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Abstract - A phase-shift-controlled series-resonant inverter
operating at zero-voltage-switching (ZVS) is used as the power
supply for an induction heating system. This system has two
control loops: the phase-shift control loop regulates the output
power, and the frequency control loop ensures ZVS for all load
conditions. The design and implementation of these control loops
are explained. The complete closed-loop small-signal model is
obtained using the extended describing function method. The
model predictions are compared with experimental data
measured from a lab prototype.

L INTRODUCTION

A phase-shift controlled series-resonant inverter (PSC-SRI)
operating at 500 kHz, 10 kW is used as the power supply for
an induction heating system. A PSC-SRI has been suggested
for induction heating applications because of its hardware
simplicity [Grajales, Nakaoka). The PSC-SRI does not
require a pre-regulator and the resonant inductor is composed
of the coil, work-piece and transformer leakage inductance. In
addition the PSC-SRI operates over a narrow frequency range
because the switching frequency varies only to maintain zero
turn-on losses, also called zero-voltage switching (ZVS). The
proposed PSC-SRI has two control loops: the phase-shift
control loop regulates the output power, and the frequency
control loop ensures ZVS. The phase-shift is regulated with a
PWM duty-cycle control strategy. The frequency is regulated
using an adaptation of the current charge control method.

Most induction heating applications require heating the
work-piece at a given temperature for a given time. During
the heating process the load resistance and inductance vary,
especially when the work-piece reaches the Curie
temperature. Therefore, since the load inductance is part of
the resonant inductance, the resonant frequency of the system
will vary. The frequency control strategy for the PSC-SRI
keeps track of the resonant frequency to maintain ZVS while
switching as close as possible to resonance to minimize
circulating energy. Because of the high risk of MOSFET
damage when ZVS is not achieved, it is important to know the
response time and the reliability of the frequency control
loop. At the same time, depending on the application, there
might be a demand for an accurate power control for a given
temperature profile. Hence, the bandwidth, phase margin, and
gain margin of the frequency and power control loops should
be properly designed to guarantee a robust system. The small-
signal model is a useful tool to analyze the performance of the
control loops. It helps corroborate hardware loop
measurements, and it allows experimenting with several
compensation schemes before they are implemented.
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Fig. 1 PSC-SRI power stage circuit

This paper will describe the PSC-SRI operation. It will use
the extended describing function method for modeling the
inverter power-stage. The closed-loop small-signal model will
be derived for both the phase-shift and the frequency control
loops. Loop-gain transfer functions will be obtained and
compared with experimental data measured from a laboratory

prototype.

IL. PHASE-SHIFT CONTROLLED SERIES-RESONANT
INVERTER PROPERTIES
The power stage of the circuit, a full-bridge series-resonant
inverter, is shown in Fig. 1. L, and R,y are the coil plus
work-piece equivalent inductance and resistance, respectively.
C, is the resonant capacitance, and Cyc is the dc current

blocking capacitor. Also, f; is the switching frequency, and £,

. Jj
is the resonant frequency, where f,= Py R

Power MOSFETs are selected as the switching devices for
this application because of the high switching frequency
requirement. The four transistors, Q1-Q4, are operated with a
50% duty cycle. The switches in each leg of the bridge are
turned on and off 180 degrees out of phase. When operating
above resonance, the load current, i, lags the quasi-square
wave voltage, v4p, as shown in Fig. 2(a). Body diodes

conduct current after the MOSFET's output capacitance is
discharged. During this diode conduction period, the
MOSFETs can be turned on at zero voltage [Sabaté]. Zero
voltage switching (ZVS) must be ensured at all times to
prevent possible device damage. Qutput power of the inverter
is regulated by varying the phase-shift between switches Q1
and Q2. The resulting voltage across the tank is a quasi-
square wave with a duty ratio 4. If the switching frequency is
kept constant and close to resonance, ZVS will be lost for
decreasing values of d because the load current becomes
positive before Q2 turns on. To prevent loosing ZVS, the
controller increases the switching frequency to allow for more
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Fig. 2 (a) PSC-SRI Power stage circuit waveforms (b) Power
regulation for one load condition.

negative load current before Q2 turns on, ensuring a full
discharge of the MOSFET's output capacitance.

Figure 2(b) shows an example of the control strategy for a
particular load condition. This example shows that when
d = 0.95, maximum power is obtained and that the switching
frequency is very close to resonance (ZVS is maintained),
whereas when low output power is desired for the same load
condition, d = 0.45. The switching frequency that ensures
ZVS is farther from resonance when d =0.45 than when
d=0.95.

ITI. SMALL-SIGNAL MODEL

Figure 3 shows the system's diagram with the two control
loops: frequency and phase-shift. The slow loop is the phase-
shift control loop, which senses the output power, P,, and
varies the phase-shift to maintain P, at the desired value.

The fast loop is the frequency control loop, which senses
the tank current and determines how far above resonance it
should operate to maintain ZVS. In this section, the small-
signal model will be obtained, first for the power stage, and
subsequently for each of the control loops. The modeling
method used is known as “extended describing function
method”.

A. Power Stage Small Signal Model

In this section, a summarized procedure of how to obtain
the small-signal model of the power stage of the PSC-SRI will
be given. For further extended describing function modeling
techniques and other circuit models see [Yang, 1991].
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Fig. 3 PSC-SRI system diagram.

The PSC-SRI power stage circuit can be represented by the
equivalent circuit shown in Fig. 4.

First, Kirchhoff’s voltage law is applied to the circuit in
Fig. 4 to give

di ,
L7:+v+xR=vAB , 1)
dv
C—=i. 2
ol ()
The output variable is the average power at the resistance:
Ri?
P=—.
o= ©)

The harmonic approximation is used for the inductor current
and capacitor voltage so that
i(t)=i (1)-cos(t)+ig(t)-sin(wgt) )
v(1)mv (1)-cos(W gt )+vy(t) sin(wgt) (5)
and the extended describing function is applied to the input
voltage,

V48 =-7;:-vgsin( -g—d Jsin{ax )=v, sin(wt) . 6)
2
C=CyN
31
_ T
P +
Vg 1 v ! 5
. - RRN
a e
e < L=L N?
| ,
|
Zin|

Fig. 4 Equivalent PSC-SRI Circuit

Substituting (4)-(6) into (1)-(2), and using the harmonic
balance procedure, we can decompose (1)-(2) into four
equations by grouping separately the sine terms and the
cosine terms to obtain:

sine terms: =~ =-'é-+co,vc s ()]
di;  ~v,—i, R+
Lo bR o ®)
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dv,

cosine terms: - =1C“——w,v“ &)
di, —v,~i.R
.;_:=—"£LL—w,i, ) (10)

Equations (7)-(10) can now be used to solve for the operating
point by letting all the derivatives be zero. Their solutions are
given in appendix A.

The linearized model is found by perturbing the large-
signal system given by (7)-(10) around the operating point
[Vg, D, Wg, Q], where V, is the input voltage, W, is the

switching frequency, D is the duty ratio, and Q is the load
L
factor defined as Q= Ws

inputs, the state variables, and the output. Each will have the
form of

Wt)=H+h(t), 11
where H is at the operating point, and fz( t) is a small
amplitude perturbation. Hence, these perturbed variables are
replaced in (7)-(10), and then, by finding the Taylor
expansion and considering only the first partial derivatives,
we obtain the linearized model [Kassakian]. For example, (8)
can be expressed as:

di,

'_dt_—f(vcrvc’ISJ'c’d' g'wv); (12)
hence, its linearized equation is
dii o . S o e . O, P
dt~3v,v5+8vcv +3’;‘ +&cz+$w +3v A add, (13)

where each — af is evaluated at the operating points.

Equation (13) is acceptable as long as the perturbation is
small-signal, since higher order terms can be neglected. This
linearization procedure is done to (7)-(10) to obtain the
complete linearized model:

v,

~

e AR (14)
a C
di, v, R 2V, T o~ 4 K ..
—d;-=—L——L—1 +W1 +1.0 +—L—gcos(—2—D)d+;L—sm(3D)vg, (15)
e e
’c =E_u,:vs_Vsms ’ (16)
di, ¥ R«
< ~Wi —1 17
A AU an
This model can also be expressed in matrix form,
.*=AX+B,II] +Bzu2 +B_;u3 >
y=Cx, (18)

where, y is a vector that includes the output variables and x is
a vector that includes the state variables, such as,

’

x=lic i V9], y=p,. (19)

Hence,

TH T .
. n
- _ — D it LA I
W, -R 0o =1 S'"(z ) cos(zD) ) _;,
x= ] L Ly 0 v, + d+|
Z 0 0w 0 0 Ve
! 0 0 -V
0 — -W, 0
L C d
y=[RI; RI, 0 0}x. (20)

The eigen values of the A matrix are the same as the poles of
the open loop system. These poles are calculated from

det(sI-A)=0 (¥3))
which results in four poles located at:
Poles p; and p,: LR, jlw I—-—I———w 22)
2 L o 4Q2 s
IR | T
Poles p; and py: m?fi ;[w,, 1—-4—@7 +w‘J (23)

Poles p; and p, have been considered to be “beat frequency
poles”, that is, because they are assumed to be located at the
frequency w = @, — w,, but as the pole equations show, the
pole location is dependent on the load factor Q. The beat
frequency approximation is not satisfactory for low values of
Q. and/or when w, is very close to w,. The remaining poles,
ps and p, are located at high frequencies, and their effect on
the small-signal response can be neglected.

B. Power Regulation Loop Small-Signal Model

The output power is regulated by varying the duty cycle of
the tank voltage, as explained in section II.

As shown in Fig. 5, the control strategy for the power
regulation loop is very simple. Its main components are the
multiplier and a PWM controller IC. The output power is
measured by multiplying the coil voltage and current. This
signal is compared against a reference voltage, if the output
power signal is higher than the reference, the duty cycle will
decrease. If the output power is lower than the reference, the
duty cycle will increase.

Figure 5 shows the close loop for the power regulation,
from which (after perturbing and linearizing), the following
relationship for 4 is obtained:

—sTd

d— FKG (S)——_‘las
Y (s+a, )R,C,

where F,, is the gain of the pulse width modulator (PWM), K;
is the total gain of the power sensor, Gu(s) is the
compensator’s transfer function, p, is the perturbed output

power, and Ty takes into account the driver’s propagation
delay. Hence,

(29)

Gufs)= -Za

2
A @5
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where S, is the on-time slope magnitude of the PWM ramp,
and 7, Ly

Since the controller is designed to regulate the average output
power, resistors R,, Ry, and C, have been added to average
the multiplier instantaneous output power. These components
contribute to the addition of pole a, in (24) so that

a P =——_1 .
(Ry/ /Ry )Cy

The perturbed output power, given in (24), can be expressed
as,

€2))

Py = RIi;+ R . (28)
C. Frequency Loop Analysis

The frequency control circuit is composed of a charge
measurement circuit, a compensator, and a voltage-controlled
oscillator (VCO), as shown in Fig. 6(a). This circuit regulates
the tank current charge during the ZVS transition (shaded
area) to guarantee that ZVS is always achieved. If the
measured charge is lower than desired, the circuit will
increase the switching frequency to allow for additional time
lagging between the tank voltage and the tank current,
increasing the amount of charge. If the measured charge is
larger than desired, then the switching frequency is decreased
to improve the power factor. In summary, the charge circuit
measures the primary current i, , rectifies it, and measures the
integral of the current during the time Bt. The result of the
integration is represented by v.. Voltage v, is compared with
the reference voltage Vi, to produce a compensated error
voltage vi. A simple VCO is built for the PWM 3825 IC
which ensures that the output frequency varies directly
proportionally to v¢ [Jovanovig].

In this section, the closed loop small-signal model of the
frequency-loop will be derived. Hence, it is necessary to find
an equation that relates the output frequency, o, with the
input current #,. This equation is then linearized and attached
to the power stage model to complete the close-loop model.
The derivation of the charge model will be carried out in three
steps.

(b)

Fig. 6 Frequency control: (a) circuit implementation, (b)
charge circuit waveforms.

1) Solving for v,, and v, as a function of i,: Figure 7 shows
the equivalent circuit during the period tf. During this time,
capacitor C, is charged with i to produce voltage v,. Diode D,
is assumed to be off during the charging of C,, but even if D,
turns on some time during the charging of C,, the circuit of
Fig. 7 is still a good approximation, since Rp //R; >> R, and
Co>>C,.

Thus, applying Kirchhoff’s current law to the circuit in Fig. 7
results in

c, Bt vt

“dt n R

Equation.(29) provides the solution for v; during the time 1f;
however, from Fig. 6 (b) we see that v, remains constant
during a period T until it is reset. Hence, using (29) we can
find the value reached by v; at t,, (k=0,1,2...00.), and assume
that it will remain at this value until it is reset. There is a
slight decrease of v, during the non-charging time due to
resistor Ry//R; , and its effect will be included later. From (29)
and Fig. 6(b) we can observe that v, is a function of iy, as
well as 7,f,. Since we are studying perturbations at
frequencies lower than the resonant frequency, we can assume
that vy, iy, and 7,8y remain constant during each & period.

i\ ) I'n )_‘—:w_“kﬁv
* - Rel Ccl +

oo ‘ Vi

T

Fig. 7 Equivalent charge circuit during f.

(29)
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The expression for v;.;,;)is then
fhe e M(hei=S)
Vl(k+1)=j,k ! —E——h( shds ,

es1=Bete  nC,

where i, (s) can be replaced by (4). The solution of (30) is

(30

Vick+1) =

2,2
l nC_.la +ws,,) ‘

where a and By are defined in appendix A.

Equation (31) can be perturbed and linearized with a
mathematical software package such as MapleV or
Mathematica. The linearized solution around the operating

point [Vg, D, W, Q], is

Vicke1) =A(Eo)m6)sk +Egodp +Higy iy +Hica)ick)

(32)

where A, E,., Eq,, Hiso, Hic,, are gains that depend on the
operating points; their definitions are given in appendix A.
The selection of “E” or “H” depends on whether the
multiplying variable is a current-controlled voltage source or
a voltage-controlled voltage source. This will become clear in
section E, where the circuit model is derived.

Equation (32) shows a discrete relationship between the
output voltage Vg and ®g, di, ix, and iy Hence, a z-
transformation can be applied [Tang] as follows:

zG,(z):A(Ewd),(z)+Eda,&(z)+H,~m,i;(z)+H,-mfc(z)). (33)

Equation (33) can now be transformed into a sampled
continuous time expression such as [Franklin]

31(8) = A Ea@4(5)+ Egod(5)+ Hisaia(5)+ Hicae(5)) - (34)

(e -1)

The sample and hold expression outside the brackets in (34)
has been approximated to a power series expansions; an
example of a second order polynomial is given in [Ridley].
Having v, we now can solve for v, and take into account the
slight discharging caused by (R;, // R; ). Diode D, and the (R,
11 R; )C,, circuit in Fig. 6(b) do not let v, discharge during the
resetting and charging of v,. The disadvantage is that (R, //
R;)C, contributes a pole to the system; therefore, it should be
designed as a high frequency pole so that it would not affect
the closed loop performance. Hence, +, is

L ys)
vc(s)— (S+b)RPCp > (35)
where
1
b=, (36)
(Rp "Ri )Cp

2) Solving for vs after the compensation circuit: the
relationship between v(s) and v(s) is found from Fig. 6(a).
This solution is perturbed and linearized to give,

By (s)==3e(s) e==Si5)Gu(s). G7)

3) Expressing @ as a function of v, using the VCO linear
relationship: in [Jovanovic] an equation that shows the linear

i@ g -—ida—e_ﬂ*""’[(i,,,a+idw,k)sinﬁk7r+(i,kw,,, —ic,,a)cacﬁkn]| (31)

relationship between @, and v; is given. The small signal
solution for @, is then,
®,(s)=Kycovy(s) . (38)

where Kyco can be measured experimentally, or it can be
approximated by the equation given in [Jovanovic].

The final solution for @, is obtained by replacing (34)-(37)
on (38), that is,

@y(5)== ()G (5) A Euaf®s(5)+ Eawd($)+ Higwh(5)+ Hicae(5)) 39)
where
ST Kyco

G , 4
e(s) (e"—I) (S+b)RpCp ( 0)
and
Gy(s)= 222 (41)

D. Error-Amplifier Compensation

The compensation scheme selected for each of the control
loops is just an example among many possible
implementations. The compensation used for the power
regulation loop is represented by (25) and it is shown in Fig 5.
This compensation network provides: (a) a pole at zero (an
integrator) for high DC gain, (b) a zero at low frequency, to
increase the loop gain bandwidth, and (c) a high frequency
pole. The performance of this compensation network will be
discussed in part IV.

The compensation used for the frequency control loop is
represented by (41), and its implementation is shown in Fig.
6(a). A diode has been placed in the op amp feedback path, in
order to have two different compensation schemes, dependi::g
on the error sign. The purpose of this nonlinear compensation
is to have fast response, regardless of saturation, when the
error is positive, and to prevent saturation, although
penalizing the response time, when the error is negative.
Ideally, the diode will be off when v, is lower than v,
hence, the error will be positive. The positive-error
compensation includes a pole at zero frequency, for high DC
gain, and a zero at low frequency. Positive error means that
the inverter frequency is too low and that ZVS might be lost.
Thus, it is acceptable to have the op amp saturated with a
positive output to quickly regain ZVS. On the other hand, the
diode will be on when v, is greater than v,.s,; thus, the error
will be negative. In this case, the pole is not at zero, but
moves to a slightly higher frequency, thus decreasing the high
DC gain.. The negative error compensation will not saturate
the op amp as quickly as in the positive case. A thorough
analysis of the closed-loop performance of this nonlinear
compensation is not simple, especially when analyzing its
behavior during transient response. Transient behavior
analysis is beyond the scope of this paper. Experimental loop-
gain curves will be given in part I'V. It will be shown that this
compensation behaves satisfactorily; however, other
combinations of pole and zero placements should be tested to
further improve the gain and the bandwidth.
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E. Complete Small-Signal Model
The complete small-signal model is shown in Fig. 8. This
model was obtaiged from (14)-(17), (24), (28), and (39).
LWi R L

_ 228
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Fig.:8 Small-signal model includes power-stage, frequency
control loop and phase-shift control loop.

The small-signal model as shown in Fig. 8 can now be
implemented using PSPICE, MATLAB or similar simulation
software, to obtain the frequency response of the system.

IV. EXPERIMENTAL VERIFICATIONS

Figure 9 shows the experimental and analytical frequency
loop-gain curves with the power regulation loop open. The
operating point and the PSPICE program are given in
appendix B. From these curves it can be seen that the
frequency loop is stable. However, its gain is relatively low as
well as the crossover frequency. Modifications to the
compensation circuitry can be made to increase the gain and
crossover frequency. Though, as explained in section III D,
the DC gain can not be large when the error is negative to
prevent saturation in the negative direction. Additional,
analysis of the frequency loop-gain at different operating
points show that the gain decreases as the load resistance
increases, the load resistance increases during the heating
cycle. Therefore, the compensation for this loop should be
design for the highest load resistance point.

Figure 10 shows the experimental and analytical power
regulation loop-gain curves with the frequency loop closed.
The operating points of Fig. 10 curves are similar to that of
Fig. 9 except for: £=554 kHz; V=103 V; D=0.62. The
compensation used for the power regulation loop
satisfactorily provides high DC gain and large phase margin.
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V. CONCLUSIONS

The complete closed-loop small-signal model for a phase-
shift-controlled series-resonant inverter used for induction
heating was obtained using the extended describing function
method. The model predictions were verified with
experimental data measured from a lab prototype

The small signal model proved to be a useful tool to
analyze the performance of the two control loops: the phase-
shift control loop and the frequency control loop. In particular
the frequency loop-gain analysis showed that improvements
could be made to increase its gain and its bandwidth. This
model will be used for further closed-loop performance
studies at various load operating points, which generally
occur during the heating cycle of an induction heating system.
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APPENDIX A

Operating Points:
22

AN

VHC (1-WLC) Ve(1-WZLC)
¥ A y

2 < A > s A
V. W.CR
Vc=——*’-A’— , A=W C P - 2W CL+1+WC’R* .

Power Stage Small-Signal Model Constants

(A1)

2V, T 4
Ey =__L_8’co,(_2_ D), E, =—Esin( %D ) (A2)

Frequency Control Constants:
From (31) let

a
IW,~La—e "s[(1a+1 W, )sinB+(IW,~1.a)cosB|
nCc(az +Wj)

Vl _sign

then,
1., when (V;_ugn)>0
A=) 1, when (V) ugm)<0
Not defined when (V,_sig,,)=o

(A3)

B=ﬁ1r=—arctan(—§—‘—)-—%(1—0) (Ad)

8
o
le ™t a

H. =
s PE I A

B
Hl+H2]-e a”"(a:inB+W,cosB)+W, (A5)

B
—-g—

B
, —ax-
Hiop=KK| 22— -2 HI-H2|ve " (-W,sinB+acosB)-a| (A6)
(rP+12) W,

B

Eg=e " KK| -2 H1+ %12
- aB W,
Em =KK| I»,—e W [Hl(—}‘;?——m)‘ﬁlc SinB+I,COSB]
(A8)
W
-m( IIWJ"ICG)}
HI=((1,a+IW,)sinB+(1W,~1.a)cosB) (A9)
H2=(~(1,a+ W, )cosB+(IW, - I.a)sinB) (A10)
1 1
, , All
nC,(a’+W?) RC, (atl)
APPENDIX B

Pspice frequency loop-gain implementation:
SRI-PSC frequency loop gain, Small Signal Model

* Circuit parameters Q=22 L=6.77uH C=19.3nF N=4 R=10
* Operating Point  Vg=136 Fs=496 khz D=0.97

vg200ac0
rg 200 1k
vd 500 ac 0
rd 500 1k

* The upper part of the resonant tank
es 10700 -04263m
ekv 212001272

ekd 3 2 50 0 12.813
wpis 3 4 dc 0

hzs 5 4 wpic 21.0134
rs 5610

Is 6767

¢cs 70 193n

gs 07 8 00059

gws 0 7 70 0 -4.696u

* The lower part of the resonant tank
ec 0 13 7000.09868m

vpic 13 12 dc©

hzc 1210 vpis 210134

c 109 10
It 98 67
c 80 193n

gic 8 0 70 0.0599
gwec 8 0700 -2.02%

* Opamp frequency loop

eopf 70 0 0 80 1000k

ropf 70 0 1000k

4 85 80 5.6k

*r5 80 70 120k

r6 80 86 27k

c6 86 70 0.10u

* He(s) (The gain Kvco was included in His, Hic, Ew, Ed)
eGe 85 0 LAPLACE {w(90)} = {13.77*s/((exp(s*1e-6)-1)*(s+14.077¢6))}
eww 31 0 70 0 -0.0168

edw 32 31 50 0 287.22¢3

hisw 33 32 wvpis -3.4913e3

hicw 84 33 wvpic -16.5¢3

* The injected signal
vel 90 84 acl
rge 90 0 1000k

*The loop gain measurement is V(84)/V(90)
* Vdb(84)/Vdb(90)= Vdb(84)-Vdb(90) Vp(V(84)/V(90))=Vp(84)-vp(50)
_print ac vdb(90) vdb(34) vp(90) vp(84)

.ac dec 20 10 500k
.probe
end
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