the tap-settings 

Fig. 6. Power system water study. 

x = ( x,, . . . , xM), and 

Z ( x )  = 2.diag(x,; x,).X-'.diag(x,,. .., xM)-  I 

Thus aF/ax(at x) is singular - Z(x)  is singular - 2. diag ( xl, . . . , xM ) . X- '. diag ( x, , * . . , xM ) has an 

eigenvalue 1 - diag (l /xl , .  . . , l /xM).  X. diag (l/x,; . . , l /xM) has 

an eigenvalue 2 - 0 = det (diag(l/x,; * . , l / x M )  .X.diag(l/x,; . . , 

W M )  - 2 1  1 - 0 = det { X-2.diag(x?;. . , x h ) }  - X( - x:; . . , - x&) is singular 

As a result, Proposition 5 follows directly from Proposi- 
tion 4. + 

v. AN ILLUSTRATION OF STABILITY REGION 
CONSTRUCTED BY HYPERBOXES 

To illustrate the construction of stability regions based 
on the proposed method, a simple power system of 2 
interconnected OLTC's is shown in Fig. 6. Relative magni- 
tudes of the power system parameters are also specified. In 
Fig. 7, each rectangular box with upper and lower corners 
in the regions N, and Pa, respectively, is an invariant set. 
Recall that a box with a corner in N, and a corresponding 
corner in P, is a stable hyperbox. The union of all such 
boxes is denoted by A ,  whose boundary is marked in the 
figure. The exact stability region [24] is also included for 
comparison with A. The stability region A is derived from 
Proposition 3. Note also that z,,w, are the elements next 
to z, w, respectively, in the corresponding L-sequences. It 
has been shown that trajectories, starting from the w-z 
hyperbox, will enter the w1 -zl hyperbox in finite time. 

VI. CONCLUSION 
In tlus study, a mechanism of voltage collapse, namely, 

the OLTC action, is analyzed. A simple power system with 
one OLTC is analyzed first. System trajectories that lead 
to monotonic fall of bus voltages are constructed, whxh 
helps to explain the phenomena of voltage collapse. The 
analytical approach of the simple case is extended to the 
general M-bus power system model. For this model, it is 

I I 
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xz 

and only one class can contain a stable equilibrium. The 

open question. 
A method is proposed which can be used to obtain a 

hyperbox subset of the true stability region. This paper 
identifies the smallest equilibrium from an invariant set 

issue of uniqueness of the stable equilibrium is still an 
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APPENDIX 4 (Preparatory Fact for Lemma 1 ) 
(Refer to (19) for matrix X and its cofactors XI, ,  Xl,’s.)  
The function 

[ F h 4 ) 2  

b1,XII + c - bl,X1/] 
M + N  

/=I, / # I  

g d . )  = 

of M -  1 variables (x , ; .  *,  x I P 1 ,  x ~ + ~ , *  e ,  x M )  is strictly 
decreasing and its infimum is q,?/b,,. 

Proof: It shall be shown that d g , / a x k  < 0 when xk > 0 
for i ,  k = 1,- . -, M and k # i. Without loss of generality 
one can assume i = 1 and k = 2. It is sufficient to consider 
the numerator of agl/ax2 (since the denominator is al- 
ways > 0). One has 

Num { ag, /ax,  1 

= ( y l , q , ) (  2 J / d X 2 (  y l , q , )  

.X l l (  b l lXl l+ c - b l / X l / )  
/ + I  

- (:x,,q,) ax1,/ax2( bllXll + J f l  c - bl,Xl, 1 
Xl1a/ax2( bllXll  + c - b 1 / X l / ) ) .  - 

/ + I  

for x 2  > 0 then it implies that Num{ d g l / a x 2 }  < 0 when 

In (a) and (b), it can be shown that each side of the 
inequalities is a product of 3 positive terms; therefore, (a) 
and (b) are equivalent to 

x2 > 0. 

respectively. 
Now define 
(1) A be the matrix obtained by replacing column 1 of 

(2) B be the matrix obtained by replacing column 1 of 

(3) C be the matrix obtained by replacing column 1 of 

and B22, C22 be the matrices obtained from A ,  B ,  C 
be deleting row 2 and column 2. That is, for instance, 
and so on. Then (al) and (bl) are, respectively, equivalent 

by (ql?. ’ ’ 9  q M 9 ’  ‘ ‘ 9  q M + N ) = .  

X by (1,O;. .,O)=. 

x by ( b , , ,  - b21;. * ,  - b M + N , l Y .  

- b12 . . .  
q 2  x2’+ b22 . . .  
41 

- b,, x i +  b3, . . .  q 3  
A =  . I 

I 
I 

. . .  

b2, M + N  
. . .  

- b 2 M  I - b 2 , M + 1  

- b 3 M  I - b 3 , M + 1  
. . .  

As a result of Appendix 2, C j X l j q ,  > 0. So if one can show 
that 

(a) 

and that 
(b) 

I \ I  

to 
(a2) det(A22)/det(B22) <det(A)/det(B) 

(b2) det ( A22)/det ( C22) < det (A)/det ( C )  
Using Crarner’s rule one obtains the following. 

(1) The left-hand side of (a2) is the first component w1 
of w =  ( w l ,  w 3 ; . . , w M M t N l T  in ~ ~ ~ w = ( q l , q 3 , . . . , q M + N ) =  
and its right-hand side is the first component u1 of U =  

be proved that w1 Q ul. Note that ( u 2 ,  u3; * e, u ~ + ~ ) ~  is 
the solution to 

( u 1 , u 2 , . . . ,  UM+,,,Yin BO= ( q l , q 2 , q 3 , . . . , q M + N ) ‘ .  It shall 

B 1 1 ( U 2 , U 3 , ” ‘ , U M + N ) T =  ( q 2 , q 3 , ” ‘ 7 q M + N ) T  

and that ( w 3 ; .  ., w ~ + ~ ) =  is the solution to 
11 

[ B”] ( ~ 3 , .  . . , w M + N )  ( q 3 r .  . 9 q M + N )  

where B” is the matrix obtained by deleting row 1 and 

T H E  I N S T I T U T I O N  O F  E L E C T R I C A L  E N G I N E E R S  
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column 1 of B, and [B"]" by deleting row 1 and column a x l / a x 2  can be derived from (AS-1) as 
1 of B". 

x:[d~1v10ax11/ax21 - ax1k/ax2qk + d l v 1 o  b11aX11/ax2 + - bikaxlk/ax2]  

k [ k + l  . (A.5-2) 
8x1 -= 

8x2 -2xld~lv loxl i  + xlkqk 

If 42 = q3 = = qM+N = 0 then u2 = u3 = . - - = 

- * = w ~ + ~  = 0; thus w1 = u1 = 
ql. And if qj # 0 for some j 2 2 then from Appendix 2, 
one has u2 > 0, u3 > w3 2 0,. * - , u ~ + ~  > wM+N 2 0. Multi- 
plying the first row of B by U and the first row of B" by 
w, one obtains 

u ~ + ~  = 0 and ~3 = w4 = 

'1 - b12u2 - blkUk = 41 
k - 3  

and 

w1 - blkWk = 41 
k - 3  

respectively. 
Subtracting w1 from vi and rearranging terms, one gets 

'1 - w1 = b12v2 + c b l k ( v k  - wk) 
k - 3  

which is positive since at least one of the b-coefficients is 
positive and u2 > 0, u3 > w3; e, u ~ + ~  > w,+,+~. Thus (a2) 
is proved. 

(2) The left-hand side of (b2) is the first component w1 

and its right-hand side is the first component u1 of U =  

rect application of Appendix 3 gives u1 > wl. Thus (b2) is 
true. 

Therefore one can conclude that { agl/ax2} < 0, for 
x2 > 0. Similarly, dg1/ax3 < 0, etc. Since it is bounded 
below (by 0, for instance) g, has infimum. The infimum is 
the value of g, at (00,00,.-.,00). The function gl(.) has 
the structure of a rational polynomial. Thus its value at 
(00,00,- - e ,  00) is the ratio of the two coefficients associ- 
ated with the terms of highest order in the numerator and 
the denominator; the result is q:/bll. + 

of w = ( wl, w3, * 3 wM+ N I T  in c 22 = ( 41, q 3 ,  * * . 7  q M +  N)= 

(U1,~2,"',UM+N)T in cu=(ql,q2,q3,"',~M+N)T. A di- 

APPENDIX 5 (Proof of Lemma 2)  
For each i = l , 2 , . . . , M  and j = l , . . - , i - l ,  i +  

1,. - ., M, aL,/axj > o and aHi/axj < o when X, > o and 
aLi/aXj = aHi/axj = o when = 0. 

Proof: Only the case i = 1, j = 2 is considered here. 
Recall that the two functions xi = L1(x2,. -, x M )  and 
xi = H1(x2,. *,  x M )  satisfy (23), i.e., 

Consider the numerator and the denominator of (A.5-2) 
separately. Using (AS-1) to eliminate the term x:, and 
after some simple manipulations, one can rewrite the nu- 
merator of (A.5-2) as 

num =l/xll ax11/ax2 c ( x l q k  +d~lvlobik) xlk [ k # l  

When x,=o, (AS-3) is equal to 0 since each axik/?x2 
(k  =1,. e, M )  contains 2x2 as a factor. When x 2  > 0, it is 
to be proved that the numerator (A.5-3) is > 0, whch is 
equivalent to (since each term is > 0) 

(xlqk + d ~ l v l o b l k ) X l k  

( xlqk + djlvloblk ) xlk 

. (AS-4) < k # l  

Xll 

Let 
(1) A be the matrix obtained by replacing column 1 of 

x by 

( X 1 ~ l + d ~ l v i o b l l ~ ~  ' ' 9  X1q'M+N + d j l v l o b l , M + N ) T .  

(2) B be the matrix obtained by replacing column 1 of 

Then (AS-4) becomes 
X by (1,O; * * , O ) T .  

det(A22)/det(B22) <det(A)/det(B) (A.5-5) 

where A22 and B22 are matrices obtained by deleting row 
2 and column 2 of A and B, respectively. Following a 
similar technique as in Appendix 4, it is seen that (AS-5) 
is indeed true. Thus the numerator of (A.5-2) is always 
> 0. 

Next the denominator of (A.5-2) is considered. It shall 
be shown that the denominator is < 0 for xi = Hl( a )  and 
is > 0 for x1 = L,( .), which is equivalent to 

xlkqk 
k < Hi(.) whenever&(.) # H i ( - ) .  

(AS-6) 

Equation (A.5-6) is true since 1) x1 = ckx1kqk/2jjlv10x11 
makes the RHS of (AS-1) negative, and 2) since the 
leading coefficient of the RHS is positive. Thus 
&x1kqk/2,/jIY,v1,x11 lies between the roots Ll( -) and 

I/ il - 

n I 
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d 2 x l  1 
d t2  Tl 
-- - - 

Hl(.) of (AS-1) whenever these two roots are distinct. 
Further note that if L,( - )  = Hl( .) then (A.5-6) becomes an 
equality, and that aHl /dx2  = - C O ,  d L l / a x 2  = + 00. + 

APPENDIX 6 (Proof of Lemma 3 )  
It shall be shown that a trajectory starting at a point 

inside P or N does not leave the region. It is sufficient to 
consider a boundary point as the starting point. 

Let z be an arbitrary point on the boundary of P or N ,  
then dx , ( z ) /d t  = 0 for some i. Suppose that dx , (z ) /d t  # 0 
for some j # i  (otherwise z is an equilibrium and the 
trajectory is trivial). Without loss of generality assume that 
i =1, i.e., dx , (z ) /d t  = 0. The term d 2 x l ( z ) / d t 2  will be 
investigated. 

Differentiating (21), one obtains 
I M + N  

C Xljqj 
dx ,  j = l  

dt det(X) 
--. 

d 2x1 1 
y ( z )  = - dt Tl 

r M + N  i , 

H,(b,,.  . ., b,-l ,  b,+l,. . ., bM)- L , (b , , * .  . >  b f - l ,  b,+i,. . .>  b ~ ) .  -zl. - 
Define a as follows 

Evaluating (A.6-1) at z, since dx,(z)/dt  = 0 by assump- 
tion, 

In summary, 

dx ,  d 2x ,  
- ( z )  = 0 =a -+z) dt dt 

dx ,  M 

= a, , ! - ( z )  where ak , ,  > 0. (A.6-5) 
k = l . h # i  dt 

Now if z E P (and z is not an equilibrium) then 
dx,(z)/dt  >, 0 by definition and the strict inequality holds 
for at least one k. Referring to (A.6-5) one sees that for 
those i with dx , ( z ) /d t  = 0, d 2 x , ( z ) / d t 2  > 0, which means 
that dx ,  / d t  stays positive during some time interval after 
the trajectory leaves z .  Also, for those i with dx , ( z ) /d t  > 0, 
dx ,  / d t  remains positive during some time interval after 
the trajectory leaves z since dx , /d t  is continuous. Thus 
dx , /d t  stays positive for all i during a time interval after 
the trajectory leaves z .  This proves that P is an invariant 
set. 

If z E N, similar arguments can be used to obtain that N 
is an invariant set. + 

APPENDIX 7 (Proof of Proposition 1 ) 

Let b be an equilibrium for which 

b, = H, (b , , .  . . ,b,-  1, b,+ 1 ,  . . , b,) 

foreach k=2 ,3 ; . . ,M.  

(A.6-3) 

Only the case of k = 2 will be given here; others are 
similar. Equation (A.6-3) is, for k = 2, equivalent to 

a /ax2cx1JqJ  c x l J q ,  
/ <J (A.6-4) 

a/ax,det ( X )  det ( X )  

The RHS of (A.6-4) is the first component U ,  of U =  

( U , , U ~ ; . . , U ~ ) ~  in X.~=(q,,q,;.-,q,,,)~. The LHS 
of (A.6-4) is the first component w1 of w = (w,, y,  
. . . , w ~ + , ) ~  in X22.~=(ql,q3,..-,qM+N)T, where X22 

denotes the submatrix of X obtained by deleting row 2 and 
column 2. Thus, (A.6-4) is true by Appendix 3. As a result, 
(A.6-3) is established and (A.6-2) takes the form 

d 2 x l ( z ) / d t 2  = a,,,dx,(z)/dt where > 0 for all k. 
k + 1  

__ 
I I 
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all k (Property 1). In other words, it is found that N 
contains an interior point a arbitrarily close to the equilib- 
rium b. 

Take any such U and consider the trajectory passing 
through a. Since N is invariant, bounded and dxk/dt  d 0 
in N, the trajectory must be convergent. It is easy to see 
that the limit point is an equilibrium, which is different 
from b. If there are finitely many equilibria, instability of 
b is immediately obtained. In case that a continuum of 
equilibria exists, further work is needed as shown below. 

Let e be any equilibrium that is not in L, that is, 
ek = Hk( e,, - - e, ek-l ,  ek+l , -  - a ,  e,,.,) for some k. Assume 
that the above-mentioned trajectory were to converge to e, 
then it must be true that a 2 e, with inequality holds for at 
least one j, i.e., a, > ei. Consider the kth components, 

H k ( a l , . . . , a k - l , a k + l , . " ,  a,+f) 

> a k & e k  

=Hk(el,-.-,ek-l,ek+l,.--,eM) (A.7-2) 

where the first inequality is due to the fact that &,/&(at 
a) < 0 (Property 1). Since Hk is a decreasing function, 

Hk(al,".,ak-l,ak+l,".,aM) 

< Hk( e , , .  e ,  e k - l ,  ek+ l , -  e ,  e,,.,). (A.7-3) 

Thus (A.7-2) and (A.7-3) imply that 

H k ( a l , " . , a & - l , a k + l , . ' . ,  a,,.,) 

= a k = e k  

= H k ( e l ; . . , e  k - l , e k + l , . . . , e M ) .  (A.7-4) 

However, this contradicts the fact that a 3 e (with a, > e,) 
and Hk is strictly decreasing. In other words, the trajectory 
must converge to a point in L. The instability of b follows 
since the class L is isolated from the other classes. 

APPENDIX 8 (Proof of Lemma 4 )  

Only the work for Case (2) is shown; that for Case (1) is 
similar but simpler. First it is shown inductively that the 
L-sequence starting at x contains an infinite number of 
elements. 

Assume that a k satisfies the following conditions: 
i) zi < L i ( z l , . - . ,  z ; - ~ ,  z ~ + ~ , - - * ,  zM), 

ii) z d b .  
It shall be shown that ( I k + l  is well defined, a k + 1 >  

i = l; . . ,  M 
(with at least one strict inequality). 

( l k ( a k + 1 #  U k ) ,  and a k + l  Satisfies both i) and ii). ShCe for 
each i ,  L j ( ( a k ) l , '  * . , ( a k ) i - l , ( a k ) i + l , '  ' , ( a k ) M )  exists by 
induction assumption, ( I k + l  is Well defined. Let j be a 
component for which strict inequality in i) holds for a k ,  

i.e., 

( a k ) ,  < L j ( ( a k ) l , - .  * , ( a k )  j - l , ( a k )  j + 1 9 *  ' ' , ( a k ) M ) *  

(A.8-1) 

For each component i # j, 

( ' k + l ) t  = L , ( ( a k ) l T '  * * ~ ( ' k ) i - l , ( ' k ) i + l ~ '  * .  ? ( ' k ) M )  

2 ( a  k ) , , from condition i) , and 

b, = L, ( b 1 , .  * b,- i ,  b t+l ,*  . 7 b M )  

2 L t ( ( a k ) l , '  ' ' 9  ( a k ) i - l ,  ( u k ) i  + l ? *  . 7 

= ( ' k + l ) z .  

For component j ,  similar inequalities yield (a k + l ) ,  > ( a  k ), 

b and ( l k  # Since each L, is defined at 
(b l ,  - - ., b,- 1 ,  b ,+l , -  . * ,  bM),  it must be defined at 

Lemma 1. Using a k  d a k + l  together with (A.8-1), one can 
write 

(note Strict inequality), and b, 2 ( a k ) , .  Thus a k  d a k + l <  

( ( a k + l ) l , *  * ' ~ ( a k + l ) n - l , ( a k + l ) n + l , '  " ? ( a k + l ) M )  by (3) Of 

( O k + l ) t  = L i ( ( a k ) l , '  * , ( a k ) t - l > ( u k ) , + l ~ .  * * )  ( ' k ) , )  

< L , ( ( a k + l ) l , . *  * , ( a k + l ) t - l ,  

( ( l k + l )  1 + I , '  * 3 ( a k + l )  M)> for # j *  (A-8-2) 
For component j ,  the above strict inequality is replaced by 
weak inequality, i.e., 

( a k + l ) , =  L , ( ~ a k ~ l ~ ~ ~ ~ ~ ~ a k ~ , - l ~ ~ a , ) , , , , ~ ~ ~ ~ ~ a k ~ ~ )  

< L , ( ( a k + l ) l , *  * , ( a k + l ) J - 1 7  

( ' k + l ) , + l ? .  . * , ( ' k + l ) M ) .  (A .8-3) 
In other words, it has been proven that if i) and ii) hold 

for ak they also hold for Thus the sequence { a k }  
has infinitely many elements, and is decreasing in such a 

Since this (increasing) sequence is bounded above by b, 
it converges to some a Q b (note that a,, < U ,  with strict 
inequality). The fact that L,'s are continuous implies that 

Way that a / ,  I ( l k + l  and a k  < ak +2, Vk. 

U E L .  + 
APPENDIX 9 (Proof of Lemma 5 )  

First it should be pointed out that Pa is nontrivial, i.e., it 

Next, it shall be shown that: 
does not contain a alone. Since u'x/df(O) > 0,O E Pa. 

b is on the boundary of { x: 0 d x < a} 
and b # * b e { X: k / d t  2 O } .  (A.9-1) 

Take any b on the boundary of { x: d x d a} and b # a. 
Then b < a with bJ < a, and bk = ak for some components 
j and k. As a result, 

Lk(blt'.',bk-"k+l,''.,bM) 

<Lk(al,".,(Yk-l,(Yk+l,..',a,,.,) = a k = b k  

and b k = ( Y k d  Hk(a1,'..,ak-l,ffk+l,..',aM) 

<Hk(bl,.",bk-l,bk+~,"',b~) 

which indicates that d x k / d f ( x  = 6 )  < 0. Thus (A.9-1) is 
true. 

Finally, let p E Pa, p # a, be given, and consider the 
trajectory passing through p. Lemma 3 states that this 
trajectory will stay within the set { x: dx/df  2 0 }  for all 
future times. Thus by (A.9-1), the trajectory cannot reach 

T - I n I 



LIU A N D  VU: TAP-CHANGER DYNAMICS 589 

the boundary of { x: Q x Q a). In other words, not only 
the trajectory stays in { x: dx /d t  >, 0 ) ,  it also stays withn 
{ x: < x Q a). This proves that P, is invariant. It is now 
clear that the trajectory must converge to an equilibrium e, 
with e < a (for x ( t )  is bounded above by a). Since a is the 
smallest equilibrium, e = a. + 

APPENDIX 10: (Proof of Lemma 6)  
First, it is shown that 

V w E  P,,Vz EN,, 

the hyperbox { x: w < x < z } is invariant. (A.10-1) 

Given any w E Pa, z E N,, the set { x: w Q x Q z } is 
non-empty since w < a < z  (Proposition 2). Take any b 
withn this set. Consider the trajectory x ( t ) ,  t 2 0 ,  with 
x(0) = b. It shall be shown that x ( t )  stays withn the 
hyperbox for some non-empty time interval [0, to).  One 
can always assume that b # w and b # z (for if b = w or 
b = z ,  the trajectory converges monotonically to a). Con- 
sider each component, one has: 

i) For those i with bj = wj,  

converges increasingly and z k  converges decreasingly). For 
each k ,  k = 0,1,. . e ,  the points w, and zk define a hyper- 
box, which is denoted by B (  w,, z k ) .  Since the sequences of 
points wk and zk converge monotonically to a, one has (1) 

a as k + CO. Therefore, by showing that the trajectory 
enters the hyperbox B( w , + ~ ,  z,+~) from B( wk, z,), V k  = 

0,l; . ., the asymptotical stability of a results. Strictly 
spealung, the proof must be done by induction. However, 
only one step of induction is shown here, i.e., 

B(wk,zk)  B(Wk+1,Zk+l)vk, and (2) B(Wk,zk) shrinks to 

x ( t  = O )  E B ( w o , z o )  = B ( w , z )  3 3t0>O 

so that x ( t o )  E B (  w l , z l )  (A.10-3) 

for if (A.lO-3) is true then since B(wl ,z l )  is invaraint by 
(A.10-l), the proof of (A.lO-3) can be carried out induc- 
tively. 

To prove (A.lO-3), another refinement is made here. 
Note that 

B ( ~ ~ , ~ ~ )  = n ~ ( ~ [ j i , b [ j i )  
l < J < M  

where the strict inequality is due to the fact that w Q b, 
w # b and L, is strictly increasing. Thus dx,  / d t (  x = b )  > 0, b [ j 1  = ( < z o > i ,  ' ' ' b o )  - 1 9  (21) J 7 (zo)  J + 1 3  ' ' ' 3 ( Z o )  M I .  
and since w, = b, < z,, it implies that w, < x , ( t )  < z ,  during 
a non-empty time interval [0, I , ) .  

In other words, a [ j ]  and b [ j ]  are the projection of the 
points wo = w and z o  = z, respectively, onto the hypersur- 
face L,. Since a [ j ]  E P, and b [ j ]  E N,, B ( a [ j ] , b [ j ] )  is ii) Similarly, for those j with b, = zJ, 

LJ ( b 1, . . . , b, - 1 bJ + 1, . . * , b, ) invariant, V j ,  by (A.lO-1). Therefore, (A.lO-3) is equivalent 
to the following: 

x( t = 0) E B (  w,, zo)  = B (  w ,  z )  - For each j ,  
< L J ( z  l , . . . , ~ J - l , ~ J + l , . . . , ~ M )  <z ,=  bJ 

= Z / Q  ~ J ( ~ ~ , ~ ~ ~ , ~ J - ~ , ~ J + ~ , ~ ~ ~ , ~ ~ )  

< HJ (b1; * * , b,-1, b,+,,* . * , bM) 

whch indicates that dx , /d t (x  = b )  < 0. Since wJ < bJ = zJ,  
it implies that w, Q x , ( t )  Q z, during a non-empty time 
interval [0, t , ) .  

iii) For those k with w, < b, < z,, w, < x,(t) Q z ,  dur- 
ing some nonempty [0, t k ) .  

Combining the above possibilities, it is seen that the 
trajectory stays within the hyperbox during a nonempty 
time interval after leaving b. Since b is chosen arbitrarily, 
it implies that the hyperbox is invariant. In other words, 
(A.10-1) is true. 

the hyperbox { x: w d x < z } is a region of attraction, 

Next the following is to be shown: 

V w E P,, Vz E N,. (A.lO-2) 

Given w E P, and z E N, denote the L-sequences start- 
ing at w and z by { w k ,  k=0,1;..} and {z,, k =  
0,1,. . . }, respectively. It is easily seen that these se- 
quences are confined to P, and N, respectively, and they 
both converge monotonically to a (more precisely, w, 

3t,>Osothat x ( f l )  ~ B ( a [ j ] , b [ j ] ) .  (A.lO-4) 

Referring to the definitions of a [  j ]  and b [ j ] ,  (A.lO-4) is 
the same as ( w l ) ,  < xJ ( t J )  < ( z l ) , ,  V j .  The proof shall be 
done by contradiction. Without loss of generality, assume 
that for a given j ,  x , ( t )  < ( wl) , ,  Vt > 0. Ths  implies that 
x ( t )  stays in the hyperbox defined by 

WO = (( WO) 1 ) .  . . ?  ( W O ) ,  - 1, ( WO) J > ( W O ) ,  + 1 9 .  . . , ( WO) M ) 
and 

So, dx /d t  > 0, Vf >, 0. Therefore, x J ( t )  converges to 
x,(co) < (wl),. (Similarly, if x J ( t )  > (zl),, Vt ,  then xJ(co) 
> ( z ~ ) ~ . )  It must be true that dx,/dt gets arbitrarily 
close to 0 as time goes on. Observe that a [ j ]  = 

( (wo)17 . .  ~ , ~ ~ o ) J - l , ~ ~ l ) J , ~ ~ o ~ J + l , ~  . . , ( w ~ ) ~ )  is by defini- 
tion the only point in the hyperbox defined by (A.lO-5) 
that lies on the hypersurface { x: dx, /dt  = O } .  Therefore, 
x ( t )  must get arbitrarily close to a [ j ] ,  which means that 
x( t )  gets inside P, and in doing so the trajectory converges 

I 
- 
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to 
( w ~ ) ~  < aj,  the j t h  component of a. 

(Lemma 5). This contradicts the fact that x j ( a )  < [22] M. A. Pai, Power System Stability. Amsterdam, The Netherlands: 
North Holland, 1981. 

[23] J. M. Ortega and W. C. Rheinboldt, Iterufiue Solution of Nonlinear 
Equations in Several Variables. New York: Academic, 1970. 

[24] K. Vu, “Analysis of a voltage colla se mechanism due to instability 
of on-load tap-changers,” M.S.E.{. thesis, Univ. of Washington, 
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