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Preface
What You Need to Know to Use This Manual

This manual is for Saber users who are familiar with netlists and plan to
write their own models for simulation. It is largely tutorial in its approach and
assumes no prior experience with the MAST modeling language. It does
assume that you know how to use a MAST template with the Saber
simulator. Some programming experience would be helpful, though not
absolutely necessary.

This manual also assumes that you are familiar with the following:

• How to view the contents of a file.

• How to use a text editor to create a file or edit the contents of a file.

• How to delete files.

• How to create or delete a directory.

• How to list the contents of a directory.

• How to move from one directory to another.

If you are not familiar with these procedures, consult the user’s guide for your
operating system.
Guide to Writing MAST Templates (Mar. 2003) i
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Preface
What This Manual is About

This manual, along with the companion Book 1, shows how to use the MAST
modeling language by presenting a small number of concepts at a time, with
each presentation based on a modeling example.

It has two objectives:

• To describe some general purpose modeling techniques.

• To show how to use the MAST language to implement simple models of
systems or subsystems for use by the Saber simulator.

The models described in the beginning chapters are kept simple. As the model
complexity increases with succeeding chapters, every effort has been made to
keep the conceptual “jumps” manageable. Most examples start by listing the
template of the model and describing the characteristic equations.

Because the MAST language has the features and capabilities of an Analog
Hardware Description Language (AHDL), it is suited for the diverse and
complex modeling requirements of simulation in general. This manual is not
meant to serve as a textbook on modeling—it is intended to be a survey (by
example) of MAST capabilities. Therefore, achieving full MAST expertise
requires time and practice in addition to reading this manual. Fortunately, for
immediate use, you need only learn the portions that apply to your own
simulation, which is not so difficult.

This manual explains not only what, but why. The MAST Reference Manual
also explains what, but in greater detail—it provides more detailed
information on topics that are introduced in this manual.
ii Guide to Writing MAST Templates (Mar. 2003)
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What This Manual is About
Basic Versus Advanced Modeling

This manual presents a sequence of graduated examples that demonstrate
how to incorporate many commonly-used features of the MAST modeling
language. These example templates are presented in order of increasing
complexity to introduce advanced features. They have been selected to provide
the following:

• An easy starting point (the first two examples are models for a current
source and a resistor)

• Simplified models

• Balanced length—short enough to read and scan, but long enough to
demonstrate significant features and capabilities

• Moderate differences from one example to the next

• Modularity of chapters, to minimize having to read “cover-to-cover”

NOTE
Most of the templates used as examples are simplified
versions of templates that already exist in Avant!
libraries. Be aware that, for simplicity, these example
templates do not include the error-checking features
contained in the library templates.
Guide to Writing MAST Templates (Mar. 2003) iii
Copyright © 1985-2003 Synopsys, Inc.



Preface
Schematic Entry Versus Netlist

As stated above, one objective of this manual is to show how to implement a
mathematical model in the MAST modeling language—how to write a
template. Some of the constructs and requirements for doing this are based on
using a template in a netlist (which is a textual description of your design
provided as input to the simulator). Consequently, explanations sometimes
refer to topics and procedures that are related to a netlist.

If you are using a schematic entry program, information in this manual
regarding netlists still applies to writing a MAST template. This is because a
schematic entry program still produces a Saber netlist—this type of program
is basically an interface that lets you avoid having to edit a netlist directly. In
general, such information is not extremely detailed and is easily applied to
using a schematic entry program.

For example, specifying a template in a netlist is effectively the same as
placing a symbol in a SaberSketch schematic and specifying its properties,
from which a netlist is created. There is no difference in simulation.
iv Guide to Writing MAST Templates (Mar. 2003)
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chapter 1
Modeling Piecewise-Defined Behavior
Examples in Book 1 use models of familiar electrical circuit elements. This
topic presents information about how to create models whose behavior is
defined in piecewise segments. You can represent this type of nonlinear
behavior with many of the same MAST constructs used for linear models in
Book 1.

This topic uses the following nonlinear example templates:

• Modeling a Simple Voltage Limiter with MAST

• Modeling a Voltage Divider with MAST

The two examples of nonlinear models introduce the following concepts:

• A method to approximate a discontinuous function by a continuous one,
so that it can be modeled in the MAST language

• If  expressions

• Newton steps to limit changes of the independent variable from one
iteration to the next, which aids convergence

• Recommendations on when to specify newton steps

• Parameterized newton steps
Guide to Writing MAST Templates, Book 2 (June 2003) 1-1
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Chapter 1: Modeling Piecewise-Defined Behavior
Nonlinear Elements

A linear component is characterized by the fact that its template equations
include only linear functions of system variables after substitution of all
relevant expressions from val variable definitions. That is, there are no
products or ratios of system variables in a template equation, and no system
variable is an argument of a foreign or intrinsic function (except d_by_dt and
delay ).

If one or more of these requirements for a linear template is not met, the
template is considered nonlinear. Note that a template can include nonlinear
assignment statements yet still describe a linear element. The important
question is whether the nonlinearity enters the template equation.

For example, the resistor_1 template defines power  as the square of the
voltage drop across the resistor divided by the resistance. Nevertheless, the
template is linear because power  does not enter the template equation. In
other words, power is part of the resistor template, but it is not part of the
resistor model. A template can also include nonlinear functions of time,
frequency, or any parameter, without being a nonlinear template.

Nonlinear models are not confined to curvelinear functions—other types
include those whose outputs have discontinuities or regions of piecewise
linear behavior. The examples in this chapter illustrate these kinds of
nonlinear characteristics.

There are issues that can arise when modeling a nonlinear element. Most of
these are handled automatically by the Saber simulator; however, there are
MAST constructs, (sample points), that allow you to provide your own values
for more efficient simulation. All such constructs require statements in the
control section of the template.
1-2 Guide to Writing MAST Templates, Book 2 (June 2003)
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Modeling a Simple Voltage Limiter with MAST
Modeling a Simple Voltage Limiter with MAST

This topic shows how to use conditional expressions (if- else ) in the
template equation to define three regions of a symmetric voltage limiter
shown in the following figure.

Vout

Vmax-Vmax

Vin

Ideal Voltage Limiter Characteristics
Guide to Writing MAST Templates, Book 2 (June 2003) 1-3
Copyright © 1985-2003 Synopsys, Inc.



Chapter 1: Modeling Piecewise-Defined Behavior
The structured template for this limiter is shown below.

vlim T emplate T opics

The description of the vlim template is divided into the following topics:

• Characteristic Equations

• Header and Header Declarations

• Values and Equations Sections -- This topic describes if expressions
that include conditions. These conditions can use system variables, a
branch variable, or a val variable that is a function of system variables
to introduce nonlinear dependencies.

element template vlim ip im op om = vmax

# template header

electrical ip, im, op, om # header declarations

number vmax

{ # start of template body

val v vin, vout # local declarations

var i iout

number slope=1u, vmx

struc {number bp, inc;} nvin[*]

parameters { # start of parameters sect.

vmx = abs(vmax) # ensure use of positive

nvin = [(-vmx,1.9*vmx),(vmx,0)]

} # Newton step array for vin

values { # start of values section

vin = v(ip) - v(im) # input voltage

if (vin < -vmx)     vout = -vmx + slope * (vin + vmx)

else if (vin > vmx) vout = vmx + slope * (vin - vmx)

else                vout = vin # voltage-limiting

} # end of values section

control_section { # start of control section

newton_step (vin, nvin) # assign Newton steps

} # end of control section

equations { # start of equations section

i(op -> om) += iout # current contribution

iout:  v(op) - v(om) = vout # equation determining iout

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vlim.sin
1-4 Guide to Writing MAST Templates, Book 2 (June 2003)
Copyright © 1985-2003 Synopsys, Inc.



Modeling a Simple Voltage Limiter with MAST
Models described with if statements must satisfy various requirements
for consistency, continuity, and non-zero slope.

• Requirements For If Expressions

• Control Section—Newton Steps

• Purpose of Newton Steps

• Newton Step Example

Characteristic Equations

The characteristic equations of the voltage limiter are:

Header and Header Declarations

The vlim template is an element template with one argument, the limiting
voltage (vmax). Its header and corresponding declarations are as follows:

There is no default value for vmax, which makes it mandatory for a user to
specify an instance value. Note that this value may be specified as positive or
negative—the template uses the absolute value of vmax.

Values and Equations Sections

The equations section for vlim follows the standard pattern for voltage-driven
outputs as follows:

vout = -vmax if vin < -vmax
vout = vin if -vmax <= vin <= vmax
vout = vmax if vin >= vmax

element template vlim ip im op om = vmax
electrical ip, im, op, om
number vmax

equations {
i(op -> om) += iout
iout:  v(op) - v(om) = vout

}

Guide to Writing MAST Templates, Book 2 (June 2003) 1-5
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Chapter 1: Modeling Piecewise-Defined Behavior
These equations closely reflect the limiting characteristics given in the topic
titled "Characteristic Equations", except that they include a nonzero slope in
the limiting regions (slope ).

These equations require the following declarations in the local declarations
section:

The limiting takes place in the following values section as follows:

Although negative values for vmax are allowed, the equations for
determining vout  assume vmax is positive. That is, they use the absolute
value of vmax, which is obtained by using abs , the intrinsic absolute value
function. This absolute value of vmax is assigned to the local parameter vmx
as follows:

The local declarations in conjunction with the values section enable the
characteristic equations to express the output voltage (vout ) as a function of
the input voltage (vin ), while finding the current contribution (iout ) required
for this to be true.

val v vout, vin
var i iout
number slope=1u, vmx

values {
vin = v(ip) - v(im)
if (vin < -vmx) \

vout = -vmx + slope * (vin + vmx)
else if (vin > vmx) \

vout = vmx + slope * (vin - vmx)
else vout = vin

}

parameters {
vmx = abs(vmax)
# other statements removed

}
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Modeling a Simple Voltage Limiter with MAST
Requirements For If Expressions

There are several points worth noting about the conditional statements used
in the values section:

• If a system variable, a branch variable, or a val variable that is a
function of system variables appear in the condition of an if statement,
the variables defined in the body of the if  statement depend
nonlinearly on the variable used in the condition. In this example, vout
depends nonlinearly on vin .

• You must ensure that nonlinear models implemented with if
statements or if  expressions are continuous from one region to the
next. In these template equations, it is necessary to force continuity at
vin  = ±vmax. Discontinuities can cause problems during simulations
(e.g., small time steps (and long simulation time) or nonconvergence).

• You must ensure that variables in an if statement are always defined,
regardless of the conditions of if  statements or if  expressions. One
way to accomplish this is to make sure that any variable defined in any
condition of an if  statement is defined in every condition of the if
statement or if  expressions.

• An independent variable defined in the body of an if  statement or if
expression should never be set to a constant value. The reason is that, if
the simulator, while iterating to find the solution of nonlinear
equations, goes into a limiting region, it might not be able to get out of
the region if the slope of the function is equal to 0—that is, the voltage
limiter might latch.

To prevent this problem, a small but non-zero multiple of vin  named
slope  is added to vout  (as shown in the following figure). In most
cases, adding a very small slope yields a more realistic model than just
a constant limit.
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Chapter 1: Modeling Piecewise-Defined Behavior
Purpose of Newton Steps

The  previous figure shows that the dependence of vout  on vin  is piecewise
linear, with -vmax  and vmax defining crossover points for three separate
regions of linear operation. For templates with this kind of input/output
relationship, we recommend that you specify newton steps for the independent
variable (here, vin ). Newton steps are specified as pairs of numbers that
specify a breakpoint and an increment, which is described in more detail
below.

The purpose of newton steps is to place a limit on the change of the
independent variable from one iteration to the next. The effect of this is to
restrict the range of approximation the simulator performs around the
crossover points, which helps improve simulation efficiency and is
summarized as follows:

When the variable is in a flat region, newton steps prevent the
simulator from “guessing” a solution that grossly overshoots the actual
solution. Such overshoots can cause slow convergence to a nonlinear
solution or even numerical oscillation.

Newton step increments are chosen to be large enough to let the
independent variable move from one piecewise linear segment to
another, but small enough to prevent it from moving too far and
possibly skipping a segment altogether.

vout

vin

slope

slope

Voltage Limiter Template Characteristics

Vmax-Vmax
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Modeling a Simple Voltage Limiter with MAST
Newton steps are related to the iterative algorithm that the simulator uses to
find the solution of nonlinear equations. If these equations include
exponentials, convergence may be slow, because a small change in the
independent variable of the exponential may cause a large change in the
function value.

More specifically, the goal is for the value of the independent variable vin  to
move quickly into the intended region of operation and, once there, have its
movement restricted so that it is unlikely to leave the region again.

Control Section—Newton Steps

Newton steps require three different statements to be included in the
template as follows:

1. A declaration of a structure parameter (nvin ) to specify values for
breakpoints and increments, as pairs of numbers in an array (bp, inc ).
This parameter may be declared either as an argument in the header
declarations or as a local parameter in the template body. Values for
these pairs are specified as described in 2, below.

2. An assignment statement in the parameter section that specifies values
for nvin :

3. A statement in the control section to associate the newton steps
parameter (nvin ) with the independent variable of the template (vin ):

NOTE
It is possible for a template to have multiple
independent variables requiring newton steps.

struc {
number bp, inc;

} nvin[*]

nvin = [(-vmx,1.9*vmx),(vmx,0)] #parameter sect.

control_section {
newton_step(vin,nvin)

}
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Chapter 1: Modeling Piecewise-Defined Behavior
The meaning of the (breakpoint, increment) pairs is best defined by explaining
the two pairs given for nvin  in the assignment statement:

• Below the first breakpoint (-vmx ), there is no restriction on how much
vin  can change from one iteration to the next.

• Between the first two consecutive breakpoints (-vmx  and vmx), the
change in vin  is restricted to the first specified increment (1.9*vmx )
per iteration.

• Above the last breakpoint (vmx), there is no restriction on how much
vin  can change.

To see why newton steps are used for this type of model, refer again to the
figure above. Typically, the solution of the nonlinear equations should be in
the nonlimiting (central) linear region. If, during iterations, there is limiting
(say, on the left side), you do not want vin  to “step over” the nonlimiting
region and go directly to the limiting region on the right side. Instead, it is
preferable to limit changes in vin such that it is in the nonlimiting region for
at least one iteration.

Newton steps that have breakpoints (such as -vmx  and vmx) that depend on
the value given to an argument (vmax) are referred to as parameterized.

To accomplish this, newton steps are specified as shown for the nonlimiting
region (between -vmx and vmx) but not for the upper and lower limiting
regions. This has the effect of limiting the distance the simulator can step
between ±vmx.—i.e., when it enters the nonlimiting region or is inside the
region— to 1.9•(vmx). Because this region has width 2•(vmx), this newton
step array prevents the simulator from stepping completely over the
nonlimiting region.

In general, the maximum allowable change should be less than the width of
the critical region. In this example, there is no restriction on the size of an
iteration step if vin remains in either the upper or lower limiting region. This
is indicated by the fact that nvin does not specify limiting below -vmx or above
+vmx. (The 0 increment means no limiting above +vmax.)

Newton Step Example

Assume that vmax has been specified by the user as 10V, which sets the lower
limit of the output to −10V and the upper limit to +10V, as shown in the
following figure. Further, assume that vin  is in the lower limiting region at
−35V and that the iterative algorithm intends to change it to +35V. This
would result in the simulator stepping over the nonlimiting region between
±10V.

[(-vmx,1.9*vmx),(vmx,0)]
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Modeling a Voltage Divider with MAST
Inside the nonlimiting region, the amount of change is restricted to 1.9•vmax,
which is 19V. However, this restriction does not affect the amount of change
outside the nonlimiting region (i.e., vin  can move from −35V to −10V in one
iteration; the 19V limit does not apply until vin  reaches −10V).

Therefore, for the next iteration, vin  will have a value of +9V (−10 + 19),
which is in the nonlimiting region.

Modeling a Voltage Divider with MAST

A voltage divider provides an output voltage as the ratio of two input voltages.
The vdiv template models this relationship as a form of controlled voltage
source as shown in the following figure:

Its characteristic equation needs to express the following:

Determine the output current such that vout = vin1/vin2 .

Vout

10V-10V

Vin

-35V 35V

First
iteration

9V

Second
iteration

How Newton Steps Limit the Change of vin

vin1

vin2

vout

Voltage Divider
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Chapter 1: Modeling Piecewise-Defined Behavior
The vdiv template has a discontinuity. At vin2=0 , vout  “jumps” from
−infinity to +infinity. Because the Saber simulator requires models to be
continuous, you have to modify the model to provide a “connection” across the
discontinuity, as shown by the dashed line in the following figure:

The solid lines in the figure above show vout  as a function of vin2  for a
constant, positive value of vin1 . There are various ways of connecting the two
branches of the hyperbola so that vout  is a continuous function of vin2 . The
dashed line shows the simplest way, using a straight line segment through the
origin that intersects the hyperbolic branches of vout vs. vin2 . The values of
eps  and -eps  determine the points at which this line segment intersects the
hyperbola.

By adding this connecting segment from -eps  to +eps , the model for the
voltage divider is expressed as:

Determine the output current such that:

In general, if a model has a discontinuity, it must be converted to a continuous
model (as in this example). Note that this procedure would be much more
difficult if continuous derivatives were also required by the Saber simulator.

vout = vin1/vin2 if vin2 < -eps or if vin2 > eps
vout = vin1*vin2/eps2 if -eps <= vin2 <= eps

vout

vin2

-eps

eps

Voltage Divider Output as a Function of vin2
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Modeling a Voltage Divider with MAST
element template vdiv ip1 im1 ip2 im2 op om

# template header

electrical ip1, ip2, im1, im2, op, om

# header declarations

{ # start of template body

val v vin1, vin2, onev, vout # local declarations

var i iout

number eps = 1e-6, eps2

struc {number bp, inc;} nv2[*]

parameters { # start of parameters section

if (eps<=0) eps = 1e-15 # prevent negative eps values

if (eps>.01) eps = .01

eps2 = 1/(eps*eps)

nv2 = [(-2*eps,eps), (2*eps,0)]

# newton steps for vin2

} # end of parameters section

values { # start of values section

vin1 = v(ip1) - v(im1) # input voltage vin1

vin2 = v(ip2) - v(im2) # input voltage vin2

if (abs(vin2)<1e-50) onev = 0 # Prevent divide-by-zero

else onev = 1/vin2

if (abs(vin2) > eps) vout = vin1*onev # output voltage

# Next line prevents output from growing without bounds

else                 vout = vin1*vin2*eps2

} # end of values section

control_section { # start of control section

newton_step (vin2, nv2) # assign newton steps to vin2

} # end of control section

equations { # start of equations section

i(op->om) += iout # current contribution

iout:  v(op) - v(om) = vout # equation to determine current

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/vdiv.sin
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Chapter 1: Modeling Piecewise-Defined Behavior
vdiv T emplate T opics

The description of the vdiv template is divided into the following topics:

• Header Declarations

• Parameters Section - MAST vdiv Template

• Newton Step Parameters -- shows unparameterized newton steps and
requirements for newton steps

• Equation and Values Sections

Header Declarations

As shown in the following figure, the vdiv template has two input ports and
one output port, each consisting of two connection points.

This template provides no arguments and the template header and header
declaration is written as follows:

element template vdiv ip1 im1 ip2 im2 op om
electrical ip1, ip2, im1, im2, op, om

vin1

vin2

vout

Voltage Divider
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Modeling a Voltage Divider with MAST
Parameters Section - MAST vdiv Template

The eps  parameter specifies half the horizontal distance between the end
points of the line segment shown in the following figure:

It is possible to make eps an argument of the template, but here it is declared
locally and initialized to 10 . Although this approach does not allow the value
of eps  to be changed in a netlist, you can still change its value using the
alter  command.

Further, an error-checking statement is included that resets eps  to 10  if a
user tries to alter it to a negative value or zero:

In addition, the following line keeps eps  at a level no greater than.01:

The eps2  parameter is defined as the reciprocal of eps  squared; it is used in
the equation that defines vout  when vin2  lies in the region between -eps
and +eps .

number eps = 1e-6, eps2 # local declarations

if(eps <= 0) eps = 1e-15 #In parameters section

if(eps>.01) eps = .01 #In parameters section

eps2 = 1/(eps*eps) #In parameters section

vout

vin2

-eps

eps

eps Parameter

-6

-15
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Chapter 1: Modeling Piecewise-Defined Behavior
The last line in the parameters section relates to the nv2 parameter, which is
an assignment statement that specifies (breakpoint, increment) values for nv2
as follows:

Refer to the topic titled "Newton Step Parameters".

Newton Step Parameters

The output voltage, vout , of the vdiv template depends nonlinearly upon the
two input voltages vin1  and vin2 . (The nonlinear dependence on vin1  is
established by recognizing that
∂vout/∂vin1 = 1/vin2 is not constant, but a function of the circuit’s operation.)
As with the vlim template, the vdiv template provides different regions in
which the output (vout ) depends on the input (vin2 ).

The figure above shows that vout is a hyperbolic function of vin2 , with -eps
and eps  defining crossover points for three separate regions of continuous
operation. Because vout  depends on vin2  differently in different regions of
vin2 , and because, when vin2  is near 0, vout  changes considerably even for
small changes in vin2 , it is advisable to specify newton steps for the
independent variable, vin2 .

nv2 = [(-2*eps,eps), (2*eps,0)]

vout

vin2

-eps

eps

Voltage Divider Output as a Function of vin2
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Modeling a Voltage Divider with MAST
Newton steps require the inclusion of three different statements in the vdiv
template:

1. A declaration of a structure parameter (nv2 ) that specifies values for
breakpoints and increments, as pairs of numbers (bp, inc ) in an array
of unspecified size. This parameter may be declared either as an
argument in the header declarations or as a local parameter in the
template body. Here, nv2  is declared as a local parameter:

2. An assignment statement that specifies (breakpoint, increment) values
for nv2 :

3. A statement in the control section that associates the newton step
variable (nv2 ) with the independent variable of the template (vin2 ):

The values for the (breakpoint, increment) pairs in the assignment statement
(Item 2, above) enforce the following restrictions on iterations of the
simulator:

• Below the first breakpoint (-2*eps ), there is no restriction on how
much vin2  can change from one iteration to the next.

• Between the first two consecutive breakpoints (-2*eps and 2*eps ), the
change in vin2  is restricted to the first specified increment (eps ) per
iteration.

• Above the last breakpoint (2*eps ), there is no restriction on how much
vin2  can change.

To see why newton steps are used for this type of model, refer back to the
above figure. Typically, the solution of the nonlinear equations should be in
one of the regions where vin2 ≠0 (i.e., on the hyperbola). If, during iterations,
vin2 =0 , you do not want vin2  to “jump over” from one branch of the
hyperbola to the other. Instead, it is preferable to limit changes in vin2  such
that it is in the connecting region for at least one iteration.

struc { number bp, inc; } nv2[*] #local decl.

nv2 = [(-2*eps,eps),(2*eps,0)] #parameters sect.

control_section {
newton_step (vin2, nv2)

}
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Chapter 1: Modeling Piecewise-Defined Behavior
To accomplish this, newton steps are specified as shown for the connecting
region (between ±2*eps ) but not for the positive or negative regions of the
hyperbola. Defining breakpoints with a factor of two means that the
increment (eps ) limits the distance the simulator can step to one-fourth of the
distance between breakpoints. This ensures that at least one iteration is
performed in this region. Limiting the distance the simulator can step as vin2
approaches 0 prevents the simulator from stepping completely over the
connecting region.

Equation and Values Sections

In the vdiv template, the values section contains the statements that handle
the output voltage. The equations section handles the current contribution.

The template equation for vdiv is similar to that of the voltage limiter
template (vlim) as follows:

This requires that iout  is declared as a var variable as follows:

In addition, vout is declared as a val as part of the following local declaration:

The values section defines the output voltage as a function of the two input
voltages, according to the modified model. Because vout  depends nonlinearly
on the input voltages, you must declare both vin1  and vin2  as val variables
as in the previous statement.

equations {
i(op->om) += ioutn
iout:  v(op) - v(om) = vout

}

var i iout #local declaration

val v vin1, vin2, onev, vout #local declaration
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Modeling a Voltage Divider with MAST
The following values section contains comments that identify the function of
each statement:

values {
vin1 = v(ip1) - v(im1) # input voltage vin1
vin2 = v(ip2) - v(im2) # input voltage vin2

# Next line prevents divide-by-zero error
if (vin2<1e-50) onev = 0
else onev = 1/vin2

# Next lines prevent output from
# growing without bounds

if (abs(vin2) > eps) vout = vin1*onev
else                 vout = vin1*vin2*eps2

}
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chapter 2
Modeling Nonlinear Devices
Modeling Nonlinear Devices with MAST

This topic provides models of two common electrical devices—the junction
diode and the bipolar junction transistor. For simplicity, the following example
templates provide idealized models of these nonlinear devices:

• Modeling an Ideal Diode with MAST

• Ebers-Moll MAST Model for the Bipolar Transistor, a bipolar junction
transistor that allows the user to select as either NPN or PNP

Each of these templates uses a control section to include statements for
newton steps and for initial conditions. In addition, these examples introduce
the following concepts:

• Enumerated parameters

• Grouping of val variables or system variables for extraction

• Control section statements that specify small-signal parameters for use
with the ssp  command

• Collapsing nodes
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Chapter 2: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST

The ideal diode is a typical example of a nonlinear electrical device, because
the diode current is proportional to the exponential of the voltage across the
diode as shown in the following figure.

The following shows the ideal diode example template:

1 element template diode p m = is, ic # template header
2 electrical p, m # header declarations
3 number is = 1e-16,
4 ic = undef
5 external number temp

id

is vd

Ideal Diode Characteristics
0
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Modeling an Ideal Diode with MAST
diode T emplate T opics

The description of the diode template is divided into the following topics:

• Characteristic Equation

• Header Declarations

• Modeling Temperature

• Newton Steps

Newton Steps Example - MAST diode Template

• Template Equation -- shows how to use the limexp function, which is a
modified exponential operator that is limited for large exponents to
prevent overflow.

• Initial Conditions

6 { # start of template body
7 number k = 1.318e-23, # local declarations
8 qe = 1.602e-19,
9 vt
10 val v vd
11 val i id
12 struc {
13 number bp, inc; # Newton steps
14 } nvd[*] = [(0,.001),(2,0)]
15 parameters { # start of parameters section
16 vt = k * (temp+273.15) / qe # compute thermal voltage
17 } # end of parameters section
18 values { # start of values section
19 vd = v(p) - v(m) # diode voltage
20 id = is * (limexp(vd/vt)-1) # diode current
21 } # end of values section
22 control_section { # start of control section
23 newton_step (vd,nvd) # Newton steps assigned to vd
24 initial_condition(vd,ic)
25 start_value(vd,0.6)
26 device_type("diode","example")
27 small_signal(vd,voltage,"p-m voltage", vd)
28 } # end of control section
29 equations { # start of equations section
30 i(p->m) += id # current contribut. of diode
31 } # end of equations section
32 } # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/diode.sin
Saber MAST Language, Book 2, User Guide (Dec. 2004) 2-3
Copyright © 1985-2004 Synopsys, Inc.



Chapter 2: Modeling Nonlinear Devices
• Starting Value -- shows how to specify a starting value for the first
iteration of a DC analysis, using a start_value  statement in the
control section (which is different from the initial_condition
statement).

• Small-Signal Parameters -- shows how to specify small-signal
parameters within a template, which are reported in response to a
Saber ssp  command.

Characteristic Equation

The characteristic equation for a diode is:

id = is • (e  - 1) (1)

where:

The expression (k*T)/q  is usually called thermal voltage. The template
assigns this expression to the variable vt , which is then substituted into the
template equation.

Header Declarations

The diode template is an element template with two electrical pins and
arguments for the saturation current (is ) and the initial voltage across the
diode (ic ).   By initialization, is  receives the default value 10  A and ic  is
undefined. The template header and header declarations are as follows:

id is the current through the diode

vd is the voltage across the diode

is is the saturation current, typically in the order of 10 A

q is the electron charge: q = 1.602•10  A s   (1 A s = 1 coulomb)

k is Boltzmann’s constant: k = 1.381•10  J/K

T is the absolute temperature (in kelvins)

1 element template diode p m = is, ic

2 electrical p, m

3 number is = 1e-16,

4 ic = undef

(vd • q)/k • T)

-16

-19

-23

-16
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Modeling an Ideal Diode with MAST
In addition, the system’s operating temperature, which is external to the diode
template, must be made available—this is done by including temp  as an
external parameter in the header declarations as follows:

Modeling Temperature

Because this simplified diode model does not include self-heating effects, it
makes sense to compute the thermal voltage for use as a constant. The
absolute temperature (T) used for calculating the thermal voltage is expressed
in kelvins. However, the system temperature (temp ) is expressed in °C—this
is converted to kelvins by adding 273.15 within the formula for thermal
voltage in the parameters section as follows:

In addition, you need to assign values to the Boltzmann’s constant (k ) and the
electron charge (qe) parameters, which is done in the following local
declarations:

Newton Steps

Newton steps place a limit on the change of the independent variable (vd )
from one iteration to the next. The newton step parameter (nv ) is declared as
a structure that specifies values for breakpoint and increment pairs (bp, inc )
in an array of unspecified size. This parameter may be declared either as an
argument in the header declarations or as a local parameter in the template
body. Here, nv  is declared as a local parameter and initialized to the values
indicated:

5 external number temp # part of header declar.

15 parameters {

16 vt = k * (temp+273.15) / qe

17 }

7 number  k = 1.318e-23,

8 qe = 1.602e-19,

9 vt

12 struc {

13 number bp, inc;

14 } nvd[*] = [(0,0.001),(2,0)]
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Chapter 2: Modeling Nonlinear Devices
This combines the declaration statement method and the assignment
statement method of assigning newton steps. There is no functional difference
between the two methods.

The statement for newton steps in the control section associates the newton
steps parameter (nvd ) with the independent variable of the template (vd ) as
follows:

The breakpoint and increment values for nvd ((0,0.001),(2,0)) enforce
the following restrictions on iterations of the simulator.

• Below the first breakpoint (0), there is no restriction on how much vd
can change from one iteration to the next.

• Between the first two consecutive breakpoints (0 and 2), the change in
vd  is restricted to the first specified increment (0.001 ) per iteration.

• Above the last breakpoint (2), there is no restriction on how much vd
can change.

Note that the value of nvd does not depend on the value of an argument to the
template. Therefore, these newton steps are not parameterized.

Newton Steps Example - MAST diode T emplate

The effect of this newton step definition is best seen in the example figure
shown below. Assume first that vd = 0.27V, and that the iterative algorithm
intends to change it to 0.55V. However, between 0V and 2V, the change is
restricted to 0.1V, so in the next iteration vd will have a value of 0.37V.
Similarly, if the algorithm intends to change vd to 0, it will change only to
0.17V. However, if vd = −3V and the algorithm intends to change it to 0.67V,
vd will change to 0.1V. This is because there is no limit to the amount vd  can
change below zero, whereas between 0V and 2V, vd  can change by only 0.1V.

23 newton_step(vd,nvd) # part of control_section
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Template Equation

The following equation expresses the branch current (id ) as a function of the
branch voltage (vd ):

The assignment to id  is handled in the values section. The equations section
uses the computed value of id  to assign the current contribution of the diode
as follows:

Note the usage of the MAST limexp  function rather than the exp function.
The limexp function is a limited exponential function. Its value is identical to
that of exp for arguments between −80 and 80, but for arguments outside this
range, limexp  limits the function value to prevent overflows. The exact
definition of limexp  is given in the MAST Reference Manual.

The diode voltage contribution is handled by the following statement in the
values section:

20 id = is*(limexp(vd/vt)-1) # Part of values section

29 equations {

30 i(p->m) += id

31 }

19 vd = v(p) - v(m) # Part of values section

id

0

is vd

0.27 0.55 2.0

LImiting region

0.37

How Newton Steps Limit the Change of vd
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Initial Conditions

Initial conditions allow you to specify the initial value for the voltage across
the diode (vd) prior to a DC analysis. The initial_condition statement in the
control section associates vd  with the argument ic :

Starting Value

When finding a DC solution, the Saber simulator sets all system variables to
their start values, which, by default, are 0. The start_value  statement
allows you to overwrite this default with a value that is closer to the solution
you expect. For example, the forward bias value of a PN junction puts the
junction into its conducting region and is somewhere around 0.6V. You can
specify this with a start_value  statement in the control section, as follows:

It is important to note the difference between start_value  and
initial_condition . The value of initial_condition is held throughout
the DC analysis and is therefore the value at the end of DC. The value of
start_value  is used as an initial “guess” by the simulator for the first DC
iteration only. After the first iteration, start_value  is ignored for all
subsequent iterations.

Small-Signal Parameters

The next two statements in the control section allow you to specify the
small-signal characteristics of this model that will be reported in response to
the Saber ssp  command. See the topic titled "Small-Signal Parameters
Report" below for more information on small-signal characteristics of the
diode template.

Small-Signal P arameter s Repor t

There are additional statements that you can insert into the control section of
a MAST template that allow you to list the values of a set of small-signal
parameters by using the ssp command. The simulator obtains these values by

24 initial_condition (vd,ic) #part of control_section

25 start_value (vd, 0.6) # part of control_section

26 device_type ("diode","example")

27 small_signal (vd,voltage,"p-m voltage", vd)
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linearizing the model at a given operating point, usually by taking the partial
derivative of a dependent variable with respect to an independent variable.
The ssp  command reports small-signal parameter values for the linearized
model only at the operating point—you cannot plot these values. Note that the
complete specification for small-signal parameters requires that you run a DC
analysis, which gives additional DC operating point information such as node
voltages and branch currents.

The report appears in the .out  file following simulation and provides the
following headings for small-signal parameters:

For example, the report for the small-signal parameter of the diode template
would look something like the following:

Small-Signal P arameter Statements

You can specify a small-signal parameter (SSP) for a template by using three
types of SSP statements in the control section, which are identified as follows:

• device_type - MAST Small Signal Parameter Statement

• small_signal - MAST Small Signal Parameter Statement

Four Fields: - small_signal Statement

Five Fields: - small_signal Statement

• ss_partial - MAST Small Signal Parameter Statement

Because of the simplicity of the diode model, there are not many small-signal
dependencies that can take advantage of the SSP reporting feature.

device_type - MAST Small Signal Parameter Statement

This statement is inserted into the control section to provide an identifier in
the SSP report; it has no effect on determining the SSP values.

Parameter Name Classification Value

Parameter Name Classification Value

p-m voltage vd voltage 0.46

26 device_type("diode","example")
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small_signal - MAST Small Signal Parameter Statement

One small_signal statement is required to define each SSP. This statement
can have either four or five fields that define the SSP characteristics. In either
case, the first three fields are the same.

Four Fields: - small_signal Statement

The following four-field small_signal  statement appears in the diode
template:

The four fields are specified as follows:

1. parameter name (vd )—this is the name of the SSP that is reported
under the Name heading by the ssp  command.

2. classification (voltage )—this is reported under the Classification
heading by the ssp  command.

3. report identifier ("p-m voltage" )—this is an identifier string that is
reported under the Parameter  heading by the ssp  command.

4. assigned variable (vd )—this is an internal variable whose value is
assigned directly to the SSP. It must be either a val (an intermediate
variable), a branch variable, a parameter, a value obtained from an
ss_partial statement, or an expression of these. Here, the value of vd
is assigned to vd .

Five Fields: - small_signal Statement

The following five-field small_signal  statement appears in the d template
from the MAST Template Library:

27 small_signal(vd,voltage,"p-m voltage", vd)

small_signal(cd,capacitance,"p-is capacitance",qd,vdi)
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The five fields are specified as follows:

1. parameter name (cd )—this is the name of the SSP that is reported
under the Name heading by the ssp  command.

2. classification (capacitance )—this is reported under the
Classification  heading by the ssp  command.

3. report identifier ("p-is capacitance" )—this is an identifier string
that is reported under the Parameter  heading by the ssp command.

4. dependent variable (qd)—this is differentiated with respect to the
specified independent variable. It must be either a val (an intermediate
variable), a branch variable, or an expression of these.

5. independent variable (vdi )—this is the variable with respect to which
the dependent variable is differentiated.

The variable in field 4 must be directly dependent upon the independent
variable in field 5. Otherwise, a value of 0 will be reported by the ssp
command. In other words, you cannot use the variable that should be in field 5
in an expression and then put the result of that expression in field 5.

For example, in the five-field statement above, qd must depend directly on the
value of vdi ; qd cannot depend on the result of an expression containing vdi .

ss_partial - MAST Small Signal Parameter Statement

This is an alternate way of taking a partial derivative for use by the four-field
form of a small_signal statement (above). It has three fields that define the
differentiation. The following ss_partial  statement appears in the d
template from the MAST Template Library:

ss_partial(g_d,idi,vdi)
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The line is composed of the following:

1. variable name—this is the name of the partial derivative of the next
two fields. This partial derivative can be used in the fourth field of the
4-field form of the small_signal  statement above.

2. dependent variable—this is differentiated with respect to the specified
independent variable in the third field, below. It must be either a val
(an intermediate variable), a branch variable, or an expression of these.

3. independent variable—this is the variable with respect to which the
dependent variable is differentiated.

The variable in field 2 must be directly dependent upon the independent
variable in field 3. Otherwise, a value of 0 will be reported by the ssp
command. In other words, you cannot use the variable that should be in field 3
in an expression and then put the result of that expression in field 3.

For example, in the ss_partial  statement above, idi  must depend directly
on the value of vdi ; idi  cannot depend on the result of an expression
containing vdi .
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Ebers-Moll MAST Model for the Bipolar Transistor

A bipolar junction transistor (BJT) is a typical example of a device consisting
of several nonlinear functions. However, implementing a complete transistor
model in the MAST language is beyond the scope of this manual. As a result,
this topic describes a reduced implementation of an Ebers-Moll model that
shows various important aspects of modeling a complex device. The model
shown in this topic is a simplified version of the EM2 model described in the
book titled Modeling the Bipolar Transistor, by Getreu, I. (Tektronix, Inc.
1976).

The transistor model presented in this section is shown in the following figure
for an NPN transistor. It implements the Ebers-Moll DC model, non-zero
collector resistance, and the junction capacitance of the base-emitter and
base-collector diodes. The model has three external nodes (base, collector, and
emitter) and one internal node (cp , the internal collector).

The complete BJT template (bjt) is shown as follows (line numbers are added
for reference):

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
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1 element template bjt c b e = model, ic
2 electrical c, b, e
3 struc { # the transistor mode
4 enum {_n, _p} type
5 number  is=1e-16, bf=100, br=1, \
6 cje=0, vje=.75, mje=.33, \
7 cjc=0, vjc=.75, mjc=.33, rc=0
8 } model = ()
9 number ic[2]=[undef,undef]
10 external number temp
11 { # begin template body
12 # declare local param., vals, and extraction groups
13 number k = 1.381e-23, # Boltzmann's constant
14 qe = 1.602e-19, # electron charge
15 vt,
16 qbe0, qbc0, vje0, vjc0
17 struc {
18 number bp, inc;
19 } nv[*] = [(0,.1),(2,0)]
20 val v vbc, vbe, vce # declarations of vals
21 val i iec, icc, iba, ico, ir
22 val q qbc, qbe
23 electrical cp # local node
24 group {vbc,vbe} v # extraction groups
25 group {iba,ico,ir} i
26 group {qbc,qbe} q
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27 parameters {
28 # calculate thermal volts and functions of model param.
29 vt = k * (temp + 273.15) / qe
30 qbe0 = model->cje * model->vje / (1 - model->mje)
31 qbc0 = model->cjc * model->vjc / (1 - model->mjc)
32 vje0 = 2 * model->vje / model->mje
33 vjc0 = 2 * model->vjc / model->mjc
34 } # end of parameters section
35 values {
36 # calculate basic quantities of npn and pnp trans.
37 vbc = v(b) - v(cp)
38 vbe = v(b) - v(e)
39 vce = v(cp) - v(e)
40 if (model->type == _n) {
41 iec = model->is * (limexp(vbc/vt) - 1)
42 icc = model->is * (limexp(vbe/vt) - 1)
43 }
44 else {
45 iec = -model->is * (limexp(-vbc/vt) - 1)
46 icc = -model->is * (limexp(-vbe/vt) - 1)
47 }
48 # calculate base, collector, and resistor currents
49 iba = iec/model->br + icc/model->bf
50 ico = icc - iec - iec/model->br
51 if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc
52 else ir = 0
53

54 # calculate charges
55 if(model->type == _n) {
56 if (vbc<0) {
57 qbc = qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))
58 }
59 else {
60 qbc = model->cjc*vbc*(1 + vbc/vjc0)
61 }
62 if (vbe<0) {
63 qbe = qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))
64 }
65 else {
66 qbe = model->cje*vbe*(1 + vbe/vje0)
67 }
68 } # end “if type _n” condition
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69 else { # if model is not of type _n
70 if(vbc > 0) {
71 qbc = -qbc0*(1-(1+vbc/model->vjc)**(1-model->mjc))
72 }
73 else {
74 qbc = model->cjc*vbc*(1-vbc/vjc0)
75 }
76 if(vbe > 0) {
77 qbe = -qbe0*(1-(1+vbe/model->vje)**(1-model->mje))
78 }
79 else {
80 qbe = model->cje*vbe*(1-vbe/vje0)
81 }
82 } # end “if not type _n” condition
83 } # end values section

84 control_section {
85 # if no collector resistance, collapse nodes c and cp
86 if (model->rc == 0) collapse(c,cp)
87 # specify Newton steps
88 newton_step((vbc,vbe),nv)
89 # initial conditions and start value
90 initial_condition(vbe, ic[1])
91 initial_condition(vce, ic[2])
92 start_value (vbe, 0.6)
93
94 # small-signal parameters
95 device_type("bjt", "example")
96 small_signal(ibase,current,"base current",iba)
97 small_signal(icoll,current,"collector current",ico)
98 small_signal(vbe,voltage,"base-emitter voltage", vbe)
99 small_signal(vbc,voltage,"base-collector voltage", vbc)
100 small_signal(rc,resistance,"collector resistance",\
101 model->rc)
102 } # end control_section

103 equations {
104 # current at base, internal collector, and emitter
105 i(b->e) += iba + d_by_dt(qbe)
106 i(b->cp) += d_by_dt(qbc)
107 i(cp->e) += ico
108
109 # current at collector resistor, if present
110 if (model->rc ~= 0) i(c->cp) += ir
111 } # end equations section
112} # end template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/bjt.sin
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bjt Template T opics

The description of the bjt template is divided into the following topics. Some
of the concepts highlighted by these topics follow the topic title:

• Basic Model Equations

• Preparing to Write the MAST bjt Template

• Header Declarations

Transistor Type -- shows the enumerated parameter type (enum),
which is useful if a parameter can take on only a limited set of
values.

Collector Resistance

Initial Conditions

• Local Parameters

Temperature

Junction Capacitance

Newton Steps Declaration - MAST bjt Template

Local Node - MAST bjt Template

Intermediate Current and Charge Variables

Defining Groups For Extraction - MAST bjt Template -- shows that
groups (specified using a group  statement) are useful for grouping
together several val variables or system variables, so that you can
refer to them by a single name as when doing extraction.

• Thermal Voltage

• Junction Capacitance -- shows that model equations often need to be
“transformed” into a MAST-compatible set of equations. In this
example, you have to compute the charges stored in the nonlinear
junction capacitances and account for their singularities.

• Intermediate Calculations

• Fundamental Quantities - MAST bjt Template

• Currents

• Charges

• Control Section
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• Collapse Node -- shows that collapsing nodes (using a collapse
statement) is useful for reducing the size of a system, but it can
place restrictions on parameter alteration.

• Newton Steps -- shows association of the same set of newton steps
with multiple variables.

• Initial Conditions in Control Section

• Starting Value

• Small-Signal Parameters

• Equations Section
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Basic Model Equations

The following equations describing the model in the following figure are taken
from the book titled Modeling the Bipolar Transistor, by Getreu, I.
(Tektronix, Inc. 1976).

ict = icc − iec

ibc = iec / βr

ibe = icc / βf

iec = is * (exp((qe * vbcp) / (k * T)) − 1)

icc = is * (exp((qe * vbe) / (k * T)) − 1)

cbc = cjco / (1 − vbcp / vjc) ** mjc

cbe = cjeo / (1 − vbe / vje) ** mje

These equations use the following model parameters:

is transistor saturation current (typically about 10 A)

βf forward current gain (typically about 100)

βr reverse current gain (typically about 1)

cjco collector-base junction capacitance (typically about 5pF)

cjeo emitter-base junction capacitance (typically about 5pF)

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
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Preparing to Write the MAST bjt Template

Before starting to write a MAST template for this transistor model, you need
to take two preliminary steps:

1. Take into account that the junction capacitances cbc and cbe have
singularities at vbcp = vjc  and vbe = vje , respectively.

2. Compute the charge stored in the junction capacitances as a function of
the junction voltage.

Both steps are contained in the context of expressing a generic junction
capacitance:

cj = cjo / (1 - v / vj) (1)

According to the book titled Modeling the Bipolar Transistor, by Getreu, I.
(Tektronix, Inc. 1976), this is an empirical equation that is not valid for
forward bias (v > 0). Under forward bias conditions, the diffusion capacitances
dominate, so that a simple approximation of the junction capacitances for v >
0 is usually sufficient. Although this transistor model does not include
diffusion capacitances, it uses an approach similar to that in the Getreu book.
That is, it assumes that, for v > 0, the junction capacitance depends linearly
on the junction voltage. Thus, it has a slope that results in matching slopes at
v = 0. This leads to the following equation set for junction capacitance:

cj = cjo / (1 - v/vj) for v < 0 (2)

cj = cjo * (1 + m*v/vj)for v ≥ 0 (3)

The second step consists of computing the charge stored in the junction
capacitor as a function of the junction voltage. This is given as the integral of
the capacitance over junction voltage, v:

qj(v) =   cj(v) dv (4)

vjc collector-base barrier potential (typically about 0.75V)

vje emitter-base barrier potential (typically about 0.75V)

mjc gradient factor for collector-base capacitance (between 0.333 and
0.5)

mje gradient factor for emitter-base capacitance (between 0.333 and
0.5)

m

m

v

0
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with the additional requirement that q
j
(0) = 0. The results, for reverse and

forward bias of the junction, respectively, are:

qj = cj*vj*(1 - (1 - v/vj) )/(1-m)for v < 0 (5)

qj = cj*v*(1 + 0.5*m*v/vj)for v ≥ 0 (6)

Note that qj is continuous at v = 0 in these equations.

Header Declarations

The bipolar junction transistor (BJT) is an electrical device with three
terminals: collector (c ), base (b), and emitter (e). Eleven parameters
characterize the transistor model. Nine of them are the ones listed in the topic
titled "Basic Model Equations". The other two are the transistor type (type )
and the collector resistance (rc ).

The following example shows the template header and header declarations for
the bjt template:

The following topics describe the bjt template header declarations in more
detail:

• Transistor Type

• Collector Resistance

• Initial Conditions

1 element template bjt c b e = model, ic

2 electrical c, b, e

3 struc {

4 enum {_n, _p} type

5 number  is=1e-16, bf=100, br=1, \

6 cje=0, vje=.75, mje=.33, \

7 cjc=0, vjc=.75, mjc=.33, rc=0

8 } model = ()

9 number ic[2]=[undef,undef]

10 external number temp

1 -m
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Transistor T ype

There are only two possible values for transistor type—NPN or PNP. For
parameters with a limited set of possible values, the MAST language provides
the enumerated parameter type (enum), which has the following syntax:

where evalue is a comma-separated list of values that the name parameter can
assume. If present, init_val must be one of the values in evalue. For the
transistor type, there are only two choices, which are represented as _n  (for
NPN) and _p  (for PNP). Therefore, you can define an argument that allows
selecting the transistor type as follows:

Collector Resistance

Rather than having each model parameter as an individual argument of the
bjt template, it is preferable to group them into a single structure argument
and give this structure argument the name model . The parameter for
collector resistance (rc ) has been included in model  as follows:

Using the model  structure emphasizes the fact that the parameters it
contains belong together. It is their combination that characterizes a
particular transistor instance. It also allows you to refer to such a combination
by a single name (model ), which makes it easy to use the same group of
parameters for several transistor instances.

In the declaration, initialize each structure member to a typical value. The
initialized value is then that member’s default value. The exceptions are the
transistor type , for which there is no reasonable default, and the two junction
capacitance values (cjc  and cje ), which are initialized to 0 so that, by
default, the model does not include charge effects.

Each individual parameter of the structure model  is referenced later using
the format model->cje  to reference the cje  parameter or model->vje  to
reference the vje  parameter and so on.

enum {evalue [, evalue]} name[[=init_val], name[=init_val...]]

4 enum {_n, _p} type

5 number  is=1e-16, bf=100, br=1, \

6 cje=0, vje=.75, mje=.33, \

7 cjc=0, vjc=.75, mjc=.33, rc=0

8 } model = ()
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Initial Conditions

You can declare an argument that specifies the initial value for the voltage
across the pn junctions of the transistor. However, a BJT has two junctions of
interest: the base-emitter junction and the collector- emitter junction. Thus,
the argument for initial conditions needs to specify initial values for
base-emitter voltage (vbe ) and collector-emitter voltage (vce ). This requires
that the ic  argument be declared as a two-dimensional array as follows:

This declaration is declared outside the model  structure (lines 5 through 8),
because it isn’t really associated with the characterization of the BJT model
(although it would work just as well if it were included within model ).

In addition there needs to be initial_condition  statements in the control
section to associates vbe  and vce  with the ic  argument.

The following external parameter, temp , makes the system temperature
available in the template.

9 number ic[2]=[undef,undef]

10 external number temp
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Local Parameters

Because of the complexity of the BJT model, there are several intermediate
calculations that must be performed prior to using the template equation as
shown below:

As a result, there are also several local parameters and variables that must be
declared for use in these calculations, which are explained in the following
topics:

• Temperature

• Junction Capacitance

• Newton Steps Declaration - MAST bjt Template

• Local Node - MAST bjt Template

• Intermediate Current and Charge Variables

• Defining Groups For Extraction - MAST bjt Template

12 # declare local param., vals, and extraction groups

13 number k = 1.381e-23, # Boltzmann's constant

14 qe = 1.602e-19, # electron charge

15 vt,

16 qbe0, qbc0, vje0, vjc0

17 struc {

18 number bp, inc;

19 } nv[*] = [(0,.1),(2,0)]

20 val v vbc, vbe, vce # declarations of vals

21 val i iec, icc, iba, ico, ir

22 val q qbc, qbe

23 electrical cp # local node

24 group {vbc,vbe} v # extraction groups

25 group {iba,ico,ir} i

26 group {qbc,qbe} q

27 parameters {

28 # calculate thermal volts and functions of model param.

29 vt = k * (temp + 273.15) / qe

30 qbe0 = model->cje * model->vje / (1 - model->mje)

31 qbc0 = model->cjc * model->vjc / (1 - model->mjc)

32 vje0 = 2 * model->vje / model->mje

33 vjc0 = 2 * model->vjc / model->mjc

34 } # end of parameters section
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Temperature

The following local declarations are for parameters used in calculations for
thermal voltage:

Junction Capacitance

The declarations below are for parameters used in calculations for junction
charges:

where qbe0  and qbc0  are used to calculate junction charges under reverse
bias conditions; vje0  and vjc0  are used for forward bias conditions.

Newton Steps Dec laration - MAST bjt T emplate

The newton steps parameter (nv ) is nearly identical to that of the diode
template (see the topic titled "Modeling an Ideal Diode with MAST"):

In the control section, line 88 assigns these newton step values to two
independent variables (vbc  and vbe ) as follows:

13 number k = 1.381e-23, # Boltzmann's constant

14 qe = 1.602e-19, # electron charge

15 vt,

16 qbe0, qbc0, vje0, vjc0 #Part of number declar.

17 struc {number bp, inc;}\

18 nv[*] = [(0,0.1),(2,0)]

88 newton_step((vbc,vbe), nv)
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Local Node - MAST bjt T emplate

As shown in the following figure, this model allows you to specify collector
series resistance (rc ).

For non-zero values of rc , the topology of the model changes, which requires
an internal node called cp  as follows:

This is the point at which this series resistance connects between the external
collector (c ) and the interior of the model.

You can specify that this node be collapsed to the external collector (meaning
that it no longer exists) if rc= 0 (see line 86).

23 electrical cp

b
cbc

cbe

vbcp

vbe
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irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
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Intermediate Current and Char ge Variab les

The variables listed below are declared as val variables and are used in
calculating currents and charges.

Defining Gr oups For Extraction - MAST bjt T emplate

Any val variable can be made available for post-processing using the extract
command, along with any system variable (pin, var, and ref variables). It is
sometimes useful to extract only currents or voltages or, in general, any
convenient collection of val variables and system variables. You can do this by
defining the collection as a group  in the local declarations of the template.
Once a group is defined, you can refer to all members of the group by the name
of the group.

The following statement is the general form for defining a group of variables.

where:

The bjt template contains three groups for holding voltages, currents, and
charges:

For example, a netlist could contain the following netlist entries:

21 val i iec, icc, iba, ico, ir

22 val q qbc, qbe

group {variable_list} name

variable_list is a comma-separated list of val variables and system
variables.

name is the name of the group and makes all variables in
variable_list available by referring to name.

24 group {vbc, vbe}   v

25 group {iba, ico, ir}   i

26 group {qbc, qbe}   q

bjt.1 a b c = model=(type=_n)
bjt.2 d e f = model=(type=_p)
Saber MAST Language, Book 2, User Guide (Dec. 2004) 2-27
Copyright © 1985-2004 Synopsys, Inc.



Chapter 2: Modeling Nonlinear Devices
You could then use the Saber command shown below to extract all val
variables and system variables in bjt.1 , but only the currents defined in
group i  from bjt.2  (i.e., ib , ic , ir ):

Thermal Voltage

Thermal voltage (vt ) is calculated by the following statement in the
parameters section:

Junction Capacitance

The charges at the collector-base and the emitter-base junctions under reverse
and forward bias conditions are calculated as follows in the parameters
section:

extract bjt.1/* bjt.2/i

29 vt = k * (temp + 273.15) / qe

30 qbe0 = model->cje * model->vje / (1 - model->mje)

31 qbc0 = model->cjc * model->vjc / (1 - model->mjc)

32 vje0 = 2 * model->vje / model->mje

33 vjc0 = 2 * model->vjc / model->mjc
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NOTE
Normally, some parameter checking would be provided
at this point. To keep the example short, this has not
been included in this example.

Intermediate Calculations

Because of the complexity of the BJT model, there are several intermediate
calculations that must be performed prior to using the template equation.
These calculations are located in the following values section:

The calculations used in the values section use the locally declared
parameters and variables.

The following topics describe the different computational blocks shown in the
previous code example:

• Fundamental Quantities - MAST bjt Template

• Currents

• Charges

Fundamental Quantities - MAST bjt T emplate

The fundamental quantities of the model, upon which all currents and charges
are based, are the base-emitter and base-collector voltages and the currents iec

35 values {

36 # calculate basic quantities of npn and pnp trans.

37 vbc = v(b) - v(cp)

38 vbe = v(b) - v(e)

39 vce = v(cp) - v(e)

40 if (model->type == _n) {

### lines 41 through 47

48 # calculate base, collector, and resistor currents

### lines 49 through 53

54 # calculate charges

55 if(model->type = = _n) {

### lines 56 through 82

83 } #end values section
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and icc. Their definitions are straightforward, although dependent upon
transistor type:

Lines 40 through 43 for an NPN type shows that in order to determine the
base-collector voltage, you have to use the internal collector cp , rather than
pin c. As with the diode template, you use limexp , a MAST language
function, instead of exp , to compute the two currents. The reason is for
protection against overflow.

Lines 44 through 47 provide the same function for the PNP type with negated
values of voltage and current.

Currents

The currents in the bipolar transistor model are ict, ibc, ibe, and ir. These could
easily be computed, but it is preferable to define currents that have a physical
meaning and therefore are useful for extraction. The values of all val variables
can be made available for post-processing using the extract  command.

Although you could define the emitter current, it is not necessary. Its value is
given by ie = -iba - ico .

The definition of ir  is meaningful only if the collector resistance (rc ) is
non-zero. For rc=0 , it would be good to express ir  as the sum of ic  and
d(qbc)/dt, but the MAST language allows usage of the d_by_dt  operator only
in a template equation. Therefore, set ir=0 and write the rest of the template
such that the value of ir  is not needed if rc=0 .

36 # calculate basic quantities of npn and pnp trans.

37 vbc = v(b) - v(cp)

38 vbe = v(b) - v(e)

40 if (model->type == _n) { # If type = NPN

41 iec = model->is * (limexp(vbc/vt) - 1)

42 icc = model->is * (limexp(vbe/vt) - 1)

43 }

44 else { # If type = PNP

45 iec = -model->is * (limexp(-vbc/vt) - 1)

46 icc = -model->is * (limexp(-vbe/vt) - 1)

47 }

48 # calculate base, collector, and resistor currents

49 iba = iec / model->br + icc / model->bf

50 ico = icc - iec - iec / model->br

51 if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

52 else ir = 0
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You could make ir  available independent of the value of rc . This would be
done by declaring ir as a var variable and letting the simulator determine its
value. For efficiency, this example does not do so.

Charges

The remaining intermediate calculations define the charges stored in the two
junctions. This is a direct translation of the charge equations into the MAST
language, except that it uses parameters as they are defined in the template
as follows:

54 # calculate charges

55 if(model->type == _n) {

56 if (vbc<0) {

57 qbc = qbc0*(1-(1-vbc/model->vjc)**(1-model->mjc)

58 }

59 else {

60 qbc = model->cjc*vbc*(1 + vbc/vjc0)

61 }

62 if (vbe<0) {

63 qbe = qbe0*(1-(1-vbe/model->vje)**(1-model->mje)

64 }

65 else {

66 qbe = model->cje*vbe*(1 + vbe/vje0)

67 }

68 } # end “if type _n” condition

69 else { # if model is not of type _n

70 if(vbc > 0) {

71 qbc = -qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc)))

72 }

73 else {

74 qbc = model->cjc*vbc*(1-vbc/vjc0)

75 }

76 if(vbe > 0) {

77 qbe = -qbe0*(1-((1+vbe/model->vje)**(1-model->mje)))

78 }

79 else {

80 qbe = model->cje*vbe*(1-vbe/vje0)

81 }

82 } # end “if not type _n” condition
Saber MAST Language, Book 2, User Guide (Dec. 2004) 2-31
Copyright © 1985-2004 Synopsys, Inc.



Chapter 2: Modeling Nonlinear Devices
Control Section

The following lines comprise the bjt template control section:

These lines are further described in the following topics:

• Collapse Node

• Newton Steps

• Initial Conditions in Control Section

• Starting Value

• Small-Signal Parameters

84 control_section {

85 # if no collector resistance, collapse nodes c and cp

86 if (model->rc == 0) collapse(c,cp)

87 # specify Newton steps

88 newton_step((vbc,vbe),nv)

89 # initial conditions and start value

90 initial_condition(vbe, ic[1])

91 initial_condition(vce, ic[2])

92 start_value (vbe, 0.6)

93

94 # small-signal parameters

95 device_type("bjt", "example")

96 small_signal(ibase,current,"base current",iba)

97 small_signal(icoll,current,"collector current",ico)

98 small_signal(vbe,voltage,"base-emitter voltage", vbe)

99 small_signal(vbc,voltage,"base-collector voltage", vbc)

100 small_signal(rc,resistance,"collector resistance",\

101 model->rc)

102 } # end control_section
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Collapse Node

As described for local declarations, cp  is declared as an internal node. When
rc=0 , there is no resistance between c and cp ; thus, they actually refer to the
same node. You can indicate this to the simulator by using a collapse
statement in the control section as follows:

Collapsing nodes has the advantage that it reduces the size of the system, that
is, the number of system variables. This is particularly valuable in systems
where there are numerous instances of a template, because reducing system
size typically increases simulation speed. However, a disadvantage of
collapsing nodes in this example is that using the alter  command to change
the collector resistance from zero to nonzero (or vice-versa) would alter the
topology of the system. This is not allowed after starting simulation.

Newton Steps

For the control section, you need to identify the independent variables of the
nonlinear equations, in order to specify newton steps for them. Referring back
to the topic titled "Basic Model Equations", the two voltages vbcp and vbe (vbc
and vbe  in the template) fit the requirements. All the nonlinear quantities
ultimately depend upon vbc  or vbe  or both, and both vbc  and vbe  are
expressed as the difference of two system variables. Therefore, both vbc  and
vbe  require newton steps.

Because these voltages are used identically in the model equations, you can
use the same newton step values for both. Further, because both the
base-emitter and base-collector junctions are modeled as diode junctions, you
can use the same newton step values as for the diode example.

The control section statement that associates the arrays of newton step values
with the independent variables is as follows:

Initial Conditions in Contr ol Section

One initial_condition  statement in the control section is required for
each variable (vbe  and vce ) whose initial value is specified by the ic
argument, which is declared as a two-dimensional array:

85 # if no collector resistance, collapse nodes c and cp

86 if (model->rc == 0) collapse(c,cp)

88 newton_step((vbc,vbe), nv)

90 initial_condition (vbe,ic[1])

91 initial_condition (vce,ic[2])
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Star ting V alue

You can use the following start_value statement to specify the forward bias
value (vbe ) of the base-emitter junction at the first iteration of the DC
iteration. This puts the junction into its conducting region at a value that is
closer to the solution you expect (around 0.6V).

Small-Signal P arameter s

You can insert statements into the control section that allow you to list the
values of a set of small-signal parameters (SSP) when using the ssp
command. The simulator obtains these values by linearizing the model at a
given operating point, usually by taking the partial derivative of a dependent
variable with respect to an independent variable. The ssp  command reports
small-signal parameter values for the linearized model only at the operating
point—you cannot plot these values. For the complete specification, you need
to run a DC analysis, which gives additional DC operating point information
such as node voltages and branch currents.

For example, some of the parameters that might be reported for the bjt
template are listed below.

You can specify a small-signal parameter for a template by using the
device_type  and small_signal  statements in the control section. These
are explained below.

NOTE
Because of the simplicity of this transistor model, there
are not many small-signal dependencies that can take
full advantage of these statements (for example, using
an ss_partial  statement). Refer to the q template in
SaberBook for a more elaborate model of the bipolar
transistor; its control section illustrates the many uses
of SSP statements.

92 start_value (vbe, 0.6)

Parameter Name Classification Value

collector
resistance

rc resistance 170

base-emitter
voltage

vbe voltage 0.672

base current iba current 0.176u
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device_type

This statement is inserted into the template to provide an identifier in the
SSP report; it has no effect on determining the SSP values:

95 device_type("bjt", "example")
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small_signal

One small_signal statement is required to define each SSP. This statement
can have either four or five fields that define the SSP characteristics, as
explained in the topic titled "Modeling an Ideal Diode with MAST”. In either
case, the first three fields are the same.

The following 4-field small_signal statements appear in the bjt template:

Equations Section

The template equations list the branch currents and express them as
functions of the intermediate variables previously calculated:

96 small_signal(ibase,current,"base current",iba)

97 small_signal(icoll,current,"collector current",ico)

98 small_signal(vbe,voltage,"base-emitter voltage", vbe)

99 small_signal(vbc,voltage,"base-collector voltage", vbc)

100 small_signal(rc,resistance,"collector resistance",\

101 model->rc)

103 equations {

104 # current at base, internal collector, and emitter

105 i(b->e) += iba + d_by_dt(qbe)

106 i(b->cp) += d_by_dt(qbc)

107 i(cp->e) += ico

108

109 # current at collector resistor, if present

110 if (model->rc ~= 0) i(c->cp) += ir

110 } # end equations section
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These equations show the following:

• How to use an if statement to set up equations differently for different
parameter values. The condition part of such an if  statement can
include only parameters.

• It is preferable to write the template such that ir  is needed only if the
collector resistance (rc ) is non-zero, as shown by the if  statement. If
rc=0 , the internal and external collector nodes (cp and c ) are collapsed
to the same node.
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Modeling Nonlinearities
This topic is divided into the following subtopics:

• Simulation Techniques for Evaluating Nonlinearities

• Modeling a Voltage Squarer - MAST vsqr Template -- describes the
following concepts:

• Using the control section of the template to pass certain information
that is not part of the model to the simulator

• Using sample points for the independent variables of nonlinear
equations, including their selection and specification

• The effect of the simulator’s density variable on the sample points

• Using arrays of structures and their initialization

• Default sample points automatically provided by the Saber
simulator.
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Simulation Techniques for Evaluating Nonlinearities

To illustrate the problems that arise in modeling a nonlinear element,
consider the characteristic equation of a voltage squaring block:

vout = vin * vin (1)

In finding the solution of nonlinear networks such as those containing
squaring blocks, the simulator must solve a set of nonlinear, simultaneous
equations. There are no techniques that do so directly, so the simulator uses
the following method:

1. Guess a set of values for all unknowns.

2. Linearize each nonlinearity about these values, thereby obtaining a set
of simultaneous linear equations.

3. Solve the linear equations (using well-known techniques).

4. Update the values of all unknowns using the solution of the linear
equations.

5. Repeat steps 2 through 4 until the correct solution has been obtained.

This algorithm reveals two important concepts:

• Simultaneous nonlinear equations are solved iteratively

• The iterative method involves linearization

These are not independent of each other.

Simulation Linearization Techniques

There are several techniques for the linearization of nonlinear equations. Of
these, three used by different simulators are described as follows:

1. Taking the slope of the characteristic equation at the present value

2. Using a piecewise linear approximation of the characteristic equation

3. Using a piecewise linear evaluation of the characteristic equation (used
by the Saber simulator)
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Taking the Slope (Method 1)

A common technique for linearization is to take the slope of the characteristic
equation (i.e., its first derivative) at the present value of the independent
variable. Some simulators use this technique, which is shown in the following
figure.

Simulators using this technique typically require a model to include both the
characteristic equations of the element and their derivatives with respect to
the independent variables. Moreover, both the model equations and their
derivatives must be continuous functions of the independent variables. In
particular, the requirement for continuous derivatives makes modeling of such
characteristics very difficult, if they are described by different functions in
different regions of the independent variables (as in the case of MOS devices).
Simulators using this approach find, for the nonlinear equations, an
approximate solution that is controlled by one or more convergence
parameters.

Vout

Vin

V0

Linearization by taking the slope—Method 1
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Piecewise linear approximation (Method 2)

Another linearization technique is piecewise linear approximation. Rather
than describing a nonlinear characteristic exactly, the model consists of a set
of straight lines approximating the nonlinear equation, as shown in the
following figure.

The piecewise linear approximation of the characteristic equations is obtained
before the simulation begins, so all the simulator “sees” is the piecewise linear
model, which must be continuous, but obviously has discontinuous
derivatives. This model is solved exactly using special algorithms. However,
the solution is only as accurate as the piecewise linear approximations, and
you can change the accuracy only by changing the model.

Piecewise Linear Evaluation (Method 3)

A third linearization technique, the one used by the Saber simulator, is called
piecewise linear evaluation. The model consists of the nonlinear equations
plus a set of sample points for the independent variables. The simulator uses
the sample points (which may be specified in the template) to find a piecewise
linear approximation of the nonlinear equations, as shown in the figure below,
where v1...v5 are the sample points.

vout

vin

v0

v1 v2
v3 v4 v5

Piecewise linear approximation—Method 2
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NOTE

The Saber simulator automatically uses default sample
points for any independent variables of a nonlinear
template that require them. Consequently, all the
information on sample points in this chapter is
optional—it is necessary only if you want to change the
values of sample points from the default. See the topic
titled "Default Sample Points".

The simulator then solves the piecewise linear approximation of the model
exactly, using specialized algorithms. Again the accuracy of the solution
depends upon the piecewise linear approximation, but the main advantage of
this approach is that the density of the sample points is easily changed. The
density variable of any given analysis is a multiplier for the sample points of
all templates that have them specified (default density is 1). Refer to the
Calibrating DC Analysis topic in SaberBook for more information on density.
This enables the user to choose (at run time) either increased accuracy or
faster computation time.

Given that the slope technique cannot solve the equations exactly, this
technique can produce results as accurate as those produced by the slope
technique, if the density of the sample points is sufficiently high.

Vout

Vin

V0

V1 V2
V3 V4 V5

Piecewise linear evaluation—Method 3
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Comparison and Summary of Linearization Techniques

These three linearization techniques can be summarized as follows:

1. slope technique requires a continuous model with continuous first-order
derivatives. The simulator finds an approximate solution of the
linearized model, where accuracy is controlled by convergence
parameters.

2. piecewise linear approximation technique requires a model consisting of
continuous piecewise linear segments. The simulator finds an exact
solution of the piecewise linear model, where accuracy can be changed
only by changing the model.

3. piecewise linear evaluation technique used by the Saber simulator
requires a continuous model and a set of sample points. The simulator
finds an exact solution of the piecewise linear approximation specified
by the sample points, where accuracy can be changed by changing the
density of the sample points.

From this, then, a nonlinear model implemented in a MAST template must
include the following information:

• The nonlinear equations describing the model

• A set of sample points for each independent variable in the model
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Modeling a Voltage Squarer - MAST vsqr Template

This example shows a nonlinear model that is a simple voltage squarer
template, vsqr, whose output voltage is the square of its input voltage. Note
that this is implemented as an element template.

vsqr T emplate T opics

The following topics describe the vsqr template:

• Template Header

• Values Section

• Equations Section

• Control Section

• Understanding Sample Points

• Specifying Sample Points

• Density of Sample Points

• Default Sample Points

element template vsqr ip im op om

electrical ip, im, op, om # header declarations

{

var i iout # local declarations

val v vin, vout

# sample points defined

struc {number bp, inc;} svin[*]=\

[(-100k,1),(-1k,.1),(10,.01),\

(0,.01),(10,.1),(1k,1),(100k,0)]

values {

vin = v(ip) - v(im) # input voltage

vout = v(op) - v(om) # output voltage

} # end of values section

control_section {

sample_points(vin, svin) # sample points associated

#  with input voltage

} # end of control section

equations {

i(op->om) += iout # current contribution

iout:  vout = vin * vin

} # end of equations section

} # end of template body
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Template Header

The vsqr template has two input pins and two output pins, but no arguments.
The header and its corresponding declarations are:

Values Section

The values section declares vin  and vout , which are used in the equations
section as follows:

Both vin  and vout  are declared as a val variable as follows:

Equations Section

The characteristic equation of the voltage squarer finds the voltage across the
output pins (vout ) in terms of the voltage across the input pins (vin ). The
equations section appears as follows:

The equations section implements the voltage squarer as a nonlinear voltage-
controlled voltage source as follows:

element template vsqr ip im op om
electrical ip, im, op, om

values {
vin = v(ip) - v(im) # input voltage
vout = v(op) - v(om) # output voltage

} # end of values section

val v vin, vout

equations {
i(op->om) += iout # current contribution
iout:  vout = vin * vin

}

iout:  vout = vin * vin
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The output current iout , contributes to the current at pins op  and om as
follows:

The simulator determines iout  such that the output voltage is the square of
the input voltage.

At this point, the voltage squarer template is complete, unless you want to
specify sample point values for the independent variable (vin ) that are
different from the values specified in the template (see the topic titled
"Specifying Sample Points").

The Saber simulator automatically uses default sample points for any
independent variables of a nonlinear template that require them.
Consequently, all the information on sample points in this chapter is
optional—it is necessary only if you want to specify values of sample points
that differ from these automatically-supplied default values (see the topic
titled "Default Sample Points").

Control Section

The control section of a template provides the simulator with information that
is specific to the system being analyzed but is not directly a part of the model.
An example of such information is the sample points required for the
independent variables in nonlinear equations.

The control section consists of the keyword control_section, followed by a
sequence of control section statements, enclosed between braces ({} ). Such
statements are special in the sense that they can occur only in the control
section. A complete list of these statements is given in the MAST Reference
Manual. Here, only a sample points statement for the independent variable of
a nonlinear equation is of interest.

The sample points statement inserted in this section takes the following form:

i(op->om) += iout

sample_points ( variable, sa_points)
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where:

For the voltage squarer template, you have to specify sample points for the
input voltage (vin ), which is the independent variable in the characteristic
equation.

With svin  as the name of the array containing the sample points, the control
section for this template is as follows:

The actual values of the sample points (within svin ) are specified as local
parameters, as described in the topic titled "Specifying Sample Points".

Understanding Sample Points

The specification of sample points for an independent variable of a nonlinear
equation consists of the following two parts:

1. Considerations for selecting sample points (described in the next topic)

• General Approach

• Specific Approach (voltage squarer)

2. The actual specification of sample point values in a template, using
MAST language constructs (described in the topic titled "Specifying
Sample Points").

variable is a branch variable, a var variable, or a val variable
that is equal to either a system variable or a difference
of two system variables (i.e., var1 - var2)

sa_points is the name of an array of sample points —note that the
actual sample point values are specified in an array
declared as a local parameter

control_section {
sample_points(vin, svin) # sample points associated

#  with input voltage
} # end of control section
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Considerations f or Selecting Sample P oints

There are several considerations for selecting sample points:

• Accuracy vs. speed. Denser sample points provide better accuracy of the
piecewise linear approximation of the nonlinearity, but this is usually
accompanied by slower simulation speed.

• Optimum combination of accuracy and speed. The Saber simulator lets
you change the density of the sample points at run time by means of the
density variable of the analysis you are running (see the topic titled
"Density of Sample Points"). You should specify values for sample
points such that the accuracy of the piecewise linear approximation is
sufficient for the default simulator density of 1 (which means density
has no effect on sample points). Of course, the meaning of “sufficient
accuracy” depends upon the application.

• Operation limits. These are the minimum and maximum values that
the independent variable is not supposed to exceed—if it does, the
Saber simulator reports a warning and sets the variable to the limit
value.

• Intended region of operation of the model. This is a region inside the
operation limits where the model is intended to be used. Typically, you
want better accuracy inside this region than outside.

• Numerical considerations. The independent variable may be restricted
to a certain value range by the laws of physics, but during iterations it
may assume values outside this range. (For example, absolute
temperature may become negative during iterations.)

• Other requirements. The Saber simulator requires that 0 (zero) be a
sample point.
Saber MAST Language, Book 2, User Guide (Dec. 2004) 3-11
Copyright © 1985-2004 Synopsys, Inc.



Chapter 3: Modeling Nonlinearities
The accuracy of the piecewise linear evaluation is demonstrated in the
following figure.

This figure shows a nonlinear function y=f(x) and a linear approximation that
intersects the function at x1 and x2. That is, x1 and x2 are sample points of
y=f(x). Further, y1 and y2 are the function values at x1 and x2, respectively, and
ε is the maximum error of the linear approximation of f(x) between x1 and x2.
In order to find approximate sample points for x, you need to express ε as a
function of ∆x=x1−x2. If there were such a function, its inverse would yield the
sample point spacing for a given maximum error. In general, such a function is
difficult to derive, except in the very simplest cases, such as this voltage
squarer. Therefore, a general approach is described first, then a specific
approach as it is applied to the voltage squarer.

General Approach

The preceding figure shows that ε is always smaller than ∆y=y2-y1 if the sign
of the slope of f(x) does not change between x1 and x2.

Therefore, if f(x) is monotonic between x1 and x2, ∆y is an upper bound for the
approximation error. Because simulation always involves a trade-off between
accuracy and speed, you will expect a certain accuracy of simulation results
(such as three digits of relative accuracy or an absolute accuracy of 10 ). In
both cases, you actually specify a minimum resolution or “granularity” for the
simulator results, and you expect ∆y to be smaller than this level of
resolution.

y

y2

y1

y = f(x)

x
x1 x2

ε

Accuracy of a piecewise linear approximation

-3
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Next, find ∆x as a function of ∆y. In many cases, it is possible to do this using
the inverse relationship x=f (y). In more complicated cases (particularly with
multi-dimensional nonlinearities), selecting the sample points may be a
process of trial and error. Keep in mind the concept of resolution or
“granularity” as an aid for quickly finding a reasonable set of sample points.
Remember too, that ∆y might be a pessimistic upper bound (i.e., too large) for
the approximation error, depending upon the nonlinearity.

In the case where f(x) is non-monotonic between x1 and x2, divide ∆x into
smaller parts, such that f(x) is monotonic throughout each part. In practice,
this further division is not critical, because the monotonicity of f(x) is required
only to ensure that ε is smaller than ∆y. Therefore, if ∆x is sufficiently small,
∆y is a good upper bound for the approximation error.

Specific Approach (voltage squarer)

For vsqr, use the direct approach. Note that ε=∆x , which indicates that the
(absolute) error of the piecewise linear approximation depends only on the
distance between two sample points. Therefore, equal-spaced sample points
yield constant approximation error. Similarly, if the relative error should be
constant, ∆x should be proportional to √x. However, as described earlier, the
approximation error is not the only thing to consider when selecting sample
points.

The value range of each independent variable consists of several parts, as
shown in the figure below. You must specify sample points for the entire
allowable region, but typically you want better accuracy (and therefore denser
sample points) in the intended region of operation. Sometimes it is desirable
to have different accuracy in several different regions in order to get better
results when x is closer to the intended region of operation. For vsqr, limit the
allowable region of operation to ±100kV. Select sample points separated by 1V
near the outer limits of the allowable region and closer together near 0V,
which gives a relative approximation error that is fairly constant.

Taking all these points into account, it is clear that there is no universal
algorithm for selecting sample points. Rather, the selection depends upon
various trade-offs and often requires some experimentation.

-1

2

out of
limits

out of
limits

intended region
of operation

allowable region of operation

x

Value range of an independent variable
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Chapter 3: Modeling Nonlinearities
Specifying Sample Points

The control section of a template associates sample points with an
independent variable by a sample_points( variable, sa_points) statement.
The sa_points variable is an array that describes the distribution of sample
points. Rather than requiring you to specify each sample point individually,
the sa_points array describes the sample point distribution by means of a
collection of breakpoint (bp) and increment (inc ) pairs, which the simulator
interprets as shown in the following figure.

Each breakpoint (bp) marks the left end of a region of x. The actual sample
points throughout that region are separated by the distance inc .

Each (bp, inc ) pair is kept in a structure, so sa_points becomes an array of
structures. For vsqr, the local declarations becomes:

which declares svin  to be an array of structures, where the array is of
undetermined length, and each structure holds the two values bp  and inc .
The semicolon (;) is required. It introduces a logical end-of-line so that the
right brace is (syntactically) at the beginning of a new line, as required.

Sample Point Statement Syntax

The syntax for specifying a sample point statement in the control section is as
follows:

where svin  is an array of (bp, inc ) pairs that are specified as one of the
following:

• A local parameter

• An argument (in the header declarations)

• A control section statement (within the sample_points  statement
itself)

struc {number bp, inc;} svin[*]

sample_points (vin,svin)

bp1 bp2

inc1 inc2...inc1 inc1 inc1... inc2 ...

Specifying sample points using breakpoints and increments
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Modeling a Voltage Squarer - MAST vsqr Template
The values in svin  can be defined either by means of an initializer in the
declaration (used here) or separately, as described for newton steps in the
topic titled "Modeling a Simple Voltage Limiter with MAST" in a previous
chapter. As suggested in the topic titled "Understanding Sample Points", svin
has at least three entries:

• Two breakpoints, at 100kV and -100kV, to mark the allowable range of
operation

• A breakpoint at 0, as required by the Saber simulator

Thus, you can declare and initialize the sample points as shown below. Note
that the backslash (\) indicates that the next line is to be a continuation of the
current line.

Sample Point V alues

Select four additional breakpoints for vin , at ±1kV and ±10V, with increment
values that start at 1 near the operational limits and decrease to 0.01 near 0.
This provides a relative approximation error that is almost constant
throughout the specified value range. Following the requirement that the
breakpoints be listed in increasing order, define svin  as follows:

Each pair of values between parentheses, (bp, inc ), is one array element.
These values have the following meanings:

• From −100k to −1k, and from 1k to 100k, the spacing between sample
points is 1

• From −1k to −10, and from 10 to 1k, the spacing is 0.1

• From −10 to 10, the spacing is 0.01

• The first and last breakpoints determine the allowable region of
operation

• The last breakpoint marks the beginning of the right-hand “off-limits”
area, so the associated increment, while syntactically required, is not
used (i.e., the number of breakpoints is always one greater than the
number of intervals defined)

struc {number bp, inc;} svin[*]=\
[(-100k,1),(-1k,.1),(10,.01),(0,.01),\

(10,.1),(1k,1),(100k,0)]

[(-100k,1),(-1k,.1),(-10,.01),(0,.01),\
(10,.1),(1k,1),(100k,0)]
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NOTE
Increment values must be non-negative.

Density of Sample Points

The Saber simulator lets you increase the density of the sample points, that is,
reduce the size of the spaces separating them, in order to get better accuracy.
Referring to the figure above, running a simulation with the density variable
set to 1 (the default) will cause the simulator to sample the independent
variable at the sample points specified in the template. Using a different
density has no effect on the breakpoints, but the increments between
breakpoints are divided by the specified density. Thus, with a density of 2, the
spacing between sample points is half that specified in the template, and with
a density of 0.2, the spacing is five times the default.

Specifying a density greater than 1 typically increases both simulation time
and simulation accuracy. Similarly, specifying a smaller density typically
decreases both simulation time and simulation accuracy.

The simulator automatically limits the number of sample points between any
two consecutive breakpoints to 2 −1, regardless of the selected density.

Default Sample Points

For any nonlinear template, the Saber simulator uses the default breakpoints
and increments listed below for the sample points of all independent variables
that require them. There are two ways to express them, either with multiplier
prefixes (shown first, below) or in scientific notation (shown second, below).

With multiplier prefixes:

In scientific notation:

[(-1t,1meg), (-1g,1k), (-1meg,1), (-1k,1m),\
(1,1u),(1m,1n), (-1u,1p), (0,1p), (1u,1n),\
(1m,1u), (1,1m),(1k,1), (1meg,1k), (1g,1meg),\
(1t,0)]

[(-1d12,1d6), (-1d9,1d3), (-1d6,1d0), \
(-1d3,1d-3), (-1d0,1d-6), (-1d-3,1d-9), \
(-1d-6,1d-12), (0d0,1d-12), (1d-6,1d 9), \
(1d-3,1d-6), (1d0,1d-3), (1d3,1d0),\
(1d6,1d3), (1d9,1d6), (1d12,0d0)]

31
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chapter 4
MAST Functions
Overview

It is sometimes useful to implement portions of a model as separate functions.
These functions reside in separate files outside of the template, but they are
called (invoked) from within the bjtm template.

There are three major reasons for using MAST functions:

1. You can modularize MAST code for readability and maintainability.

2. You can encapsulate MAST code for re-use (for example, use the same
MAST function call in a diode template and in a bjt template).

3. You can easily convert code from a foreign routine to a MAST function
(for example, convert a SPICE3 MOS model from a C routine to a
MAST function).

Using a MAST Function Instead of a Foreign Routine

It is possible to call a foreign routine (such as one written in C or FORTRAN)
from a template. However, it is recommended to use the MAST functions
shown in the bjtm template instead whenever possible. Using a MAST
function has the following advantages over using a foreign routine:

• The interface between function and template is substantially easier and
less error-prone.

• A MAST function is more easily debugged. You can use message ()
statements, or you can pass signals back to the template for plotting.

• Porting to different computers is no longer required—the code is
written in the MAST language, which is executed on every machine by
the Saber simulator.

• The Saber simulator interprets a MAST function more readily than it
does a foreign function, which generally results in greater simulation
efficiency.
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Chapter 4: MAST Functions
Modeling the Bipolar Transistor Using MAST Functions

The bjtm template shows how MAST functions can perform some of the
calculations that are included within the bjt template. The MAST functions
(residing in separate files) perform the intermediate calculations and return
the results to the template. The combination of the bjtm template and the
MAST functions have the same functionality as the original bjt template.

This topic is divided into the following subtopics:

• Guidelines for Splitting a MAST Template into Separate Functions

• The bjtm Template Architecture Using MAST Functions -- describes
how the functions are placed in a file with the same name as the
function. In addition, .sin is appended so that the Saber simulator can
access the functions.

• The bjtm Template -- shows calls to two different functions and a
“companion” template.

• Function Call Overview - bjtm MAST Template

• bjtm_arg Declaration Template -- shows that creating a “companion”
template is a more efficient way of providing argument and local
parameter declarations for use by the original template and any
functions it calls.

• Local Parameters Function bjtm_pars -- shows the essential parts of a
MAST function.

• Calculated Values Function bjtm_values

Guidelines for Splitting a MAST Template into Separate Functions

Deciding how to split a model between a template and a MAST function can be
summarized by the following general rule:

When a model is split between a template and MAST functions,
declarative parts must be in the template, while procedural parts
(calculations and assignments) can be implemented in the MAST
function.

Beyond this simple rule, the following guidelines can help decide how to split
the model:

• The template header and header declarations must be specified within
the template.
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Modeling the Bipolar Transistor Using MAST Functions
• All parameters, val and var variables, local nodes, and extraction
groups must be declared in the template body.

• A “companion” template can be created that declares arguments and
local parameters externally. Arguments are then referenced from this
external template in the header declarations of the original template;
local parameters are referenced from the external template in the body
of the original template. This is demonstrated in the example in the
topic titled "The bjtm Template".

This is similar to an include file used in high-level languages, such as
the C programming language.

• The control section, netlist section, and template equations are still
specified in the template body, but they can include calls to MAST
functions.

• All assignment statements and intermediate calculations using
variables and parameters can be implemented in a MAST function.

• Template equations must be in the template.

The bjtm Template Architecture Using MAST Functions

By implementing the guidelines described in the previous topic, the bjtm
template is largely the same as the bjt template—the only parts that changed
are the calls to the MAST functions (named bjtm_arg, bjtm_pars, and
bjt_values), which are indicated by comments in the template.

Comparing the bjtm template with the bjt template, the calls from the bjtm
template refer to the following external files:

• bjtm_arg.sin —a “companion” template

• bjtm_pars.sin —an external function

• bjtm_values.sin —an external function
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Chapter 4: MAST Functions
Although these file names are arbitrary, each file must have a .sin extension.
The following figure shows an overview of this relationship between functions
and templates. The solid lines represent function calls; the dashed lines
represent “centralized” declarations.

bjtm template

bjtm_arg

bjtm_pars

bjtm_values

Calling external functions from the bjtm template
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The bjtm Template

The bjtm template including MAST function calls is shown as follows:

1 element template bjtm c b e = model, ic
2 electrical c, b, e
3 bjtm_arg..model model = () # ... use arguments from
4 # ... "companion" template
5 number ic[2]=[undef,undef]
6 external number temp
7 { # begin template body
8 bjtm_arg..work work # ... use local parameters
9 # ... from “companion” template
10 struc {
11 number bp, inc;
12 } nv[*] = [(0,.1),(2,0)]
13 val v vbc, vbe, vce # declare variables
14 val i iec, icc, iba, ico, ir
15 val q qbc, qbe
16 electrical cp # local node
17 group {vbc,vbe} v # extraction groups
18 group {iba,ico,ir} i
19 group {qbc,qbe} q
20 parameters {
21 # calculate thermal voltage and 4 functions of model param.
22 # ... 1’st call to MAST function
23 work = bjtm_pars(model,temp)
24 } # end of parameters section
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Chapter 4: MAST Functions
25 values {
26 # calculate basic quantities of npn and pnp trans.
27 vbc = v(b) - v(cp)
28 vbe = v(b) - v(e)
29 vce = v(cp) - v(e)
30 # ... 2’ond call to MAST function
31 (iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)
32
33 # calculate base, collector, and resistor currents
34 iba = iec/model->br + icc/model->bf
35 ico = icc - iec - iec/model->br
36 if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc
37 else ir = 0
38 } # end values section
39 control_section {
40 # if no collector resistance, collapse nodes c and cp
41 if (model->rc == 0) collapse(c,cp)
42 # specify Newton steps
43 newton_step((vbc,vbe),nv)
44 # initial conditions and start value
45 initial_condition(vbe, ic[1])
46 initial_condition(vce, ic[2])
47 start_value (vbe, 0.6)
48 # small-signal parameters
49 device_type("bjtm", "example")
50 small_signal(ibase,current,"base current",iba)
51 small_signal(icoll,current,"collector current",ico)
52 small_signal(vbe,voltage,"base-emitter voltage", vbe)
53 small_signal(vbc,voltage,"base-collector voltage", vbc)
54 small_signal(rc,resistance,"collector resistance",\
55 model->rc)
56 } # end control_section

57 equations {
58 # current at base, internal collector, and emitter
59 i(b->e) += iba + d_by_dt(qbe)
60 i(b->cp) += d_by_dt(qbc)
61 i(cp->e) += ico
62
63 # current at collector resistor, if present
64 if (model->rc ~= 0) i(c->cp) += ir
65 } # end equations section
66 } # end template body

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
bjtm.sin
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For an overview description of the three types of function calls in this
template, refer to the topic titled "Function Call Overview - bjtm MAST
Template".

Function Call Overview - bjtm MAST Template

The three types of function calls in the bjtm template are explained as
follows:

1. The bjtm_arg template is not actually a MAST function (see the topic
titled "bjtm_arg Declaration Template"). It is a template that serves as
a central location for the declaration of arguments and local parameters
of bjtm by declaring them in model  and work , which are structure
parameters. The bjtm template, the bjtm_pars  function, and the
bjtm_values function then use these parameters by calling them from
bjtm_arg.

This is done using the argdef operator (.. ), which references the model
and work  parameters from bjtm_arg as follows: (Refer to the MAST
Reference Manual for information on the argdef operator.)

Using bjtm_arg to provide these declarations illustrates the
convenience of the modular approach. Although it is not necessary to
use an additional template like bjtm_arg, not doing so means that you
must declare variables and structures in both the calling template and
in the function being called.

2. The bjtm_pars  function (see the topic titled "Local Parameters
Function bjtm_pars") provides values to the work parameter as the first
call from the bjtm template:

This shows the syntax for calling an external MAST function:

(variable_list) = name(argument_list)

3 bjtm_arg..model model = ()# use local parameters

4 # from “companion” template

# ...

8 bjtm_arg..work  work # use local parameters

9 # from “companion” template

22 # 1’st call to MAST function

23 work = bjtm_pars(model,temp)
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where:

On the righthand side of the equals sign (=), the bjtm_pars  function
uses the arguments from model  and the external parameter temp . It
computes and returns the following values to work on the lefthand side
of the equals sign:

These values are stored in the work structure rather than in individual
numbers as in the bjt template in order to show how structures are
passed between a template and an external MAST function. Note that
model and temp are still declared as parameters in the bjtm template.

3. The bjtm_values  function computes values for currents and charges
based on whether the device is NPN or PNP. The transistor type
checking is located in the bjtm_values function. This function call
appears as follows:

Notice that these calls have identical variable lists and similar
argument lists. The first argument is the model  structure. The second
argument is the work  structure holding the values returned by
bjtm_pars . The third and fourth arguments are the base-collector and
base-emitter voltages.

variable_list is a comma-separated list of variables to
receive the results of the function call. If a state
is returned by the function, it must appear in a
when statement. If only one value is returned,
the parentheses enclosing variable_list must be
omitted.

name is the name of the MAST function being called
(for example, bjtm_pars). The file containing
this function (for example, bjtm_pars.sin)
should be in the same directory as the calling
template.

argument_list is a comma-separated list of variables passed
as arguments to the MAST function.

vt, qbe0, qbc0, vje0, vjc0

30 # 2’ond call to MAST function

31 (iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)
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On the righthand side of the equals sign (=), the bjtm_values function
uses the appropriate argument values to compute and return the
following four values on the lefthand side of the equals sign:

These variables are then used in the template equations. This function
is described more completely in the topic titled "Calculated Values
Function bjtm_values".

The remaining parts of the template are identical to the corresponding parts
of the bjt example.

bjtm_arg Declaration Template

The bjtm_arg template performs the actual declaration of the model
argument and local parameters used by the bjtm template, the bjtm_pars
function, and the bjtm_values  function.

iec,qbc,icc,qbe

1 template  bjtm_arg = model, work
2
3 # the bjt model...
4 struc {
5 enum{_n, _p} type
6 number is=1e-16, bf=100, br=1,
7 cje=0, vje=.75, mje=.33,
8 cjc=0, vjc=.75, mjc=.33, rc = 0
9 } model
10
11 # working parameters for local bjt calculations...
12 struc {
13 number vt,
14 qbe0, qbc0, vje0, vjc0
15 } work
16
17 { # empty template body...
18 }
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There are three major points to note about this template:

• Although using bjtm_arg is not strictly required, it prevents having to
declare model  and work  in both bjtm (the calling template) and in
bjtm_pars  and bjtm_values  (the functions being called). This helps
avoid errors associated with duplication and maintenance.

• It consists solely of a header and header declarations of two structure
type parameters (model , work ). These are arguments for this template
that are used for other purposes in other templates and functions. This
template has no connection points and an empty body, as shown by the
empty braces at the bottom, { }.

• Local parameters vt , qbe0 , qbc0 , vje0 , and vjc0  have been grouped
under a structure named work  for convenience. The bjtm template
then declares all the parameters within work  by referring to the
declaration within bjtm_arg as follows:

Local Parameters Function bjtm_pars

An external MAST function such as this one has some similarities to a MAST
template:

• It has similar partitioning (header, header declarations, body).

• It uses the same referencing techniques.

• It resides in a file of the same name as the function and has the .sin
extension (for example, bjtm_pars.sin ). Although not required, it is
good practice to make this file available to the Saber simulator the
same way that templates are.

Each section of this function is described in the following topics, using the
following bjtm_pars  function as an example:

• Function Header

• Header Declaration

• Function Body

8 bjtm_arg..work  work # use local parameters

9 # from “companion” template
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Function Header

As is the case for a template, the function header is the first noncommented
line of the function. The header identifies the function, specifies the output
from the function, assigns a name to the function, and specifies the input to
the function:

This line from bjtm_pars shows the general syntax for the header of a MAST
function (note the similarity to the call from the template):

where:

1 function (work)= bjtm_pars(model,temp)
2
3 bjtm_arg..work work # output from this function
4 bjtm_arg..model model # input to this function
5 number temp # input to this function
6 {
7 # The following include file declares math_boltz constant
8 # (is k in bjt template), the math_charge constant
9 # (is qe in bjt template), and the math_ctok constant
10 <consts.sin
11
12 # Calculation of thermal voltage and 4 other quantities
13
14 work->vt = math_boltz * (temp + math_ctok) / math_charge;
15 work->qbe0 = model->cje * model->vje / (1.0 - model->mje);
16 work->qbc0 = model->cjc * model->vjc / (1.0 - model->mjc);
17 work->vje0 = 2.0 * model->vje / model->mje;
18 work->vjc0 = 2.0 * model->vjc / model->mjc;
19 }

1 function (work) = bjtm_pars(model,temp)

function (variable_list) = name(argument_list)

function a reserved word that identifies the contents of this
file as a MAST function.

variable_list a comma-separated list of parameters that receive
the output of the function for passing to the calling
template.

name the name of the MAST function being called
(bjtm_pars ).
Saber MAST Language, Book 2, User Guide (Dec. 2004) 4-11
Copyright © 1985-2004 Synopsys, Inc.



Chapter 4: MAST Functions
The bjtm_pars  function uses the arguments from model  along with the
external parameter temp  to compute and return the following five values:

These values are stored in the work  structure rather than as individual
numbers. This structure is then passed to the calling template, bjtm.

Header Dec laration

The following line in the bjtm_pars function declares the output parameter
that appears in the variable_list of the function header:

This is followed by declarations for the input parameters appearing in
argument_list of the function header:

Note that the bjtm_arg template is referenced again in lines 3 and 4 to
obtain work and model , eliminating the need to enter all the parameters that
they contain. The declaration for temp  allows a simple numeric value to be
passed into the function.

Function Bod y

The body begins with a left brace, {, and ends with a right brace, }. The first
line within the body includes the consts.sin file (file inclusion is denoted by
the <). This is a standard include file provided with the Saber simulator that
contains several commonly used constants for this function to perform
calculations:

argument_list a comma-separated list of parameters supplied as
input to the function by the calling template.

vt, qbe0, qbc0, vje0, vjc0

3 bjtm_arg..work work

4 bjtm_arg..model model

5 number temp

10 <consts.sin
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The next five lines perform calculations for thermal voltage and junction
characteristics. The results are assigned to the individual parameters in
work , which is provided as a single output parameter from this function:

Calculated Values Function bjtm_values

The bjtm_values function takes the values in work  (obtained from
bjtm_pars) to compute currents and charges that will appear in the template
equations. Although a little more elaborate than bjtm_pars, it has the same
general characteristics as described in the topic titled "Local Parameters
Function bjtm_pars".

14 work->vt = math_boltz * (temp + math_ctok) / math_charge;

15 work->qbe0 = model->cje * model->vje / (1.0 - model->mje);

16 work->qbc0 = model->cjc * model->vjc / (1.0 - model->mjc);

17 work->vje0 = 2.0 * model->vje / model->mje;

18 work->vjc0 = 2.0 * model->vjc / model->mjc;

1 function (iec,qbc,icc,qbe) =  bjtm_values(model,work,vbc,vbe)
2
3 val i iec, icc  # output from function
4 val q qbc, qbe # output from function
5 bjtm_arg..model model # input to function
6 bjtm_arg..work work # input to function
7 val v vbc, vbe # input to function
8 {
9 # calculate basic quantities of npn and pnp trans.
10 if (model->type == _n) {
11 iec = model->is * (limexp(vbc/work->vt) - 1)
12 icc = model->is * (limexp(vbe/work->vt) - 1)
13 }
14 else {
15 iec = -model->is * (limexp(-vbc/work->vt) - 1)
16 icc = -model->is * (limexp(-vbe/work->vt) - 1)
17 }
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The following topics describe each section of the bjtm_values function in
more detail:

• Function Header

• Header Declaration

• Function Body

Function Header

The header for bjtm_values  shows that the output consists of individual
parameters (iec , qbc , icc , qbe ), and the input contains both structures
(model , work ) and individual parameters (vbc , vbe ):

18 # calculate charges
19 if(model->type == _n) {
20 if (vbc<0) {
21 qbc = work->qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))
22 }
23 else {
24 qbc = model->cjc*vbc*(1 + vbc/work->vjc0)
25 }
26 if (vbe<0) {
27 qbe = work->qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))
28 }
29 else {
30 qbe = model->cje*vbe*(1 + vbe/work->vje0)
31 }
32 } # end “if type _n” condition
33 else { # if model is not of type _n
34 if(vbc > 0) {
35 qbc = -work->qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc)))
36 }
37 else {
38 qbc = model->cjc*vbc*(1-vbc/work->vjc0)
39 }
40 if(vbe > 0) {
41 qbe = -work->qbe0*(1-((1+vbe/model->vje)**(1-model->mje)))
42 }
43 else {
44 qbe = model->cje*vbe*(1-vbe/work->vje0)
45 }
46 } # end “if not type _n” condition
47 }

1 function(iec,qbc,icc,qbe)=bjtm_values(model,work,vbc,vbe)
4-14 Saber MAST Language, Book 2, User Guide (Dec. 2004)
Copyright © 1985-2004 Synopsys, Inc.



Modeling the Bipolar Transistor Using MAST Functions
Header Dec laration

The following five lines from the bjtm_values function declare the input and
output parameters appearing in the header:

Note that the bjtm_arg template is referenced once again to obtain work and
model , eliminating the need to enter all the parameters that they contain.
The declarations for the input and output val s duplicate their declarations in
the calling template (bjtm).

Function Bod y

The body of the bjtm_values function template consists of the same
equations for charges and currents as found in the bjt template. The only
difference is that in the bjtm template, the following arguments are part of
the work  structure. Therefore, these arguments are referenced in this
function using the structure name work  followed by ->  and then the
argument name (such as work->vt ).

The body of the bjtm_values function is as follows:

3 val i iec, icc  # output from function

4 val q qbc, qbe # output from function

5 bjtm_arg..model model # input to function

6 bjtm_arg..work work # input to function

7 val v vbc, vbe # input to function

vt, qbe0, qbc0, vje0, vjc0

8 { # start template body

9 # calculate basic quantities of npn and pnp trans.

10 if (model->type == _n) {

11 iec = model->is * (limexp(vbc/work->vt) - 1)

12 icc = model->is * (limexp(vbe/work->vt) - 1)

13 }

14 else {

15 iec = -model->is * (limexp(-vbc/work->vt) - 1)

16 icc = -model->is * (limexp(-vbe/work->vt) - 1)

17 }
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18 # calculate charges

19 if(model->type == _n) {

20 if (vbc<0) {

21 qbc = work->qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))

22 }

23 else {

24 qbc = model->cjc*vbc*(1 + vbc/work->vjc0)

25 }

26 if (vbe<0) {

27 qbe = work->qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))

28 }

29 else {

30 qbe = model->cje*vbe*(1 + vbe/work->vje0)

31 }

32 } # end “if type _n” condition

33 else { # if model is not of type _n

34 if(vbc > 0) {

35 qbc = -work->qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc)))

36 }

37 else {

38 qbc = model->cjc*vbc*(1-vbc/work->vjc0)

39 }

40 if(vbe > 0) {

41 qbe = -work->qbe0*(1-((1+vbe/model->vje)**(1-model->mje)))

42 }

43 else {

44 qbe = model->cje*vbe*(1-vbe/work->vje0)

45 }

46 } # end “if not type _n” condition

47 }
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chapter 5
Foreign Routines in MAST
This topic, which shows how to use foreign routines as extensions of the MAST
language, is divided into the following subtopics:

• Using a FORTRAN Function in a MAST Template -- shows a foreign
routine that returns the factorial of its argument. Because it returns a
single value, this routine can be used in a template wherever an
intrinsic function can be used (if properly declared).

• Modeling the Bipolar Transistor Using Foreign Routines -- shows the
bipolar transistor model, implemented here partly in the MAST
language and partly in C. It demonstrates a more general use of foreign
routines.

• Implementing a MAST Foreign Routine in C -- shows the calling
interface for foreign routines written in C; shows the mechanism for
passing structures, enumerated types, and arrays, both to and from the
foreign routine; shows the implementation and usage of multi-purpose
foreign routines that are called with a varying argument list and return
different values for different calls; and shows guidelines for splitting a
component model into a MAST template and a foreign routine.
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Introduction

It is sometimes useful to implement part of a model in a routine that has been
written in a general-purpose programming language, such as C or FORTRAN,
rather than in the MAST language. One such case is when the model requires
operations that are not supported in the MAST language, such as certain
mathematical functions (e.g., Bessel functions). Another is when a model
implemented for another simulator has to be adapted for use with the Saber
simulator. The MAST language includes a well-defined way of calling such
foreign routines, which can be written in any programming language provided
that they can be called from a FORTRAN environment.

A foreign routine requires an appropriate compiler (such as C) and a
significant amount of interface between the MAST language and the language
of the foreign routine. For these reasons, it is recommended to use a MAST
function instead of a foreign routine whenever possible.

Using a FORTRAN Function in a MAST Template

The factorial, n!, of a positive integer, n, is defined as the product of all
positive integers from 1 through n:

n! = 1X2X*3X...X(n-1)Xn

Therefore, a function computing the factorial (fact ) has one argument and
returns one value as shown in the following UNIX example:

subroutine fact(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

c..header declarations

integer nin, ifl(*), nifl, nout, ofl(*), nofl, ier

double precision in(*), out(*), undef

c..local declarations

integer n, i

c..convert input value to integer (ignore fractions)

n = in(1)

c..compute factorial and store in out(1)

out(1) = 1

do 10 i=1,n

10 out(1) = out(1)*i

c..return to template

return

end
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The implementation of the FORTRAN routine for this is explained in the
following topics:

• Writing the FORTRAN Routine -- shows the following concepts:

• Defining the header of the factorial routine

• Getting input in the first element of the in array

• Returning results in the first element of the out array

• Using c..  to indicate comments (which are ignored by the routine)

• Making the routine available to the Saber simulator

Refer to the Installation and Configuration Guide, under topic titled
“Using C or FORTRAN Routines Called by Templates” for a complete
and up-to-date description of how to make foreign routines available to
the Saber simulator.

• Declaring and calling the routine from a template

Writing the FORTRAN Routine

The way to call a foreign routine from the MAST language is through a unique
calling interface that has two parts:

• The header of the foreign routine

• The mechanism for passing values between MAST templates and the
foreign routine

The foreign routine header is identical for all foreign routines on a given
platform and is independent of the way the routine is used in a MAST
template. For a foreign routine, the UNIX header is as follows (an asterisk, *,
indicates unlimited array size):

The header for Windows NT is shown as follows:

subroutine name(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

integer nin, ifl(*), nifl, nout, ofl(*), nofl, ier

double precision in(*), out(*), undef

subroutine name(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: name
integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef
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where:

The remaining arguments in the foreign routine header, namely ifl , nifl ,
ofl , nofl , and ier , are reserved for future use. Although currently unused,
they must be present in the foreign routine header.

name is the user-selected name of the foreign routine. From MAST
templates, the routine must be called by this name. The
name must be unique and must be a valid name in both the
MAST language and FORTRAN. For the factorial function,
let name be fact .

in is a double-precision array containing the arguments from
the call to the foreign routine. These arguments, when
received by the foreign routine, are packed. Arguments of
certain types are encoded as well. The encoding scheme for
arguments is further described in the MAST Reference
Manual.

nin is an integer containing the number of elements in the in
array. It is often different from the number of arguments
passed to the foreign routine in the MAST template.

out is a double-precision array into which the foreign routine
must place the values to be passed back to the MAST
template. Depending upon the data type of the results (as
declared in the calling template), the routine might have to
encode certain values. The out  array is guaranteed to be
large enough to hold the properly-encoded results, except
when the routine is returning a variable-length array to the
template. Information about returning variable-length
arrays is given in the MAST Reference Manual.

nout is an integer containing the size of the out  array.

undef is a double-precision number indicating an undefined
quantity. Its value is identical to the undef  constant in the
MAST language. Foreign routines can use it to interpret
input values or to return undefined values.
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The mechanism used to pass the values of variables from a MAST template to
a foreign routine depends upon the type of the variables, as declared in the
template. Similarly, the routine must return its results in a format that
depends on the type of the variables that receive those results. It is therefore
important to understand that a foreign routine and the templates using it
must agree in the number and the type of both the variables passed to the
routine (its arguments) and the results of the foreign routine. Here, the
mechanism is described only to the extent that it is used in the examples—
refer to the MAST Reference Manual for more information on the argument-
passing mechanism.

According to its intended use, the factorial function has a single numeric value
as input and returns a single numeric value. Several types of MAST variables
are represented by a single numeric value: number (both template arguments
and local parameters), var variables, ref variables, val variables, and state
variables. In the argument-passing mechanism all are handled identically: if a
variable of any of the listed types is passed as the only argument to the foreign
routine in a template, the foreign routine receives its value in the first
element of the in  array, and nin  is 1. Similarly, if the foreign routine returns
a single value of one of the types listed, nout  has a value of 1, the out  array
has length 1, and the routine must return its result in the first element of the
out  array.

Declaring and Calling the Routine From a Template

Like any other user-defined quantity in the MAST language, a foreign routine
must be declared in the calling template before being used.

You declare a foreign routine in the template body in either of the following
two ways, depending upon how many values it returns:

1. A routine returning a single numeric value should be declared as:

You can use such a routine wherever you can use MAST intrinsic
functions, even in expressions. This means you can use them anywhere
in the template body including in the template equations, in the netlist
section, in when statements, and even in a local declaration to initialize
a number.

foreign number ( name)
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2. A routine returning multiple values must be declared as:

An example of such a routine is described in the topic titled "Modeling
the Bipolar Transistor Using Foreign Routines".

Because this factorial routine always returns a single value, it appears as a
local declaration of any template that calls it, as follows:

Having done this, you can compute the factorial of a given positive integer
anywhere in the template. For example, you could include the following
statement in a template:

where nfact  and n must be declared as numeric values (i.e., as number
variables, val variables, or state variables). Note that n can also be a var
variable or a ref variable. You could also use the fact  function in an
expression to define a 1.2k ohm resistor by writing the netlist entry as follows:

Modeling the Bipolar Transistor Using Foreign Routines

This topic presents a more general way to use foreign routines with a MAST
template. As an example, it uses the bipolar transistor model (bjt) that is
described in the topic titled "Ebers-Moll MAST Model for the Bipolar
Transistor". The goal of this example is to write a MAST template and a
foreign routine that implement the model in such a way that the combination
has the same functionality as the bjt template. Initial conditions, start values,
and small-signal parameters are removed from the new template for brevity.

This new template (bjtf) and its foreign routine are such that the model
contains only one-dimensional nonlinearities, which optimizes its speed.

This topic is divided into the following subtopics:

• Splitting Functionality Between a MAST Template and a Foreign
Function

foreign ( name)

foreign number fact()

nfact = fact(n)

r.1 a b = 10 * fact(5)
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• Modifying the BJT Template to Use a Foreign Routine

• General Foreign Function Call Syntax

• Calling the Foreign Routines

Splitting Functionality Between a MAST Template and a Foreign Function

Unlike the example in the topic titled "Using a FORTRAN Function in a
MAST Template" (which essentially added another mathematical function to
the MAST language), deciding how to split a model between a MAST template
and a foreign routine is not trivial.

Deciding how to split a model between a template and a MAST function can be
summarized by the following general rule:

When a model is split between a template and a foreign function,
declarative parts must be in the template, while procedural parts
(calculations and assignments) can be implemented in the foreign
function.

Beyond this simple rule, the following guidelines can help decide how to split
the model:

• The template header and header declarations must be specified entirely
within the MAST template.

• The control section, values section, parameters section, netlist section,
and template equations must be specified in the MAST template, but
they can include calls to foreign routines that return a single numeric
value. The factorial routine from the topic titled "Using a FORTRAN
Function in a MAST Template" is an example of such a routine.

• The local declarations section of the template must include declarations
of all variables used in the template. Specifically, it must include all
parameters, val variables, var variables, local nodes, extraction groups,
and foreign routine names.

• Messages and error handling should be done in the template, because
the functionality of the MAST error() , warning() , and message()
functions is not directly available in foreign routines.

• All assignment statements and intermediate calculations using
variables and parameters can be implemented in a foreign routine.
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• Any val variable defined by a foreign routine call is considered to be a
nonlinear function of all the val variables or system variables passed as
arguments to the foreign routine.

This fact leads to the following rules:

• val variables that are linear functions of system variables should be
defined in the template.

• val variables defined by foreign routine calls should, if possible, be
grouped according to how they depend upon other val variables. It is
typically more efficient to call a foreign routine several times with a
small number of val variables as arguments (that is, with low
dimensionality) than to call it once with all val variables (thereby
creating a high-order nonlinear function). This rule is illustrated
later in this chapter.

• val variables defined only for extraction purposes can be defined
either in the template or in foreign routines.

Modifying the BJT Template to Use a Foreign Routine

The bjtf template (listed below) is largely the same as bjt—the only parts
that changed were the calls to the foreign routine (named bjt ), which are
indicated by comments.

Unlike the bjtm template, which uses calls to two different MAST functions
plus an include file, all calls in the bjtf template are made to the same foreign
routine (bjt ).

1 element template bjtf c b e = model, ic
2 electrical c, b, e
3 struc { # the transistor model
4 enum {_n, _p} type
5 number  is=1e-16, bf=100, br=1, \
6 cje=0, vje=.75, mje=.33, \
7 cjc=0, vjc=.75, mjc=.33, rc=0
8 } model = ()
9 number ic[2]=[undef,undef]
10 external number temp
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11 { # begin template body
12 # declare local param., vals, and extraction groups
13 number work[5]
14 struc {number bp,inc;} \
15 nv[*] = [(0,.1),(2,0)]
16 val v vbc, vbe, vce
17 val i iec, icc, iba, ico, ir
18 val q qbc, qbe
19 electrical cp # local node
20 group {vbc,vbe} v #...extraction groups
21 group {iba,ico, ir} i
22 group {qbc,qbe} q
23 foreign bjt # ... foreign routine

24 control_section {
25 # If no collector res., collapse nodes c and cp
26 if(model->rc == 0) collapse(c,cp)
27 # specification of sample points and newton steps
28 newton_step((vbc,vbe),nv)
29 # initial conditions, start values, and
30 # small-signal parameters removed for brevity
31 }

32 parameters {
33 # Calculate thermal voltage and 4 functions of model
34 # parameters. They are stored in a work vector
35 work = bjt(1,model,temp) #...foreign call
36 }
37
38 values {
39 vbc = v(b,cp)
40 vbe = v(b,e)
41 vce = v(cp,e)
42 # calculate currents and charges
43 if(model->type == _n) {
44 (iec,qbc) = bjt(2,model,work,vbc) #...foreign call
45 (icc,qbe) = bjt(3,model,work,vbe) #...foreign call
46 }
47 else {
48 (iec,qbc) = bjt(2,model,work,-vbc) #...foreign call
49 (icc,qbe) = bjt(3,model,work,-vbe) #...foreign call
50 }
51 #calculate base, collector, and resistor currents
52 iba = iec/model->br + icc/model->bf
53 ico = icc - iec - iec/model->br
54 if (model->rc ~= 0) ir = (v(c,cp)) / model->rc
55 else ir = 0
56 } # end of values section
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The foreign function calls are described in the following topics:

• General Foreign Function Call Syntax

• Calling the Foreign Routines

General Foreign Function Call Syntax

All of the foreign routine calls in the bjtf template use the syntax of the
following general foreign routine call:

where:

57 equations {
58 # current at base, internal collector, and emitter
59 i(b->e) += iba + d_by_dt(qbe)
60 i(b->cp) += d_by_dt(qbc)
61 i(cp->e) += ico
62
63 # current at collector resistor, if present
64 if (model->rc ~= 0) i(c->cp) += ir
65 } # end of equations section
66 } # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
bjtf.sin

( variable_list) = name( argument_list)

variable_list is a comma-separated list of variables to receive the
results of the routine call. If a state is returned by the
routine, it must appear in a when statement. If only one
value is returned by the foreign routine, the parentheses
enclosing variable_list are optional.

name is the name of the foreign routine to call.

argument_list is a comma-separated list of variables passed as
arguments to the foreign routine.
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Calling the Foreign Routines

Note that the bjtf template contains the following declaration and calls to the
foreign routine:

1. The bjt  routine is declared locally as a foreign function:

This declaration indicates that the bjt  routine may return more than
one value, and that the type and number of returned values might
differ for different calls. In fact, the bjt  routine returns an array of
length five for the first call, but it returns a pair of val s (that is, a pair
of simple numeric values) for the second and third calls.

2. The first call to the bjt  foreign routine is:

The first argument of the call to bjt  (1) identifies the first task to be
performed. This is necessary because this same routine is called, with
different arguments, further down in the template.

The second and third arguments (model , temp ) are the model
argument and the system temperature (temp ). Note that model  and
temp  are still declared as parameters in the template.

The values of model  and temp  are used to compute and return the
following five values that are computed in bjt :

These values are stored in the work  array, rather than in individual
numbers, to show how arrays are passed between templates and foreign
routines. This is described in the topic "Implementing a MAST Foreign
Routine in C".

23 foreign bjt

35 work = bjt(1, model, temp)

vt, qbe0, qbc0, vje0, vjc0
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3. The calls to the bjt  routine in the following lines are made to compute
currents and charges:

Although all bjtf template currents and charges could be computed in
one routine call, it is preferable to call the routine twice—first for the
iec , qbc  pair, second for the icc , qbe  pair.

According to the above guidelines, all four of these val variable are
interpreted as one-dimensional nonlinear functions of vbc or vbe . If all
four val variables were computed in one foreign routine call, they would
be considered two-dimensional nonlinear functions of vbc  and vbe ,
which would be less efficient for simulation.

Notice that the second and third routine calls have similar arguments.
The first tells the bjt  routine whether the base-collector or the base-
emitter characteristics have to be computed. The second argument is
the model structure. The third argument is the work vector holding the
values returned by the first call. The fourth argument is the base-
collector or base-emitter voltage.

The remaining parts of the template are identical to the corresponding parts
of the bjt template described in Book 2 and are therefore not discussed here.

43 if(model->type == _n) {
44 (iec,qbc) = bjt(2,model,work,vbc)
45 (icc,qbe) = bjt(3,model,work,vbe)
46 }
47 else {
48 (iec,qbc) = bjt(2,model,work,-vbc)
49 (icc,qbe) = bjt(3,model,work,-vbe)
50 }
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Implementing a MAST Foreign Routine in C

This topic describes how to implement the bjt  routine as a C language
routine. The calling interface is functionally identical to the one described in
the topic "Using a FORTRAN Function in a MAST Template" for FORTRAN
routines, as are the meaning and usage of arguments. The following shows a
UNIX routine format:

The following shows a Windows NT routine format:

In a Windows NT environment, the C routine name must be entered in upper-
case characters.

Some systems require name to have a trailing underscore (_), in order for the
routine to be callable from a FORTRAN environment, as the MAST language
requires. Refer to the Installation and Configuration Guide, under topic
titled “Using C or FORTRAN Routines Called by Templates” for more
information.

This topic is divided into the following subtopics:

• Defining Template Arguments

• First Call—Setting Up Return Parameters

• Second and Third Calls—Performing Calculations

• Complete BJT C Routine

name(in, nin, ifl, nifl, out, nout, ofl, nofl, undef, ier)

int *nin, *ifl, *nifl, *nout, *ofl, *nofl, *ier;

double *in, *out, *undef;

__declspec(dllexport) void __stdcall name(double* inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long* ofl,

long* nofl,double* aundef,long* ier)

{

}
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Defining Template Arguments

The factorial function example in the topic "Using a FORTRAN Function in a
MAST Template" shows how a single numeric argument is passed to the
foreign routine. If there are multiple arguments, the process is similar, except
that arguments must appear in a particular order, and each argument
occupies a specific number of places in the in  or out  array.

To improve the readability of the routine and reduce the possibility of errors,
you should define a name for each entry in the in  and out  arrays. Choose
names that suggest the purposes of the quantities passed to and from the
routine.

The first argument is a single number telling the foreign routine what to do. It
can have any of the values 1, 2, and 3. This argument is passed to the foreign
routine as the first element of the in  array, that is, in in[0] . (Unlike
FORTRAN, arrays in C start with element 0.) The corresponding definitions
are as follows:

4 #define JOB in[0]
5 #define PARAMETERS 1
6 #define BC_CHARACTERISTICS 2
7 #define BE_CHARACTERISTICS 3
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The second argument is the model  structure. A structure is passed to and
from foreign routines by passing each member of the structure as a separate
parameter, in the order in which they are declared in the structure. The first
member of the model  structure is the model type, which is of type enum. An
enum is passed as a single number, which is 1 if the value of the variable is
first in the list of possible values, 2 if the value is second in the list, etc. In the
declaration of the model type, note that _n  (for an npn transistor) is encoded
as 1, and _p  is encoded as 2. All other members of the model  structure are
numbers, which can be handled directly. Therefore, the definitions for the
model  structure are as follows:

In addition, the system temperature, which is a local parameter is defined as
follows:

The rest of the definitions depend on the calls to the foreign routine, described
in the next topics.

First Call—Setting Up Return Parameters

As its result, the new bjtf template returns an array, of length 5, called work .
Arrays are passed to and from foreign routines in two parts, the array size and
the array contents. The array size is a single number, and each array element
takes as many places as a variable of the same type would. The work  array
consists of five numbers, so it needs six places in the out  array.

8 #define MODEL_TYPE in[1]
9 #define _N 1  /* npn */
10 #define _P 2  /* pnp */
11 #define MODEL_IS in[2]
12 #define MODEL_BF in[3]
13 #define MODEL_BR in[4]
14 #define MODEL_CJE in[5]
15 #define MODEL_VJE in[6]
16 #define MODEL_MJE in[7]
17 #define MODEL_CJC in[8]
18 #define MODEL_VJC in[9]
19 #define MODEL_MJC in[10]
20 #define MODEL_RC in[11]

21 #define TEMP in[12]
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Each array element has been given a name that indicates its use in the
following lines:

The P in each name stands for parameters. You must distinguish these work
values, which are returned from the bjt  routine, from work  values for the
second and third calls (described in the next topic), which are passed to the
bjt  routine.

Note that, in order to compute thermal voltage, the values of Boltzmann’s
constant and the electron charge must also be included as follows:

The first part of implementing the first call to the bjt  routine is a
straightforward translation of the intermediate calculations of vt , qbe0 ,
qbc0 , vje0 , and vjc0  (from the original bjt template) into the C language:

The second part consists of defining the size of the work  array as follows:

It is important to define this size and to make it identical to the array size as
declared in the template. If omitted, the size will be undefined, and the
routine call will not have the expected effect.

24 #define WORK_P_SIZE out[0]

25 #define WORK_P_VT out[1]

26 #define WORK_P_QBE0 out[2]

27 #define WORK_P_QBC0 out[3]

28 #define WORK_P_VJE0 out[4]

29 #define WORK_P_VJC0 out[5]

51 #define K 1.381e-23 /*Boltzmann's constant */

52 #define QE 1.602e-19 /*electron charge */

75 if (JOB == PARAMETERS) {

76 /* Calculate thermal voltage and four other quant. */

77 WORK_P_VT = K * (TEMP + 273.15) / QE;

78 WORK_P_QBE0 = MODEL_CJE * MODEL_VJE / (1.0 - MODEL_MJE);

79 WORK_P_QBC0 = MODEL_CJC * MODEL_VJC / (1.0 - MODEL_MJC);

80 WORK_P_VJE0 = 2.0 * MODEL_VJE / MODEL_MJE;

81 WORK_P_VJC0 = 2.0 * MODEL_VJC / MODEL_MJC;

83 /* Define the array size */

84 WORK_P_SIZE = 5;

85 }
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Second and Third Calls—Performing Calculations

The second and third calls to this routine both have the work  vector as their
third argument. The work  vector occupies the six positions following the
model  structure. (TEMP is not present in these calls):

Note that these definitions for the elements in the work  array are similar to
the ones given in the first call, except that the work array now appears in the
in  array. They are distinguished by the V in each name, which stands for
values.

The second call computes the iec , qbc  pair as a function of vbc . Therefore,
vbc  is an additional input, and iec  and qbc  are outputs of the routine.

The code calculating both iec  and qbc  is again a straightforward translation
into the C language of the corresponding calculations from the original bjt
template as follows:

32 #define WORK_V_SIZE in[12]

33 #define WORK_V_VT in[13]

34 #define WORK_V_QBE0 in[14]

35 #define WORK_V_QBC0 in[15]

36 #define WORK_V_VJE0 in[16]

37 #define WORK_V_VJC0 in[17]

41 #define VBC in[18]

42 #define IEC out[0]

43 #define QBC out[1]

86 else if (JOB == BC_CHARACTERISTICS) {

87 /* Calculation of iec and qbc from vbc */

88 IEC = MODEL_IS * (exp(VBC / WORK_V_VT) - 1.0);

89 if (VBC < 0.0) {

90 QBC=WORK_V_QBC0 *

91 (1.0 - pow(1.0 - VBC/MODEL_VJC, 1.0 - MODEL_MJC));

92 }

93 else {

94 QBC = MODEL_CJC * VBC * (1.0 + VBC / WORK_V_VJC0);

95 }

96 if (MODEL_TYPE == _P) {

97 IEC = -IEC;

98 QBC = -QBC;

99 }

100 }
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The only difference is the exp () function of the C language is called instead of
the limexp () function of the MAST language.

The third call is very similar to the second call, calculating icc  and qbe :

This concludes the detailed description of the bjt routine and the argument-
passing mechanism. Further information, including how foreign routines can
return variable-length arrays, is given in the MAST Reference Manual.

47 #define VBE in[18]

48 #define ICC out[0]

49 #define QBE out[1]

86 else if (JOB == BE_CHARACTERISTICS) {

87 /* Calculation of icc and qbe from vbc */

88 ICC = MODEL_IS * (exp(VBE / WORK_V_VT) - 1.0);

89 if (VBE < 0.0) {

90 QBE=WORK_V_QBE0 *

91 (1.0 - pow(1.0 - VBE/MODEL_VJE, 1.0 - MODEL_MJE));

92 }

93 else {

94 QBE = MODEL_CJE * VBE * (1.0 + VBE / WORK_V_VJE0);

95 }

96 if (MODEL_TYPE == _P) {

97 ICC = -ICC;

98 QBE = -QBE;

99 }

100 }
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Complete BJT C Routine

The following is a listing of the complete bjt  routine, written in the C
language.

1 /* Define names for the input and output of the foreign*/
2 /* routine. First the part that is common to all usage:*/
3 /* result = bjt(job, model...) */
4 #define JOB in[0]
5 #define PARAMETERS 1
6 #define BC_CHARACTERISTICS 2
7 #define BE_CHARACTERISTICS 3
8 #define MODEL_TYPE in[1]
9 #define _N 1                  /* npn */
10 #define _P 2                  /* pnp */
11 #define MODEL_IS in[2]
12 #define MODEL_BF in[3]
13 #define MODEL_BR in[4]
14 #define MODEL_CJE  in[5]
15 #define MODEL_VJE in[6]
16 #define MODEL_MJE in[7]
17 #define MODEL_CJC in[8]
18 #define MODEL_VJC in[9]
19 #define MODEL_MJC in[10]
20 #define MODEL_RC in[11]
21 #define TEMP in[12] /* local parameter */
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22 /* Define names for 1st call     */
23 /* work = bjt(1, model, temp)  */
24 #define WORK_P_SIZE out[0]
25 #define WORK_P_VT out[1]
26 #define WORK_P_QBE0 out[2]
27 #define WORK_P_QBC0 out[3]
28 #define WORK_P_VJE0 out[4]
29 #define WORK_P_VJC0 out[5]
30 /* Define names for 2nd and 3rd calls   */
31 /* result = bjt(job, model, work,...)       */
32 #define WORK_V_SIZE in[12]
33 #define WORK_V_VT in[13]
34 #define WORK_V_QBE0 in[14]
35 #define WORK_V_QBC0 in[15]
36 #define WORK_V_VJE0 in[16]
37 #define WORK_V_VJC0 in[17]
38
39 /* Define names for calculation of base/collector charac. */
40 /* (iec, qbc) = bjt(2, model, work, vbc) */
41 #define VBC in[18]
42 #define IEC out[0]
43 #define QBC out[1]
44
45 /* Define names for calculation of base/emitter charac. */
46 /* (icc, qbe) = bjt(3, model, work, vbe) */
47 #define VBE in[18]
48 #define ICC out[0]
49 #define QBE out[1]
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50 /* Other defines */
51 #define K 1.381e-23 /* Boltzmann`s constant */
52 #define QE 1.602e-19 /* electron charge  */
53
54 /*-------------------------------------------------*/
55 /*The following two include statements are
56 system-provided files used to declare input/output
57 channels and the exp() and pow() mathematical functions*/
58 #include <stdio.h>
59 #include <math.h>
60 #include “saberApi.h” /* Specify the complete path here to
61  “<install_home>/include/saberApi.h” */
62
63 #if defined(_MSC_VER)
64 #define bjt BJT
65 #endif
66
67 /*The following line works for SunOS 5.5.1 - 5.6 platforms
68 void bjt_(double*in, long*nin, long*ifl, long*nifl, */
69
70 /* The following line works for HP platforms */
71 void bjt(double*in, long*nin, long*ifl, long*nifl,
72 double*out, long*nout, long*ofl, long*nolf, double*undef,
73 long*ier)
74 {
Saber MAST Language, Book 2, User Guide (Dec. 2004) 5-21
Copyright © 1985-2004 Synopsys, Inc.



Chapter 5: Foreign Routines in MAST
75 if (JOB == PARAMETERS) {
76 /* Calculate thermal voltage and four other quan. */
77 WORK_P_VT = K * (TEMP + 273.15) / QE;
78 WORK_P_QBE0 = MODEL_CJE * MODEL_VJE / (1.0 - MODEL_MJE);
79 WORK_P_QBC0 = MODEL_CJC * MODEL_VJC / (1.0 - MODEL_MJC);
80 WORK_P_VJE0 = 2.0 * MODEL_VJE / MODEL_MJE;
81 WORK_P_VJC0 = 2.0 * MODEL_VJC / MODEL_MJC;
82
83 /* Define the array size */
84 WORK_P_SIZE = 5;
85 }
86 else if (JOB == BC_CHARACTERISTICS) {
87 /* Calculation of iec and qbc from vbc */
88 IEC = MODEL_IS * (exp(VBC / WORK_V_VT) - 1.0);
89 if (VBC < 0.0) {
90 QBC=WORK_V_QBC0 *
91 (1.0 - pow(1.0 - VBC/MODEL_VJC, 1.0 - MODEL_MJC));
92 }
93 else {
94 QBC = MODEL_CJC * VBC * (1.0 + VBC / WORK_V_VJC0);
95 }
96 if (MODEL_TYPE == _P) {
97 IEC = -IEC;
98 QBC = -QBC;
99 }
100 }

101 else if (JOB == BE_CHARACTERISTICS) {
102 /* Calculation of icc and qbe from vbc */
103 ICC = MODEL_IS * (exp(VBE / WORK_V_VT) - 1.0);
104 if (VBE < 0.0) {
105 QBE=WORK_V_QBE0 *
106 (1.0 - pow(1.0 - VBE/MODEL_VJE, 1.0 - MODEL_MJE));
107 }
108 else {
109 QBE = MODEL_CJE * VBE * (1.0 + VBE / WORK_V_VJE0);
110 }
111 if (MODEL_TYPE == _P) {
112 ICC = -ICC;
113 QBE = -QBE;
114 }
115 }
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116 else { /*If the bjt routine is called with an
117 unrecognized first argument, do the following*/
118 fprintf(stderr, “Bad job: %f\n”, JOB);
119 }
120}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
bjt.c
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chapter 6
Time-Domain Modeling
The following examples introduce the MAST capabilities that allow you to
create models that depend on effects in the time domain:

• Using the MAST delay Function in an Ideal Delay Line -- shows how to
represent a time delay using the intrinsic delay  function and how to
influence the time-step algorithm of the simulator from within a
template (i.e., scheduling)

• Expanding the Multiple-Output Voltage Source -- shows how to define a
val variable as a function of both time and other val variables
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Using the MAST delay Function in an Ideal Delay Line

The MAST delay  function can be used in template equations to model ideal
delay. Using delay  in an equation has the following general form:

where delayed_value and reference_value are either a val variable, a branch
variable, or a var variable; and time is a parameter that specifies the duration
of the constant delay between delayed_value and reference_value. For
example, suppose a template equation contains the following statement:

This statement has the following meaning:

Solve for a value of output voltage (vout ) that has the same amplitude
as the input voltage (vin ), but delay the output from the input by the
specified value of delay (dtime ).

An example of a template using the delay  function is the ideal delay line
template, dline, shown in the figure below, which is equivalent to a
voltage-controlled voltage source with a time delay and a gain

The dline template description is divided into the following topics:

• Ideal Delay Line (dline) MAST Template

• Delayed Sine Wave Transient Analysis

• Delayed Sine Wave AC Analysis

• MAST dline Template Summary

delayed_value = delay (reference_value,time)

iout: vout = delay (vin, dtime)

e-s(td)

inp

inm

outp

outm

vin vout

+

_

+

_

Ideal delay line
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Ideal Delay Line (dline) MAST Template

The dline template is shown as follows:

The delay  function in the template equation instructs the simulator to set
the output voltage (across pins outp  and outm ) to the same value as vdl,
but delay it by time td .

Note that vdl  needs to be declared as a val variable because it is an
intermediate variable that depends on the value of the input branch voltage,
vin .

It is allowable to omit vdl  altogether by using the following equation:

Including vdl  simplifies the template equation and permits the product of
gain and input voltage to be extracted and plotted.

1 template dline inp inm outp outm = td, a
2 electrical inp, inm, outp, outm
3 number td = 0.0, # ideal delay, with default
4 a = 1.0 # gain, with default
5 {
6 var i iout # current from outp to outm
7 val v vout, # voltage developed across outp and outm
8 vin, # controlling voltage
9 vdl # delayed voltage
10 values  {
11 vout = v(outp) - v(outm)
12 vin = v(inp) - v(inm)
13 vdl = vin * a
14 }
15 equations  {
16 i(outp->outm) += iout
17 iout: vout = delay(vdl, td)
18 }
19 }

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
dline.sin

iout: vout=delay(vin*a, td)
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It is incorrect syntax to multiply the delay  function by any quantity. For
example, the following template equation would be incorrect:

The delay  function cannot be multiplied by the constant a; instead, the
constant a must multiply vin  inside the parentheses, as shown in the
preceding equation.

Delayed Sine Wave Transient Analysis

The following figure shows the result from a transient simulation of a sine
wave input to the dline template.

# incorrect equation...
iout: vout = a*delay(vin, td)

0 200u 400u 600u 800u 1m 1.2m 1.4m
t(s)-1.25

-1

-750m

-500m

-250m

0

250m

500m

750m

1

1.25

 (V)

Delayed sine wave-transient analysis result
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The circuit netlist is shown below:

In this example, the voltage at pin out  is the same as the voltage at pin in ,
except that it is delayed by 200 µs. During a DC analysis, the delay  function
has no effect. Consequently, the voltages at in and out are the same following
a DC analysis.

Delayed Sine Wave AC Analysis

The dline template is also effective for a small-signal AC analysis. If the
multiplier, a, is left at the default value of 1, dline has no effect on the
magnitude of the input signal. However, the phase is shifted as a function of
frequency.

The voltage source (v.in ) from the preceding circuit netlist can be modified to
simulate an AC source, as follows:

v.in    in 0       = tran=(sin=(0,1,1k))
dline.1 in 0 out 0 = td=200u

v.in in 0 = ac=(1,0)
dline.1 in 0 out 0 = td=200u
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The following figure shows the result of an AC analysis. The waveforms show
the magnitude and phase at out , the output of dline.1 .

The negative slope of the phase (in radians) with respect to frequency (in
radians per second) is commonly called group delay. From the graph shown in
the following figure, you can see that this slope for dline.1  is measured as
-200 µs, which corresponds to the td=200u  specified in the netlist.

MAST dline Template Summary

To summarize, you can conceptualize the MAST delay  function as:

• A zero delay during DC analysis

• A time delay during transient analysis

• A constant group delay during a small signal (AC) analysis

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k
(rad/s)-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-800m

-600m

-400m

-200m

0
200m
 (rad)

M1

M2

Y1: -1.998843
X1: 9.99422k

Y2: -999.4212m
X2: 4.99711k

SLOPE: -200u

Group Delay—200us

Delayed sine wave-AC analysis (small-signal) result
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Expanding the Multiple-Output Voltage Source

A simvar is a built-in variable that interacts with the simulator. Most simvar
variables are set by the simulator, and templates can use them but not alter
them. In effect, they are a “window” into what is happening in the simulator.
Two simvar variables, named time  and time_domain , are used in the
multi-purpose voltage source (vsource_2) example, which is described in the
following topics:

• Overview

• The vsource_2 MAST Template

• Header Declarations

• Union Type Parameters -- shows how to the intrinsic function
union_type  for indicating which member of the union has been
selected

• Local Declarations

• Equations Section

• Determining Union Elements

• Assigning Internal Values

• Performing Calculations (Defining Signals) -- shows how to use the
step_size  and next_time  simvar variables to communicate
information to the simulator and how to use the sin  and exp  intrinsic
functions

• Netlist Examples

Two other simvar variables, step_size  and next_time , are special, in that
templates can change their values. These simvar variables let templates
communicate to the simulator. The vsource_2 example illustrates their use.

For a description of the simvar variables and their uses, see the MAST
Reference Manual.

A point worth emphasizing is that vsource_2 is a linear template, even
though the definition of tran  is nonlinear. The linearity of a template is
determined with respect to other variables, such as voltages or currents. The
nonlinearity of tran  in this voltage source example is with respect to time.
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Overview

The voltage source (vsource_2) template provides three different,
time-varying outputs. It is similar to vsource_1, but it uses a union parameter
type to provide more flexibility. For more information on unions, refer to the
MAST Reference Manual.

The vsource_2 template is used as a voltage supply or waveform source as
follows:

• A constant output voltage for all large-signal analyses

• One of three output waveforms (a sine wave, an exponential signal, or a
step function) for the transient (time-based) analysis

To specify one template for two separate purposes (constant supply or varying
waveform), you must decide how to handle conflicting specifications,
particularly regarding DC analysis. If the voltage source is specified as a
supply, the supply value is obviously the DC value. If the voltage source is
specified as a transient waveform, then the waveform value at
time-equal-to-zero should be used as the DC value. However, if both the
supply and transient specifications are given, only one can be chosen for the
DC analysis. In this example, the transient specification overrides the supply
specification by default. However, a provision is made to allow the template
user to override this default.

Consequently, the template must have the following properties:

• The value of a transient waveform at time=0  must be able to override
the constant supply voltage value.

• Although the transient specification must, by default, override the
supply specification, the transient specification must also have an “off”
setting that allows the supply specification to be in effect.
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The vsource_2 MAST Template

The template for this voltage source (vsource_2) is listed below.

1 element template vsource_2 p m  = supply, tran
2 electrical p, m
3 number supply = 0
4 union {
5 number off
6 struc {number vo, va, f, td;} sin
7 struc {number v1,v2,tau;} exp
8 struc {number v1,v2,tstep,tr;} step
9 } tran = (off = 1)
10 {
11 number pi = 3.14159
12 val v vn, vs
13 var i is
14 number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew
15 parameters {
16 # define intermediate values, depends on selected output
17 if (union_type (tran,sin))  {
18 td = tran->sin->td
19 vo = tran->sin->vo
20 va = tran->sin->va
21 w = 2*pi*tran->sin->f
22 ss = 0.05/tran->sin->f
23 }
24 else if (union_type (tran,exp)) {
25 v1  = tran->exp->v1
26 v2 = tran->exp->v2
27 tau = tran->exp->tau
28 }
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29 else if (union_type (tran,step)) {
30 tstep = tran->step->tstep
31 v1 = tran->step->v1
32 v2 = tran->step->v2
33 tr = tran->step->tr
34 slew = (v2-v1)/tr
35 }
36 } # end parameters section
37 values {
38 vn = v(p) - v(m)
39 if (dc_domain|time_domain) {
40 if (union_type (tran,sin))  {
41 if (time <= td) {
42 vs = vo
43 next_time = td
44 }
45 else {
46 vs = vo + va*sin(w*(time-td))
47 step_size = ss
48 }
49 } # end tran->sin
50 else if (union_type (tran,exp)) {
51 vs = v1 + (v2-v1)*(1-exp(-(time/tau)))
52 } # end tran->exp
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53 else if (union_type (tran,step)) {
54 if (dc_domain|(time < tstep)) {
55 vs = v1
56 next_time = tstep
57 }
58 else if ((time >= tstep) & (time < tstep+tr)){
59 vs = v1 + (time-tstep)*slew
60 next_time = tstep + tr
61 }
62 else {
63 vs = v2
64 }
65 }
66 else vs = supply
67 } # end dc_domain|time_domain
68 else vs = 0
69 } # end values section
70 equations {
71 i(p) += is
72 i(m) -= is
73 is : vn = vs
74 } # end equations section
75 }

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource_2.sin
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Header Declarations

The template header has two arguments, supply  (for constant output) and
tran  (for time-varying output) as follows:

The tran parameter is not a simple type, so there is an example of how to use
it in a netlist entry later in this section.

As always, header declarations declare the names used in the header. These
are the names of the pins p and m, and the arguments supply  and tran .

However, the tran  argument, which must be able to represent any of three
transient waveforms, cannot be defined simply as a number. It must be
declared as a new type of parameter, the union parameter, which is described
in the following section.

Union Type Parameters

You want to be able to specify any of the following kinds of signals when
choosing the tran  argument:

• Sine Wave Output (sin) Declaration

• Exponential Wave Output (exp) Declaration

• Step Function Output (step) Declaration

Each of these is complex enough to require its own list of parameters to define
the signal function. When only one of a list of parameters can be used at a
time, it is best to declare the list as a part of a union. A union is a parameter
type that has multiple members, but each time the union is used, only one of
the members is selected. The general form of a union declaration is:

1 element template vsource_2 p m = supply, tran

2 electrical p, m

3 number supply = 0

union {definition} name [ = ([ initial values] ) ]
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Notice that this is different than the specification for an enumerated type
(enum). An enum allows the selection of one out of a list of constant values. A
union allows the selection and specification of one out of a group of possible
members. Notice that the union specification is similar to the general form of
the structure declaration. Initial values and defaults (optional) have the same
meanings for unions as for structures. The following example is from the
vsource_2 template,

The union definition contains a declaration for each member of the union.
Each member may be of any type, even a structure or another union. In this
example, the members are the three signal types defined for tran ; sine,
exponential, and step. In addition, there should be a parameter to turn the
entire union (named tran ) on and off. When on, this enables the tran
parameter to override the supply  argument. When off (tran=(off=1) ), the
supply  argument is in effect.

As shown above, there are the following four members in this union:

The off  parameter is declared a number while sin , exp,  and step , each of
which contains other parameters, are declared to be structures. Thus, this
union consists of one number and three structures—selecting any one of these
four in a netlist excludes the other three. The three structures are discussed
in the following topics.

Although off  is initialized in the template by setting off=1 , this is not a
Boolean function. In other words, the action of explicitly setting off  to any
value (even undef or 0) selects it and excludes the other three members of the
tran  union.

4 union {

5 number off

6 struc {number vo, va, f, td;} sin

7 struc {number v1,v2,tau;} exp

8 struc {number v1,v2,tstep,tr;} step

9 } tran = (off = 1)

off disable tran  (the only initialized parameter)

sin sine wave output

exp exponential wave output

step step function output
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Sine Wave Output (sin) Dec laration

The equation for defining a sine wave, as shown in the following figure, is:

v = vo + va * sin (2πf (time - td)) (1)

where:

All of these have numerical values and therefore, are declared as numbers
within the sin  structure. In addition, no initial values are assigned. Because
time  is a simvar, its value is provided by the simulator and does not need to
be declared.

Thus, the declaration for sin  is as follows:

vo the offset value in volts

va the amplitude in volts

f the frequency in hertz

td the delay in seconds

6 struc {number vo, va, f, td;} sin

vo

t = 0

va

td td + 1/f

vo

T = 1/f

voltage

time

Describing a sine wave
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Exponential W ave Output (e xp) Dec laration

The exponential signal, as shown in the following figure, is defined with the
following equation:

v = v1 + (v2 - v1) * (1 - e ) (2)

where:

The structure declaration for exp  is as follows:

v1 the initial voltage

v2 the voltage at time=inf  (infinite)

tau the time constant

7 struc {number v1, v2, tau;} exp

-(time/tau)

voltage

time
τ

V2

V1

V1 + (V2 - V1)•(1 - e
(-time/τ)

)

Describing an exponential waveform
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Step Function Output (step) Dec laration

The step function, shown in the following figure, is defined as a stepped
voltage from v1  to v2 ,

where:

The structure declaration for step  is as follows:

Initial V alues

The default value of off=1 , sets the initial choice for tran . This default
setting disables the transient waveforms unless tran  is explicitly set to sin ,
exp , or step , thereby overriding off . When tran  is set to one of these
waveforms, it overrides the supply  parameter, which satisfies one of the
design considerations stated earlier.

The arguments of the sin , exp , and step  structures are not initialized and
have no default values. Thus, you must specify their values in a netlist entry
whenever you set tran  to sin , exp  or step . Remember that this template
does not include the parameter checking (out-of-range, divide-by-zero, etc.)
that is incorporated into MAST library templates.

v1 the initial voltage

v2 the step voltage level

tstep the time at which the step begins

tr the transition time from v1  to v2

8 struc {number v1, v2, tstep, tr;} step

voltage

time

V2

V1

tstep

tr

Describing a step function waveform
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Also, recall that the declaration syntax of a structure requires that the closing
brace (}) be on a separate line. However, inserting a semicolon (;) has the same
effect as moving to a new line.

The complete set of parameter declarations for vsource_2 is:

The time  simvar variable is part of the definition of each of the transient
waveforms. Because it is a reserved word, it does not require a declaration
(although you may define a variable named “time,” which will override the
simvar time ).

Netlist Example

Assume you want to specify a sine wave source (overriding any DC supply
characteristics) with instance name input , connected to nodes named in and
0, and having the following sine wave output characteristics:

• 0V offset (vo=0 )

• 4.3V amplitude (va=4.3 )

• 1kHz frequency (f=1k )

• 0s delay (td=0 )

The corresponding netlist entry for this would be as follows:

or, specifying argument values without argument names, it would be the
following:

Because none of the parameters are initialized in the template, all values of
sin  must be assigned in the netlist entry, even those specified as 0.

3 number supply = 0
4 union {
5 number off
6 struc {number vo, va, f, td;}      sin
7 struc {number v1, v2, tau;}        exp
8 struc {number v1, v2, tstep, tr;}  step
9 } tran=(off=1)

vsource_2.input in 0 = tran=(sin=(vo=0,va=4.3,f=1k,td=0))

vsource_2.input in 0 = tran=(sin=(0,4.3,1k,0))
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Local Declarations

The following declarations are required for use throughout the template:

• pi , the name used to represent the number π, defined here as 3.14159

• The branch current is

• The intermediate variables vn  and vs , as a val

• Various numbers used in determining intermediate values

Therefore, the local declarations are:

Equations Section

The template equation is similar for this voltage source as it is for the voltage
source template (vsource_1). The major difference is that here vs  is defined
with more options. These are based on which element of the tran  union is
specified, plus which simulation analysis is being performed.

11 number pi = 3.14159
12 val v vn, vs
13 var i is
14 number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

70 equations {  ### FROM vsource_2
71 i(p) += is
72 i(m) -= is
73 is : vn = vs
74 } # end equations section

37 equations { ### FROM vsource_1
38 i(p->m) += is
39 is: v(p)-v(m)=vs # determine current contributed
40 # by source
41 } # end of equations section
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Expanding the Multiple-Output Voltage Source
Determining Union Elements

As in the template vsource_1, several conditional statements are used to
define the output term, vs . In this template, the definition of vs  depends on
the following conditions of the tran  argument:

• If the tran  argument is not selected (the default condition), then
vs=supply

• If the tran  argument is selected, then one of the sin , exp , or step
parameters has been specified. The value of vs  then depends on
defining the corresponding waveform.

In doing this, the template must use the values specified for sin , exp ,
or step , depending on which one has been specified for a given netlist
entry.

However, you cannot use values from sin , exp , or step  directly. This is
because they are contained within a union and must be indirectly referenced,
just as members of a structure must be indirectly referenced.

You need to use the structure reference operator (->) for indirectly referencing
a variable inside a union of structures. The general syntax for using this
operator is as follows:

For example,

This assigns the specified value of td (which is contained within sin , which is
contained within tran ) to the internal variable, td . (Refer to the MAST
Reference Manual for more information on the structure reference operator,
->).

Assigning Internal Values

Structure referencing of values from the sin , exp , and step  structure
parameters is required so that they can be used to define vs  for the
appropriate output waveform. To do this, if-else statements are used along
with an intrinsic MAST function, called union_type . which specifies a
member of a union according to the following syntax:

union_name-> structure_name-> variable_name

td = tran->sin->td

union_type (defined_union parameter, member)
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This is a Boolean function whose value is true when a member of the union
has been defined for a given instance of this template (i.e., whether it has
values passed to it from a netlist). For example, the following statements
provide a true/false indicator for each structure of tran :

As a result, union_type  can be used with if-else  statements and the
structure reference operator (-> ) to make values nested within tran available
for calculations of vs . These calculations are performed only for the signal
(sin , exp , or step ) that has been specified in a netlist.

Note that the sin  portion calls an intrinsic function named sin , and the exp
portion calls an intrinsic function named exp . These are functions included
with the Saber simulator to perform the sine and exponential (e) functions.
Many mathematical functions are available as intrinsic functions (see the
MAST Reference Manual for more information).

Refer also to the MAST Reference Manual for more information on the
if-else  statement and the structure reference operator (-> ).

union_type (tran, sin)
union_type (tran, exp)
union_type (tran, step)

17 if (union_type (tran,sin)) {
18 td  = tran->sin->td
19 vo  = tran->sin->vo
20 va  = tran->sin->va
21 w   = 2*pi*tran->sin->f
22 ss  = 0.05/tran->sin->f
23 }
24 else if (union_type (tran,exp)) {
25 v1  = tran->exp->v1
26 v2  = tran->exp->v2
27 tau = tran->exp->tau
28 }
29 else if (union_type (tran,step)) {
30 tstep = tran->step->tstep
31 v1    = tran->step->v1
32 v2    = tran->step->v2
33 tr    = tran->step->tr
34 slew  = (v2-v1)/tr
35 }
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Performing Calculations (Defining Signals)

The output of the voltage source (vs ) is calculated using the values from
either sin , exp , or step , as determined by the value of union_type . Because
vs  is conditional upon the tran  argument, these calculations also use
if-else  statements and the union_type  function.

These conditions can be defined in the template with the if  statement,
according to the following logic:

Substituting from the template, use the union_type  function with if
statements to identify the members of the tran  union. Thus, the logical
statements above are converted to the following MAST statements:

Each of these logical steps uses the union_type  function to select the
appropriate tran  choice (sin , exp , step ) and then calculate their respective
voltages.

if ( the large-signal analysis is selected) {
define vs  equal to supply , unless }

if ( the sine wave is selected) {
define vs  as a sine function}

else if ( the exponential is selected)  {
define vs  as an exponential function}

else if ( the step is selected) {
define vs  as a step function}

39 if (dc_domain | time_domain) {
40 if (union_type (tran, sin)) {

# define vs  as a sine wave}
50 else if (union_type (tran, exp)) {

# define vs as an exponential wave}
53 else if (union_type (tran, step)) {

# define vs as step function}
65 }

66 else vs = supply
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Sine Wave Output

The sine wave voltage is defined with respect to time as:

v = vo + va * sin(2*pi*f*(time - td)) (3)

where:

You cannot use the vo , va , f , and td values directly; you must reference them
indirectly using the structure reference operator (-> ). For convenience, this
was done previously in the template for all the tran  structures, although it
could have been done here.

If the time is less than or equal to the delay time, the output voltage (vs ) is
constrained to the value of the offset voltage, vo . This requires a subsidiary if
statement, written as follows:

The complete sine wave definition then becomes:

Also, notice the use of the assignment to the step_size  variable as follows:

vo the offset value in volts

va the amplitude in volts

f the frequency in hertz

td the delay in seconds

41 if (time <= td) {
41 vs = vo

40 if (union_type (tran,sin)) {
41 if (time <= td) {
42 vs = vo
43 next_time = td
44 }
45 else {     # if (time > td)
46 vs = vo + va*sin(w*(time-td))
47 step_size = ss
48 }
49 }

47 step_size = ss
6-22 Saber MAST Language, Book 2, User Guide (Dec. 2004)
Copyright © 1985-2004 Synopsys, Inc.



Expanding the Multiple-Output Voltage Source
The use of the step_size  simvar variable allows the template to influence
the size of the time step allowed during the transient simulation. The value of
step_size places an upper bound on the variable step size performed by the
Saber simulator. In this instance, this is necessary to ensure an adequate
resolution of the output, making it look like a sine wave. Here, step_size  is
assigned the value of ss , which was defined previously by the following
statement:

This limits the step size for this example to 5% of the period of the sine wave.
The step_size  simvar is one of only two simvar variables that can be
assigned a value in a template. The other is next_time  (see the topic titled
"Step Function Output"). Like all other simvar variables, they need not be
declared.

Exponential W aveform Output

The exponential waveform uses a similar approach. The equation for the
output voltage with respect to time is:

v = v1 + (v2 - v1) * 1 - e (4)

where:

As with the sine wave, you cannot use values for v1 , v2 , and tau directly; you
must reference them indirectly using the structure reference operator (-> ).
The complete section for the exponential is as follows:

Note that exp , the exponential function, is another intrinsic function. Note
also that step_size  is not used in the exponential example. Typically,
step_size is not necessary. This is especially true of complex systems, where
the complexity of the system forces the time steps to be small enough to
ensure the desired effect. However, the step_size  construct is supplied to
give template writers as much control as they might need.

22 ss = 0.05/tran->sin->f

v1 the initial voltage

v2 the voltage at time=inf  (infinity)

tau the time constant

50 else if (union_type (tran,exp)) {
51 vs = v1 + (v2-v1)*(1-exp(-(time/tau)))
52 }

-(time/tau)
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Step Function Output

A similar approach applies to the step function output. The step function is
defined as a stepped voltage from v1  to v2 , where:

The complete step function section is as follows:

Using if  statements (if-else ) allows you to specify each region of the step
function and determine its voltage appropriately. Before time=tstep , the
voltage should be v1 . After time tstep + tr , the voltage should be v2 .
During the transition from v1  to v2 , the voltage should be determined by
linear interpolation between v1  and v2 .

It is very important that there be a simulation time step at the exact points
where the transition starts (tstep ) and ends (tstep + tr ). This prevents
the Saber simulator from skipping over abrupt changes as functions of time in
the step function—it is forced to go through the transition and use the correct
points between steps.

v1 the initial voltage

v2 the stepped voltage

tstep the start time of the step

tr the transition time from v1 to v2

53 else if (union_type (tran,step)) {
54 if (dc_domain|(time < tstep)) {
55 vs = v1
56 next_time = tstep
57 }
58 else if ((time >= tstep) & (time < tstep+tr)){
59 vs = v1 + (time-tstep)*slew
60 next_time = tstep + tr
61 }
62 else {
63 vs = v2
64 }
65 }
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Consequently, a MAST construct is required to let the model tell the simulator
the time points that must have corresponding simulation time steps. This
construct is the next_time  simvar variable, which corresponds to a time at
which the simulator must perform a time step. The next_time  simvar
variable is invoked only in an assignment statement. Its effect expires after
each time step, regardless of whether the appropriate time point has been
passed. Although this simvar variable is effective only for the selection of the
very next time step, it works here because this portion of the template will be
evaluated at every time step.

Therefore, the time region that precedes the start of the step transition has a
statement assigning the value of tstep  to next_time . Also, the transition
region assigns the value of tstep + tr  to next_time  (the end of the
transition). This guarantees time steps at the necessary locations.

No tran Output

Although it is possible to specify what occurs if off  is selected (in a manner
similar to that for sin , exp , and step ), it is not necessary to do so. This is
because the desired effect for off=1  is to leave the value of vs  at the voltage
specified by the supply  parameter. That automatically occurs when none of
the three if-else  conditions are true.

All definitions for vs  are as follows:

39 if (dc_domain|time_domain) {
40 if (union_type (tran,sin)) {
41 if (time <= td) {
42 vs = vo
43 next_time = td
44 }
45 else {     # if (time > td)
46 vs = vo + va*sin(w*(time-td))
47 step_size = ss
48 }
49 }
50 else if (union_type (tran,exp)) {
51 vs = v1 + (v2-v1)*(1-exp(-(time/tau)))
52 }
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53 else if (union_type (tran,step)) {
54 if (dc_domain|(time < tstep)) {
55 vs = v1
56 next_time = tstep
57 }
58 else if ((time >= tstep) & (time < tstep+tr)){
59 vs = v1 + (time-tstep)*slew
60 next_time = tstep + tr
61 }
62 else {
63 vs = v2
64 }
65 }
66 else vs = supply
67 }
68 else vs = 0
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Netlist Examples

The following examples show how this template could be used in a netlist
entry. For the sake of simplicity, the instance name in all the examples is src ,
and connection points are declared to be connected to nodes 1 and 2.

1. To designate a DC source src  with a value of 5 volts:

or

2. To assign the following characteristics to the sin structure of the tran
union:

Notice that because the argument values in this example are assigned in the
same order in which they are declared in the template, it is not necessary to
specify the name of each argument. If you do not know the order or wish to
write the names for clarity, simply specify the name of the field and an equals
sign (=) to the left of the value, as follows:

vsource_2.a 1 2 = supply=5

vsource_2.b 1 2 = 5

offset voltage vo 0 V

amplitude va 4.3 V

frequency f 1 kHz

delay time td 0 s

vsource_2.c 1 2 = tran=(sin=(0,4.3,1k,0))

vsource_2.d 1 2 = tran=(sin=(vo=0,va=4.3,f=1k,td=0))
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chapter 7
Modeling Noise
The Saber simulator can perform a noise analysis to include the noise
contributions of a circuit or system element. To do this, the template must
contain information that defines its noise contribution.

The following topics show how noise information is added to the simple
resistor and vsource (voltage source) templates:

• Adding Noise to a Resistor MAST Template -- shows adding noise
information to a template, and the use of the noise_source statement
in the control section.

• Adding Noise to a Voltage Source MAST Template

• Adding Noise to the MAST diode Template

Introduction

In general, a noise source for an electrical element is defined either as a
current or voltage source between two nodes of the element. For a simple
element, such as a resistor, there is a single noise source. For a more complex
element, such as a transistor, there may be several noise sources, as well as
several types of noise: thermal noise, shot noise (due to DC current), and
flicker noise (a frequency-related noise).

Adding noise information to a template is not difficult, and the procedure is
the same for all types of noise. In general, it consists of the following:

• Define the name of the noise source as a val variable (a local variable).

• Provide the defining expression for the noise variable (the val variable).
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• In the control section, insert a noise_source  statement that supplies
one of the following kinds of information:

• If the noise source is a current source, the statement describes the
location of the noise source in terms of the connection points or
internal nodes.

• If the noise source is a voltage source, the statement associates the
name of the noise source with a var variable (a system variable).

If there is more than one noise source, the control section must contain a
separate variable, definition, and statement for each.

Adding Noise to a Resistor MAST Template

For reference, the resistor template without the noise functionality is shown
as follows:

For this example, only the thermal noise through the resistor will be added.
This noise source is defined as a current source in parallel with the resistor, as
shown in the figure below. Note that there is no direction associated with the
current source.

template resistor p m = res
electrical p, m
number res

{
equations  {

i(p->m) += (v(p)-v(m))/res
}

}

p m

Defining a noise generator
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To include thermal noise effects in the template, the following expression is
used to define them:

where:

Note that it is necessary to declare variables for Boltzmann’s constant and
temperature, in addition to the noise source variable. The following
resistor_2 template includes the noise functionality:

noise = (abs(4kT/r))

k is Boltzmann’s constant (1.38 * 10  joules/K)

T is the temperature in K

r is the specified resistance

template resistor_2 p m = res
electrical p, m
number res
external number temp #noise-related

{
val ni nsr #noise-related
number k = 1.38e-23 #noise-related
number t #noise-related
parameters  {

t = temp + 273.15 #noise-related
}
values  {

nsr = sqrt(abs(4.0*k*t/res)) #noise-related
}
control_section  {

noise_source (nsr, p, m) #noise-related
}

equations {
i(p->m) += (v(p)-v(m))/res

}
}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
resistor_2.sin

1/2

-23
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resistor_2 T emplate T opics

The following topics describe the resistor_2 template:

• Header Declarations

• Local Declarations

• Expression for Noise

• Control Section -- shows how to use the noise_source  statement in
the control section.

Header Declarations

The variable for simulation temperature (temp , in °C) is declared in the
header declarations section:

Local Declarations

A unit is provided for thermal noise (ni ) generated by a current source, which
is defined in A/√Hz. By declaring a noise variable as a val variable, you can
assign the unit ni  to it. For example, a noise variable named nsr  would be
declared as follows:

The constants used to calculate noise must also have local declarations:

Because the value defined externally for temp is in °C, a statement is required
to convert the temperature (t ) to kelvins:

external number temp #noise-related

val ni nsr

number k = 1.38e-23
number t

t = temp + 273.15
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Expression for Noise

Using these variable names for the noise generator, insert a statement to
perform the noise calculation as follows:

The statement in the values section uses two intrinsic functions: sqrt , the
square root function, and abs , the absolute value function.

Control Section

A noise_source  statement is used in the control section. It identifies the
noise source in relation to the rest of the template. If the noise source is a
current source, as in this template, the statement contains the name of the
pins (or internal nodes) to which the noise generator is connected. If one side
of it is connected to ground, only the other need be listed, in which case the
simulator assumes that the other side is grounded.

In this example, the noise source nsr  is connected between pins p and m.
Therefore, the complete control section is as follows:

The noise_source statement adds the noise to p and subtracts it from m.
Alternately, because the noise analysis ignores the sign of the noise source,
the following statement would be an equivalent statement (swapping
positions of m and p):

For a noise current source, the general form of the noise_source  statement
in the control section is as follows:

values  {
nsr = sqrt(abs(4.0*k*t/res)) #noise-related

}

control_section  {
noise_source (nsr, p, m) #noise-related

}

noise_source (nsr, m, p)

noise_source ( val_name, pin [, pin])
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For a noise voltage source, the form of the statement would be as shown below,
where var_name is the name of a var variable defining the current through
the voltage source.

Adding Noise to a Voltage Source MAST Template

Adding a voltage noise source requires the following three types of
statements:

• Define the name of the noise source as a val variable.

• Provide the defining expression for the noise variable (the val variable).

• In the control section, insert a noise_source  statement that
associates the name of the noise source with a var variable.

However, because a var variable is required in the noise_source  statement
for this template, the var variable must appear in a template equation (as
implemented for the opamp template.

Adding the necessary noise source statements to the vsource template makes
it the vsource_3 template shown below. These statements are indicated with
comments.

noise_source ( val_name, var_name)
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Note that the noise voltage has been made available as an argument (noise ),
which is then assigned to the noise val variable, nsv .

Adding Noise to the MAST diode Template

The diode template defines a simplified diode model. In a more fully-defined
diode model, such as the d template in the Standard Template Library, all
three types of noise are defined. However, this template incorporates only the
shot noise from the DC current.

The shot noise is defined as a current source, and it is connected between pins
p and m. The defining equation for shot noise is as follows:

where qe is the charge on the electron and id is the current through the diode
(both previously defined in the template).

template vsource_3 p m = vs, noise

electrical p, m

number vs, noise # add argument for noise

{

var i i

val nv nsv # (1) declare noise val

values {

nsv = noise # (2) set value of noise val

}

control_section {

noise_source(nsv, i) # (3) associate noise val

} #     with var i

equations {

i(p->m) += i

i: v(p)-v(m) = vs

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource_3.sin

nsi = sqrt(2*qe*abs(id))
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Therefore, only three statements need be added to this template to define shot
noise:

• Define the name of the noise source as a val :

• Provide the defining expression for the noise variable:

• In the control section, insert a noise_source  statement that
associates the name of the noise source with a var variable:

From this example, it should be clear that adding noise information is a very
straightforward process, regardless of the complexity of the template. Adding
the other noise information (thermal noise and/or flicker noise) is simply a
matter of defining each necessary variable, adding its defining expression, and
inserting its noise_source  statement in the control section of the template.

val ni nsi

nsi = sqrt(2*qe*abs(id))

noise_source(nsi, p, n)
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Statistical Modeling
Statistical modeling (also known as a Monte Carlo analysis) includes the
features that are described in the following topics:

• Varying Values in a Simple Voltage Divider

• Probability Density Functions (PDFs)

• Cumulative Density Functions (CDFs)

• Correlating Distributions

• Modifying Uniform and Normal Default Distributions

• Parameterized PDF and CDF Specifications

• The random MAST Function

• Use of the statistical MAST Simvar Variable

• Worst-Case Statistical MAST Modeling

These features enable you to define a model with built-in variability. Then the
simulator, running an mc (Monte Carlo) command, uses the model to run a
series of simulations, where each simulation uses a new set of values for the
variable parameters.

Thus, it is possible to use the Saber simulator in a statistical or non-statistical
(deterministic) environment.
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Introduction

Models for a particular component or design are described with equations and
accompanying coefficients (model parameters). In some models the model
parameters are assumed to be constants that characterize the object. This is a
good assumption when the model represents a single sample of a component
or circuit. However, another sample of the same component or circuit might be
better characterized by a slightly different set of model parameters due to the
tolerances of the components.

The topic of statistical modeling introduces the notion that a model parameter
may be best described as a collection of possible values, with each value
having its own likelihood of occurring. Statistical modeling describes the
process of varying model parameters in a precise, yet random, way. This
method defines parameters statistically.

Varying Values in a Simple Voltage Divider

Assume you are designing the simple voltage divider circuit shown in the
following figure, consisting of two resistors and a voltage source.

For simulation, this circuit has the following netlist:

v.battery in 0   = 9
r.1       in mid  = 470k
r.2       mid 0   = 100k

in

mid

9.0V
v.battery

r.1  470 k

r.2  100 k

Simple voltage divider
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Varying Values in a Simple Voltage Divider
The voltage source is a battery whose voltage varies slightly, depending both
on the lot from which it was produced and its age. Assume the voltage varies
uniformly from 8.9 to 9.1 volts.

The resistors available are 100k resistors with gold outer bands (5% tolerance)
and 470k resistors with silver outer bands (10% tolerance). You do some
measurements and discover that the resistor variation has a normal
distribution around the nominal value. The standard deviation is
approximately one third of the tolerance, so that, for example, ±0.10*470000,
would be the tolerance for the 470k resistor. Statistically, 99.7% of the 470k
resistors will actually have resistances between 423k (470k - 47k) and 517k
(470k + 47k).

The goal is to determine the nominal value of the voltage at the mid  node,
along with the expected distribution of this voltage based on the distributions
of the battery voltage and resistor values.

A simple DC analysis using this circuit produces the result that the voltage at
mid  is 1.5789 volts. To add the variations to this model, include the uniform
and normal  intrinsic distribution functions in the netlist:

You can then perform a Monte Carlo DC analysis with this circuit, which
produces many DC analysis results—each one randomly varying all
distributed parameters. If you simulate enough times (the number of
simulations is a Monte Carlo analysis parameter), you can clearly see the
distribution of the voltage at mid  (see the figure below). The normal

v.battery in 0    = uniform(9, 8.9, 9.1)
r.1       in mid  = normal(470k, 0.1)
r.2      mid 0    = normal(100k, 0.05)
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Chapter 8: Statistical Modeling
distribution in the figure below was produced with 300 simulations; the
average is near the expected 1.5789 volts.

From this analysis, observe that the voltage at mid  is likely to vary between
1.45 and 1.7 volts. This information lets you decide either to accept this
variation as being within your design specification or to adjust your design to
compensate for the variation.

Probability Density Functions (PDFs)

The primary tool for describing model parameter variations is the probability
density function (PDF). Among the types of PDFs are the following:

• Intrinsic Probability Density Functions

• Uniform Probability Density Function

• Normal Probability Density Function

• Piecewise Linear Probability Density Function

The PDF is a continuous function of an independent variable, say x , such that,
for real numbers a and b, the probability that a random value of x  will be
between a and b is the area under the PDF curve between a and b. For
example, the following figure shows the distribution of the resistor r.1 , which
is used in the voltage divider example in the preceding topic. The uniform

1.45 1.5 1.55 1.6 1.65 1.7 1.75
(V)
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40

50
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80
(counts)

voltage at mid

Histogram of voltages at mid
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Probability Density Functions (PDFs)
and normal  intrinsic functions, used in the voltage divider example, are
nothing more than predefined probability density functions.

The X-axis is the value of resistance; the Y-axis is the probability density. The
distribution is normal in this example. The normal distribution has the
familiar bell-shaped curve. The average (also called expected) value of the
normal distribution corresponds to the peak of the curve. This means that the
values of resistance (X-axis values) with the highest probability of occurring
(Y-axis value) are those near the average value. The total area under the
curve, from −infinity to infinity, must equal 1. This means that, for r.1 in the
example, the probability is 1 that the resistance value of a resistor taken from
a bin full of 470k resistors will be between−infinity and infinity. This obviously
must be true.

Intrinsic Probability Density Functions

The topic titled "Probability Density Functions (PDFs)" on the previous page
introduces two examples of intrinsic PDFs: normal  and uniform . Another
intrinsic PDF is the piecewise linear (pwl ). All three are discussed in more
detail below.

It is useful to think of a PDF as follows:

1. Begin with the basic, normalized, distribution, called the prototype
distribution (MAST provides three intrinsic functions: normal ,
uniform , and pwl ).

PDF

423k 470k 517k
Ω

Normal PDF for resistor r.1
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Chapter 8: Statistical Modeling
2. Use a scaling multiplier (that stretches or compresses the distribution)
and an offset factor (that shifts it right or left) to customize the
prototype distribution for the application. The resulting distribution is
called the actual value distribution.

In other words, you first describe the prototype distribution, then you define
the parameters that modify the prototype into the corresponding actual
distribution.

Uniform Probability Density Function

The prototype distribution for the uniform probability density function is
illustrated in the figure below. The default nominal value is 0 and the limits
are 1 and −1.

By passing parameters to the uniform function, you can modify the prototype
uniform distribution to shift the nominal value and scale the limits. The
uniform  function has several forms, including the following two:

where the arguments have the following meanings:

uniform( nominal_value, lower_limit, upper_limit)
uniform ( nominal_value, tolerance)

nominal_value the listed, or stated value; often, the intended value

lower_limit the smallest value of the distribution

PDF

-1 0 +1

Uniform prototype distribution
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Probability Density Functions (PDFs)
This second form of the uniform function shown above is used if the uniform
distribution is symmetrical with respect to nominal_value.

Regardless of how you specify an actual value uniform distribution from its
corresponding prototype distribution, it must satisfy the following
requirements:

• The nominal_value of the actual value distribution corresponds to the 0
value of the prototype distribution.

• The lower_limit of the actual value distribution corresponds to the -1
value of the prototype distribution.

• The upper_limit of the actual value distribution corresponds to the 1
value of the prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

The battery voltage source example from the topic titled "Varying Values in a
Simple Voltage Divider" illustrates using the uniform distribution:

upper_limit the largest value of the distribution

tolerance a value greater than −1 and less than 1, such that the
limits of the distribution are nominal_value +
tolerance* nominal_value and nominal_value -
tolerance* nominal_value

v.battery in 0 = uniform(9, 8.9, 9.1)
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Chapter 8: Statistical Modeling
This means that all values between 8.9 volts and 9.1 volts are equally likely.
The figure below shows this actual value uniform distribution for battery
voltage.

The same effect could have been achieved by specifying a tolerance value
rather than limits as follows:

The uniform  function can detect that if two arguments are specified, they
indicate the nominal value and the tolerance; whereas three arguments
indicate the nominal, minimum, and maximum values, respectively.

The uniform  function can have other arguments as well as described in the
topic titled "Modifying a Uniform Prototype Distribution".

Normal Probability Density Function

The prototype distribution for the normal probability density function is
illustrated in the figure below. The default nominal value is 0 and the limits
are 1 and -1. The limits correspond to the 3σ and −3σ points, respectively,
where σ is the normal distribution’s standard deviation.

v.battery in 0 = uniform(9, 0.01111)

PDF

8.9 9.0 9.1

Battery
voltage

Uniform actual value distribution
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By passing parameters to the normal  function, you can modify the prototype
normal distribution to shift the nominal value and scale the limits. The
normal  function has several forms, including the following:

where the arguments have the following meanings:

The second form of the normal distribution shown above applies if the normal
distribution is symmetrical with respect to nominal_value.

normal( nominal_value, lower_limit, upper_limit)
normal( nominal_value, tolerance)

nominal_value The listed or stated value; often, the intended value.

lower_limit The −3σ value (when using the default) of the
distribution, where σ is the standard deviation of the
normal distribution. You may change the multiplier of s
from its default of -3.

upper_limit The +3σ value of the distribution, where σ is the
standard deviation of the normal distribution. You may
change the multiplier of σ from its default of 3.

tolerance A value greater than −1 and less than 1, such that the
limits of the distribution are nominal_value +
tolerance* nominal_value and nominal_value -
tolerance* nominal_value. The tolerance specifies the 3σ
limit.

PDF

−1 0 +1

Normal prototype distribution
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Chapter 8: Statistical Modeling
The normal  function automatically detects that if two arguments are
specified, they indicate nominal value and tolerance, whereas three
arguments indicate nominal_value, nominal_value − 3σ, and nominal_value +
3σ, where the two 3σ values need not be equal. If they are unequal, then the
left side of the distribution is normal with one standard deviation, while the
right side is normal with a different standard deviation.

Regardless of how you specify an actual value normal distribution from the
normal prototype, it must satisfy the following requirements:

• The nominal_value of the actual value distribution corresponds to the 0
value of the prototype distribution.

• The lower_limit of the actual value distribution corresponds to the −1
value of the prototype distribution, which corresponds to the −3σ.

• The upper_limit of the actual value distribution corresponds to the +1
value of the prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

The resistor r.1  from the example in the topic titled "Varying Values in a
Simple Voltage Divider" illustrates the use of the normal distribution:

This means that the resistance values for resistor r.1  follow the normal
distribution, with a nominal value of 470 kΩ and a tolerance of 0.1. Thus, the
−3σ limit is 470kΩ − (470kΩ•0.1) = 423kΩ, and the +3σ limit is 470kΩ +
(470kΩ•0.1) = 517kΩ. Because the 3σ value is 470kΩ•0.1 or 47kΩ, then the
value of one standard deviation (σ) would be 47kΩ/3 or 15.67kΩ.

The figure below shows the actual value normal distribution. The tolerance
specifies the symmetrical ±3σ limits. Using 3σ as the tolerance means that,

r.1 in mid = normal(470k, 0.1)
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given a randomly selected resistor from the batch, the probability that its
resistance lies inside the tolerance (i.e., between ±3σ) is approximately 0.997.

You could have achieved exactly the same effect by specifying limits rather
than a tolerance:

The normal  function can have other arguments as well, see the topic titled
"Modifying a Uniform Prototype Distribution".

Piecewise Linear Probability Density Function

The piecewise linear probability density function has no default prototype
PDF. The use of a piecewise linear PDF provides a great amount of flexibility.
Accordingly, its use requires more complex constructs. The following steps are
required to create a piecewise linear PDF:

1. Create a prototype PDF. Because the piecewise linear prototype can be
anything, it must first be defined (unlike the uniform or normal
prototype PDFs, which are uniquely defined).

2. Map actual values to the prototype PDF.

3. Use the resulting actual value PDF in a netlist.

These steps are expanded in the following topics to change the distribution for
r.1  in the example to use a piecewise linear PDF.

r.1 in mid = normal(470k, 423k, 517k)

PDF

423k 470k 517k

resistance
of r.1

Normal actual value distribution
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Chapter 8: Statistical Modeling
1. Creating a Piece wise Linear Pr ototype PDF

Creating a piecewise linear prototype PDF requires a structure parameter
similar to the following:

This structure (named p_pwl ) declares the local variable that is to hold the
prototype piecewise linear PDF. The pwl  intrinsic function, to be used in the
netlist specification, looks for this structure. You can use this structure in a
netlist, as described in the topic titled "3. Using a Piecewise Linear Prototype
PDF in a Netlist", or you can include it in a template using the MAST include
construct (<) and the predefined file named distrib.sin  as follows:

The distrib.sin  file contains the definition of the p_pwl  structure shown
above (as well as other definitions of statistical distributions). Once you make
this definition of p_pwl  available, you can use it as a type to declare local
variables of the same type, which you can then modify. A convenient way of
doing this is to use the standard template, which is explained in the
following topic.

Using the Standard Template

You can declare a variable of type p_pwl  by calling the provided template
standard, which already includes the distrib.sin file (as described above).
When referenced, the standard template declares an argument named
p_pwl as the correct type. This allows you to use an argdef (..) declaration
to declare a local variable of this type from standard. Refer to the MAST
Reference Manual for information on the argdef  operator. An example of
doing this using a local parameter named ppwl1  is shown below.

struc p_pwl {
enum {_pdf,_cdf} type
struc {number x, y;} pwl[*]

}

<distrib.sin
8-12 Saber MAST Language, Book 2, User Guide (Dec. 2004)
Copyright © 1985-2004 Synopsys, Inc.



Probability Density Functions (PDFs)
Example

Consider the triangle-shaped distribution shown in the following figure:

This prototype PDF can be specified with the following declaration in a
template:

The declaration of the p_pwl structure is called from the standard template
and given the local name of ppwl1  for this particular template (i.e., p_pwl
and ppwl1  are the same type of parameter).

The type field is initialized to _pdf , indicating that it is a PDF (as opposed to
a cumulative density function, CDF, see the topic titled "Cumulative Density
Functions (CDFs)"). The pwl  field is an array of coordinate pairs that
correspond to the points shown on the PDF. This declaration and initialization
of the local variable named ppwl1  completes the creation of the prototype
piecewise linear PDF called ppwl1 .

If the type  field is _pdf , the ordered pairs (x, y) in the pwl  field must satisfy
the following requirements:

• There must be at least two (x, y) pairs.

• The x values must be monotonically non-decreasing.

• The y values must be ≥ 0.

standard..p_pwl
ppwl1=(type=_pdf,pwl=[(1,0),(0,1),(1,0)])

PDF

−1 0 +1

1

Example piecewise linear prototype PDF
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Chapter 8: Statistical Modeling
• The first x value (x1) must be <0, and the last (xn) must be > 0. (The
simulator uses these values as truncation bounds when assigning
random values to the distribution.)

• The integral of the PDF, from x1 to xn, must be positive (not necessarily
1). Note that this implies that at least one y value must be > 0.

2. Correspondence Between Actual V alues and Pr ototype PDF V alues

Once the prototype piecewise linear PDF is defined, you can use it to create an
actual value piecewise linear PDF. You do this by passing parameters to the
pwl  function, which has the following format:

where:

You can specify either nominal_value and tolerance or nominal_value and
both lower_limit and upper_limit. If you specify the tolerance, then you must
set lower_limit and upper_limit to undef . On the other hand, if you specify
the lower_limit and upper_limit, you must set the tolerance equal to undef .
You must identify prototype.

Regardless of how you specify an actual value piecewise linear distribution, it
must satisfy the following requirements:

• The nominal_value of the actual value distribution corresponds to value
0 of the prototype distribution.

• The lower_limit of the actual value distribution corresponds to value -1
of the prototype distribution.

pwl( nominal_value,  tolerance,  lower_limit,  upper_limit,
prototype)

nominal_value the value that the distribution is to have in a
deterministic (non-statistical) environment.

tolerance either undef or a numeric value between -1 and 1—if it
is a numeric value, then the upper and lower limits of
the distribution are nominal_value +
tolerance* nominal_value and nominal_value -
tolerance* nominal_value

lower_limit either undef  or a numeric value less than
nominal_value

upper_limit either undef  or a numeric value greater than
nominal_value

prototype the name of the prototype piecewise linear PDF
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• The upper_limit of the actual value distribution corresponds to value 1
of the prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

3. Using a Piece wise Linear Pr ototype PDF in a Netlist

The following example duplicates the example given at the beginning of the
Statisical Modeling topic with one exception: the resistor r.1  has a piecewise
linear distribution. This is implemented in the netlist as follows (note the
comments):

The above example specifies for the resistor r.1  the actual value PDF by
giving the nominal value (470k, the value used in non-statistical analyses),
the tolerance value (0.1), two undefined values (for the upper and lower
bound), and the name of the prototype distribution (ppwl1 ). The figure below
shows the resulting actual value PDF for the r.1  resistor.

# creates prototype pwl PDF

standard..p_pwl ppwl1=(type=_pdf,pwl=[(-1,0),(0,1),(1,0)])

v.battery in 0   = uniform(9, 8.9, 9.1)

# map values from pwl PDF to r.1

r.1       in mid = pwl(470k, 0.1, undef, undef, ppwl1)

r.2       mid 0  = normal(100k, 0.05)
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Chapter 8: Statistical Modeling
The following is an alternate way of specifying the same distribution:

This example specifies, for the resistor r.1 , the actual value PDF by giving
the nominal value (470k), the tolerance (undef ), the upper and lower bounds
(423k and 517k, respectively), and the name of the prototype PDF (ppwl1 ).

Note that in each example either the tolerance or both upper and lower limits
must be undef . It is an error to specify numeric values for all three, even
though all three must have values. The pwl  intrinsic function, unlike the
uniform  and normal  functions, cannot infer the tolerance or the limits from
the context of the calling sequence.

Cumulative Density Functions (CDFs)

The probability density function (PDF) is a common way of specifying the
statistical variations of a design parameter. However, sometimes it is more

standard..p_pwl ppwl1=(type=_pdf, pwl=[(1,0),(0,1),(1,0)])

# same as above

v.battery in 0   = uniform(9, 8.9, 9.1)

r.1       in mid = pwl(470k, undef, 423k, 517k, ppwl1)

# alternate method

r.2     mid 0 = normal(100k, 0.05)

PDF

423k 470k 517k

1

resistance
of  r.1

Actual value PDF for resistor r.1
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convenient to specify a function of cumulative probability, the cumulative
density function (CDF). Both the PDF and the corresponding CDF describe
the same distribution, but they do so in slightly different ways as shown in the
following figure:

The CDF, like the PDF, is a function of x, where x ranges from −infinity to
infinity. The value of a CDF at x is the integral of the PDF, evaluated between
−infinity and x.

In other words, the CDF at any point x is the probability that a sample from
the distribution has a value less than x. Obviously, at x equals infinity the
value of the CDF function must equal 1, because the probability that a sample
from any distribution will be less than infinity is 1. Correspondingly, the CDF
function must equal 0 at x equals −infinity, because the probability that a
sample from any distribution will be less than -infinity is 0. The figure below
shows an example of a uniform PDF and its corresponding CDF.

Some distributions, such as those with only discrete values, cannot be
described using a PDF. Consider, for example, an experiment that consists of
flipping a coin and assigning value 1 if the coin lands with heads showing and
−1 if it lands with tails showing. This experiment has a binary distribution,
with heads and tails each having probability 0.5. It is not possible to describe
this distribution using a PDF, because the area under the points at 1 and −1
would each have to be 0.5, but the area under any other point cannot exceed 0.

PDF

0.5

−1 0 +1

CDF

0.5

−1 0 +1

1

PDF and corresponding CDF
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Chapter 8: Statistical Modeling
The CDF for this binary distribution, however, is easily demonstrated in the
following figure:

The cumulative probability that a sampled value will be less than −1 is zero.
The cumulative probability that a sampled value will be less than 1 is 0.5. The
cumulative probability that a sampled value will be less than any number
greater than 1 is 1.

Intrinsic Piecewise Linear Cumulative Density Function

The only intrinsic CDFs provided are those that correspond to piecewise
linear PDFs. The following steps are required to create a piecewise linear
CDF:

1. Create a prototype CDF.

2. Map actual values to the prototype CDF.

3. Use the resulting actual value CDF in a netlist.

These steps are expanded in the following topics to change the distribution for
v.battery  in the example to use a piecewise linear CDF. The result is a
specification that produces simulation results identical to those of the uniform
PDF specification used in the topic titled "Uniform Probability Density
Function".

CDF

0.5

-1 0 +1

1

CDF for a binary distribution
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1. Creating a Piece wise Linear Pr ototype CDF

Creating a piecewise linear prototype CDF requires a structure parameter
similar to the following (the same as for a prototype PDF, explained in the
topic titled "1. Creating a Piecewise Linear Prototype PDF"):

This structure (named p_pwl ) declares the local variable that is to hold the
prototype piecewise linear CDF. The pwl  function used in the netlist
specification searches for this structure. You can use this structure in a
netlist, as described in the topic titled "3. Using a Piecewise Linear Prototype
CDF in a Netlist", or you can include it in a template using the MAST include
construct (<) and the pre-defined file named distrib.sin :

As explained in the topic titled "Using the Standard Template" for a prototype
PDF, you can use the standard template, which already includes the
distrib.sin  file as described above. The standard template declares an
argument named p_pwl  as the correct type. You can then use an argdef
(..)  declaration to declare a local parameter of this type referenced from
standard. An example of doing this using a local parameter named cpwl1 is
shown below.

struc p_pwl {
enum {_pdf,_cdf} type
struc {number x,y;} pwl[*]

}

<distrib.sin
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Example

Consider the uniform prototype distribution shown in the upper portion of the
following figure. It corresponds to the PDF used in the original v.battery
example. The corresponding CDF is shown in the lower portion of the figure.

You can specify this prototype CDF in a template with the following
declaration:

The declaration of the p_pwl structure is called from the standard template
and given the local name of cpwl1  for this particular template ( p_pwl  and
cpwl1  are the same type of parameter). The type  field is initialized to _cdf ,
indicating that it is a CDF (as opposed to a PDF). The pwl  field is an array of
coordinate pairs that correspond to the points on the CDF shown in the lower
portion of the previous figure. This declaration and initialization of the
variable named cpwl1  completes the creation of the prototype piecewise
linear CDF called cpwl1 .

If the type  field is _cdf , the ordered pairs (x, y) in the pwl  field must satisfy
the following requirements:

• There must be at least two (x, y) pairs.

• The x and y values must be monotonically non-decreasing.

• The y values must be ≥ 0.

standard..p_pwl cpwl1 = (type=_cdf, pwl=[(-1,0),(1,1)])

PDF

0.5

-1 0 +1

CDF

0.5

-1 0 +1

1

Prototype uniform PDF (above), corresponding CDF (below)
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• The first x value (x1) must be < 0, and the last (xn) must be > 0. The
simulator uses these as truncation bounds when assigning random
values to the distribution.

• The first y value must equal 0, the last y value must be greater than 0.

2. Correspondence Between Actual V alues and Pr ototype CDF V alues

Once the piecewise linear prototype CDF is defined, you can use it to create an
actual value CDF. You do this by passing parameters to the pwl  function,
which has the following format:

where:

You can specify either nominal_value and tolerance or nominal_value and
both lower_limit and upper_limit. If you specify the tolerance, then you must
set lower_limit and upper_limit to undef . On the other hand, if you specify
the lower_limit and upper_limit, you must set the tolerance equal to undef .
You must identify prototype.

Regardless of how you specify an actual value piecewise linear distribution, it
must satisfy the following requirements:

• The nominal_value of the actual value distribution corresponds to value
0 of the prototype distribution.

• The lower_limit of the actual value distribution corresponds to value −1
of the prototype distribution.

pwl( nominal_value,  tolerance, lower_limit, upper_limit,
prototype)

nominal_value the value the distribution has in a deterministic
environment.

tolerance either undef or a numeric value between -1 and 1—if it
is a numeric value, then the upper and lower limits of
the distribution are nominal_value +
tolerance* nominal_value and nominal_value -
tolerance *  nominal_value

lower_limit either undef  or a numeric value less than
nominal_value

upper_limit either undef  or a numeric value greater than
nominal_value

prototype the name of the piecewise linear prototype CDF
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• The upper_limit of the actual value distribution corresponds to value 1
of the prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

3. Using a Piece wise Linear Pr ototype CDF in a Netlist

The following example duplicates the example given in the topic titled
"Probability Density Functions (PDFs)", with one exception: the v.battery
voltage source has a piecewise linear cumulative distribution that is
equivalent to the original uniform distribution.

This example specifies the actual value CDF by giving the nominal value (9,
which is the value used in non-statistical analyses), an undefined tolerance
value, the lower and upper values (8.9 and 9.1, respectively), and the name of
the prototype distribution (cpwl1 ).

The following is an alternate way of specifying the same distribution:

This method specifies the actual value CDF by giving the nominal value (9),
the tolerance (0.01111 ), the lower and upper bounds (both undef ), and the
name of the prototype CDF (cpwl1 ).

Note that in each example either tolerance OR both upper and lower limits
must be undef . It is an error to specify numeric values for all three, even
though all three must have values. The pwl  intrinsic function, unlike the

# create prototype pwl CDF
standard..p_pwl cpwl1 = (type=_cdf,pwl=[(-1,0),(1,1)])

# map values from pwl CDF to v.battery
v.battery in 0   = pwl(9, undef, 8.9, 9.1, cpwl1)
r.1       in mid = normal(470k, 0.1)
r.2       mid 0   = normal(100k,0.05)

standard..p_pwl cpwl1 = (type=_cdf,pwl=[(-1,0),(1,1)])
# same as above

# alternate method of specifying v.battery
v.battery in 0 = pwl(9, 0.01111, undef, undef,

cpwl1)
r.1       in mid = normal(470k, 0.1)
r.2       mid 0   = normal(100k, 0.05)
8-22 Saber MAST Language, Book 2, User Guide (Dec. 2004)
Copyright © 1985-2004 Synopsys, Inc.



Correlating Distributions
uniform  and normal  functions, cannot infer the tolerance or limits from the
context of the calling sequence.

The following figure shows the resulting actual value PDF and CDF for the
voltage of v.battery .

Correlating Distributions

Sometimes it is desirable to model two or more quantities that tend to vary
together. For example, two resistors may be manufactured on an integrated
circuit. The resistor values may vary a great deal from wafer to wafer, or even
from die to die. However, the resistors on the same die may tend to vary
together. That is, if one resistor is at the high end of its range, others from that
die tend to be at the high end of their ranges as well. When this occurs, the
resistor values are said to be correlated.

Correlation occurs in numerous actual applications. The objective of this topic
is to explain how this kind of variation can be modeled with constructs already
described.

The voltage divider example (in the topic titled "Varying Values in a Simple
Voltage Divider") can be used to show how to correlate two parameters.
Assume that the two resistor values in the voltage divider are uniformly

PDF

0.5

8.9 9.0 9.1

CDF

0.5

8.9 9.0 9.1

1

voltage of
v.battery

voltage of
v.battery

Actual value PDF for v.battery voltage

Actual value CDF for v.battery voltage
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Chapter 8: Statistical Modeling
distributed with a tolerance of 10%, and that they correlate with each other
within 0.5%. The following netlist implements these relationships:

The first line declares an arbitrarily named variable called common and uses
an initializer (by invoking the uniform  function) to assign a value from a
uniform distribution. This uniform distribution has a nominal value of 1 and a
10% tolerance. The resistor netlist entries (r.1 , r.2 ) use the commonvariable
as a multiplier, providing the desired correlation. These resistor netlist entries
also provide a 0.5% correlated variation.

Therefore, each resistor will have values that vary with a 10% tolerance, but
they will vary (relatively, in the ratio 47:10) from each other with only a 0.5%
tolerance.

Modifying Uniform and Normal Default Distributions

If necessary, you can modify the default prototype distributions provided for
the uniform and normal distributions. Modifying these default distributions is
similar to defining piecewise linear distributions.

There are several reasons for changing the default prototype distributions:

• To create uniform distributions that are asymmetrical about the
nominal value

• To create uniform distributions with limits that are a multiple of the
limits of a piecewise linear distribution

• To truncate either side of a normal distribution

• To change the standard deviation of a normal distribution

number common=uniform(1,0.1)

v.battery in 0  = uniform(9, 8.9, 9.1)
r.1     in mid  = normal(common*470k, 0.005)
r.2      mid 0  = normal(common*100k, 0.005)
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Modifying a Uniform Prototype Distribution

To modify a uniform prototype PDF, use a MAST structure parameter such as
the following:

You can implement this in any of the following ways:

• Use this structure in a netlist

• Include it in a template preceded by <distrib.sin as described in the
topic titled "Creating a Piecewise Linear Prototype PDF"

• Include it in a template as by calling it from the standard template by
using an argdef (..)  declaration as described in the topic titled
"Using the Standard Template"

The p_uniform  structure defines the uniform prototype distribution. The
default values for min  and max are −1 and 1, respectively. Note that the min
and max values are not the values that become associated with the limits
named lower  and upper  in the following use of the uniform  function:

The limits of the function call always map to −1 and 1 in the prototype
distribution. Therefore, if min and max are specified to be other than −1 and 1,
the actual value PDF will have values defined above or below the specified
lower  and upper  limits.

You can modify the prototype distribution in either of the following ways:

1. Using a variable initializer

2. Modifying, in the template body, variables of the structure defined
using the p_uniform  prototype PDF

1. Modifying a Unif orm Pr ototype PDF Using Initializ ers

It is not necessary to declare a prototype variable when using the default.
However, modifying the default prototype PDF requires a variable
declaration. The most direct way is to use initializers when defining the

struc p_uniform {
number min=-1
number max=1

}

uniform(nominal, lower, upper)
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Chapter 8: Statistical Modeling
prototype variable patterned after the p_uniform  prototype PDF by
including the following in the template:

The above example produces the same distribution for v.battery  as in the
original example (shown below), which was based on the values min=-1  and
max=1:

Note that, in the modified version, the uniform  function call requires
specification of all the possible arguments: nominal value (9), tolerance
(undef ), lower limit (8.95 ), upper limit (9.2 ), and prototype name (punif ).
The uniform  function has the following general syntax:

where:

When using a non-default prototype function, you must specify all
parameters, with either tolerance set to undef  or both lower_limit and
upper_limit being set to undef .

Note that producing the symmetry of the original distribution required
specifying asymmetrical limits in the function call. This is because the scaling

standard..p_uniform punif =(min=-2, max=0.5)
v.battery in 0 = uniform(9, undef, 8.95, 9.2, punif)

v.battery in 0 = uniform(9, 8.9, 9.1)

uniform( nominal_value, tolerance, lower_limit,
upper_limit, prototype)

nominal_value the value that the distribution is to have in a
deterministic (non-statistical) environment.

tolerance either undef or a numeric value between -1 and 1—if it
is a numeric value, then the upper and lower limits of
the distribution are nominal_value +
tolerance* nominal_value and nominal_value −
tolerance *  nominal_value

lower_limit either undef  or a numeric value less than
nominal_value

upper_limit either undef  or a numeric value greater than
nominal_value

prototype the name of the prototype uniform PDF
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Modifying Uniform and Normal Default Distributions
on the two sides of the nominal value are different, as shown in the following
figure:

The scaling is different because of the mapping between the prototype
distribution and the parameters passed to the uniform  function:

• The parameter value 8.95 maps to the prototype value −1

• The parameter value 0 maps to the prototype value 0

• The parameter value 9.2 maps to the prototype value +1

The result is a uniform distribution between 8.9 and 9.1.

2. Modifying a Unif orm Pr ototype PDF in a T emplate

You can obtain the same results as above (using an initializer) by modifying
the prototype PDF in the template body, as follows:

standard..p_uniform punif
punif->min = -2
punif->max = 0.5

v.battery in 0 = uniform(9, undef, 8.95, 9.2,
punif)

PDF

0.4

8.9 9.0 9.1
actual value of x

9.28.95

PDF

0.4

-2 0 0.5
prototype x

1-1

Uniform PDF using non-default prototype
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Chapter 8: Statistical Modeling
The example just given produces the same distribution for v.battery  as the
previous example (reproduced below):

Modifying a Normal Prototype Distribution

Modifying a normal prototype PDF requires the use of a MAST structure
similar to the following:

As shown above for a uniform distribution, you can implement this in any of
the following ways:

• Use this structure in a netlist

• Include it in a template, preceded by <distrib.sin , as described in
the topic titled "Creating a Piecewise Linear Prototype PDF"

• Include it in a template, calling it from the standard template by
using an argdef (..)  declaration, as described in the topic titled
"Using the Standard Template"

The p_normal  structure defines the normal prototype distribution. The
default value for the mean is 0. The default value for the standard deviation is
1/3. The default values for min  and max are both undef , which defines the
distribution from −infinity to infinity. Otherwise, the distribution is truncated
at the specified value.

Note that the min  and max values are not the values mapped to the lower
and upper  limits in the following call to the normal  function:

The limits of the function call always map to −1 and 1 in the prototype
distribution.

The values of min  and max are used only to specify the point at which the
distribution becomes truncated. If the values of min and max are left at undef
(the default) then the actual value PDF continues from −infinity to infinity. If

v.battery in 0 = uniform(9, 8.9, 9.1)

struc p_normal {
number mean=0
number std_dev=0.33333333333333
number min=undef
number max=undef

}

normal(nominal, lower, upper)
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the values of min  and max are specified as −1 and 1, then the actual value
PDF will be truncated at the specified limits (lower and upper ). If the values
of min  and max are specified to be other than -1 and 1, the actual value PDF
will be truncated accordingly. This is shown in the example that follows.

You can modify the prototype distribution in either of the following ways:

1. Using a variable initializer

2. Modifying, in the template body, variables of the structure defined
using the p_normal  prototype PDF

1. Modifying a Normal Pr ototype PDF using Initializ ers

It is not necessary to declare a prototype variable when using the default.
However, modifying the default prototype PDF requires a variable
declaration. The most direct way is to use initializers when defining the
prototype variable patterned after the p_normal prototype PDF by including
the following in the template:

The above example produces a distribution somewhat like that for r.1  in the
original example (shown below):

However, the modified distribution differs by having an actual value
distribution whose standard deviation is (470k•0.1)/4, rather than
(470k•0.1)/3. Also, because the upper_limit of the modified distribution was
specified as max=1, the upper end is truncated at 517k. The following figure
illustrates this modified distribution.

standard..p_normal pnorm = (std_dev=1/4, max=1)
r.1 in mid = normal(470k, 0.1, undef, undef,

pnorm)

r.1 in mid = normal(470k, 0.1)
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Chapter 8: Statistical Modeling
Note that, in the modified version, the call to the normal  function requires
specification of all the possible arguments: nominal value (470k ), tolerance
(0.1 ), lower limit (undef ), upper limit (undef ), and prototype name (pnorm ).
The normal  function has the following general syntax:

where:

When using a non-default prototype function, you must specify all
parameters, and either the tolerance or both limits must be undef .

normal( nominal_value, tolerance, lower_limit,
upper_limit, prototype)

nominal_value the value that the distribution is to have in a
deterministic (non-statistical) environment.

tolerance either undef or a numeric value between -1 and 1—if it
is a numeric value, then the upper and lower limits of
the distribution are nominal_value +
tolerance* nominal_value and nominal_value -
tolerance *  nominal_value

lower_limit either undef  or a numeric value less than
nominal_value

upper_limit either undef  or a numeric value greater than
nominal_value

prototype the name of the prototype normal PDF

423k 470k 517k

resistance
of r.1

Normal PDF using non-default prototype
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2. Modifying a Normal Pr ototype PDF in a T emplate

You can obtain the same results as above (using an initializer) by modifying
the prototype PDF in the template body, rather than in the initialization of the
variable. This modification (shown below) produces the same distribution for
r.1  as does the preceding example.

Parameterized PDF and CDF Specifications

Occasionally, it is useful to be able to change the statistical properties of a
parameter. For example, you might want to turn some parameters on
statistically or turn some off, or both. There are two intrinsic functions for this
purpose, one for PDFs, the other for CDFs. You can call them as follows:

The prototype distributions are defined in distrib.sin  as follows:

The following example shows how to use a parameterized PDF—using a
parameterized CDF is similar.

standard..p_normal pnorm=()
pnorm->std_dev = 1/4
pnorm->max = 1
r.1 in mid = normal(470k, 0.1, undef, undef,

pnorm)

parameter = pdf(nominal, tol, bounds,
prototype_pdf)

parameter = cdf(nominal, tol, bounds,
prototype_cdf)

union p_pdf {
number off=1
struc p_uniform uniform=()
struc p_normal normal=()
struc {number x,y;} pwl[*]

}
union p_cdf {

number off=1
struc {number x,y;} pwl[*]

}
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Chapter 8: Statistical Modeling
• In the local declarations section of the template, include the
declarations to specify a normal distribution:

• In the netlist section, place the following entry:

Later, when running the simulator, you could change to a uniform distribution
by entering the following command:

Note that the structure bounds  was used to simplify the specification of the
two undefined quantities required by the pdf  function call. The parameter
pdf1  specifies a normal distribution. Later, when running the simulator, you
could change to a uniform distribution by entering the following command:

The random MAST Function

The MAST language includes the random()  function, which has no
arguments. The random  function returns a pseudo-random number in the
interval that includes 0 and goes up to, but does not include, 1. The
pseudo-random sequence can be seeded when the statistical environment is
activated. For information about seeding, refer to the description of the mc
command in SaberBook.

The random()  function is useful if you want to do something with a certain
probability. For example, assume you want to flip a coin (i.e., have a variable
that takes on two discrete values with certain probabilities). Although this
could be described with the pwl  distribution, it is simpler to use the
random()  function.

standard..p_pdf pdf1 = (normal=())
struc {number min, max;} bounds =(undef,

undef)

r.1 a b =pdf(1k, 0.1, bounds, pdf1)

alter pdf1 =(uniform=())

alter pdf1 =(off=1)
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Use of the statistical MAST Simvar Variable
The following example shows how to set up a parameter that has the value 1K
with probability 0.4, and 2K with probability 0.6:

Use of the statistical MAST Simvar Variable

One of the intrinsic simulation variables is statistical , whose value is 0 if
the simulation environment is deterministic. On the other hand, it is non-zero
if the environment is statistical, such as when you execute the mc command.

When a statistical environment has been established, statistically defined
parameters take on random values according to the distribution functions
defined for them. On the other hand, such parameters take on their nominal
values if the environment is deterministic.

You can use the statistical  simvar variable if you want to do different
things in the deterministic and statistical environments. For example, you
could use it when the nominal value of the statistical distribution is different
from the deterministic value as follows:

number r, value

r = random()
if (r<.4) {

value = 1K
}
else {

value = 2K
}

if (statistical) {
resistance = normal(10k, 200)

}
else {

resistance = 8k
}
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Worst-Case Statistical MAST Modeling

It is sometimes useful to perform what is called a worst-case analysis (WCA)
on a design using Monte Carlo techniques. The MAST language supports this
through the worst_case simvar variable. This simvar variable has a value of
0 except during a Monte Carlo analysis in which the worst_case  variable is
set to yes , when it assumes a non-zero value (such as 1).

The worst_case simvar variable interacts with the statistical simvar as
follows:

You can use the worst_case  simvar variable to do different things in
standard and worst-case Monte Carlo analyses. For example, the statistical
distributions provided (such as uniform , normal , pwl ) change their behavior
depending on the value of the worst_case  simvar as follows:

• If worst_case  is 0, these distributions are implemented.

• If worst_case  is 1 (or any non-zero value), these distributions are
implemented as discrete distributions—they return, with equal
probability, only the upper and lower limit values that result after
applying the appropriate prototype distribution.

value of
statistical

value of
worst_case

Deterministic environment 0 0

Statistical environment
(Monte Carlo analysis)

1 0

Worst-case analysis in
statistical environment
(Monte Carlo analysis)

1 1
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chapter 9
Adding Stress Measures to a MAST Template
A stress measure is a definition of an operating condition for which a safe
operating limit can be specified. The operating condition will typically
correspond to a rating (or SOA) specification for a device in a manufacturer’s
data sheet.

The following steps describe a way to add stress measures to a template for
which stress ratios can then be calculated by a stress analysis.

1. Add stress_measure Statements to Template

2. Determine if Specified Variables are Accessible

3. Add Stress Ratings

4. Add Thermal Resistances (Optional)

5. Add a Way to Disable Stress (Optional)

6. Add a Way to Specify Device Type and Class (Optional)

Add stress_measure Statements to Template

Add the required stress_measure  statements to the control section of the
template as follows:

❑ Place a stress_measure  statement for each stress measure you want
to implement in the control section of your template.
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Chapter 9: Adding Stress Measures to a MAST Template
The following examples show stress_measure  statements for a
resistor template:

A stress_measure  statement takes the following form:

where

stress_measure (pdmax,power,"Max Power Diss.",
pwrd,winmax,pdmax)

stress_measure (pdavg,power,"Avg Power Diss.",
pwrd,average,pdmax)

stress_measure (tjmax,temperature,"Max Temperature",
tempj,winmax,xtjmax,tempj_tnom)

stress_measure (tjavg,temperature,"Avg temperature",
tempj,average,xtjmax,tempj_tnom)

stress_measure (tjmin,temperature,"Min Temperature",
tempj,min,xtjmin,tempj_tnom)

stress_measure (vmax,voltage,"Max Voltage",
abs(v),max,xvmax)

stress_measure (uid, gid, "name", val,
measure, rating[, ref_rating])

uid stress report formatting - (unique identification)
identifies the stress measure (for example, pdmax). The
uid is used as the value for the smeasurelist variable
of the stress command.

gid stress report formatting - (group identification)
identifies a type or grouping of stress measures to which
this stress measure belongs (for example, power )

name stress report formatting - specifies the text to be used to
describe this stress measure in a stress report (for
example, "Max Power Diss. " ). Limited to 18
characters.

val is the name of a variable in the template from which the
value of the stress measure is to be extracted using the
measurement specified in the measure field (e.g., pwrd ).
See the topic titled "Determine if Specified Variables are
Accessible" for more information about template
variables.
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measure specifies the measurement to be made on the template
variable specified in the val field. This measurement
provides the “actual” or “measured” value for the stress
ratio calculation. Possible measurements are one of:
peak , max, winmax , min , winmin , rms , and average .

When winmax  or winmin  are used (rather than max or
min ), a sliding average filter is applied to the waveform
before the maximum or minimum value is determined.
The stress command variable xwindow is used to specify
the time constant of the filter to be applied. For
additional details, see the topic titled Modeling Thermal
Networks in Electrical Circuits in the SaberBook online
documentation system.

Note that if the value for rating  is positive, the peak
measurement is equivalent to the max measurement. If
the value for rating is negative, the peak  measurement
is equivalent to the min  measurement.

rating is the manufacturer’s rating for the stress measure (e.g.,
40 , pdmax). You can enter the actual value of the rating
as a constant in this field, or you can enter a variable. If
a variable is entered, the value can be provided as an
argument in the header of the template (see the topic
titled "Add Stress Ratings"). The rating is a parameter
passed into the template and should not be confused
with the uid which may have a similar name.

ref_rating is an optional single value reference rating. When a
reference rating is specified, the measured and derated
values are referenced to this value rather than to 0
when the stress ratio is calculated. For example, you
may want to use 25° C rather than 0 as a reference for a
temperature-related stress measure (for example, for
tempj_tnom ).

The stress measures in templates in the MAST libraries
are all referenced to 0 and do not use the ref_rating
variable
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Determine if Specified Variables are Accessible

Determine if the variable specified in the val field of each stress measure is
available in the template and add if needed.

Somewhere in your template, a value must be provided from which the stress
measure can be extracted. The stress measures shown in the topic titled "Add
stress_measure Statements to Template" are obtained by making
measurements on the three variables pwrd , tempj , and v. These values (val
variables) are calculated in the body of the resistor template as shown below:

For examples on using val variables in a template, see Book 1 of the Guide to
Writing MAST Templates; Variables and Arguments.

Add Stress Ratings

If a rating is not provided directly in a stress statement, it must be passed into
the template as an argument. By convention, ratings are passed in using a
structure parameter. An example of this method is shown below. However, if
only one or two stress measures are included in the template, you may prefer
to specify the ratings arguments individually rather than in a structure.

❑ In the header declarations section of the template, declare a structure
for the ratings. An example is shown as follows:

v = v(p) - v(m)
.
.
.
power = v*i
pwrd = power
tempj = temp + pwrd*rth_eff

struc {
number pdmax_ja=undef, # Max. Pwr, no htsnk

pdmax_jc=undef, # Max. Pwr, with htsnk
tjmax=undef, # Max. temperature
tjmin=undef, # Min. temperature
vmax=undef # Max. voltage

} ratings=()
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❑ Add the name of the structure to the template header. In this example,
ratings  is the name of the structure. The header is shown as follows:

❑ In the body of the template, define local variables in which to store
ratings after error checking is complete. By convention, a local variable
that corresponds to a rating variable takes the same name as the rating
variable preceded by the character x .

❑ Add error checking for ratings. A function called ratingbp  is provided
that returns the absolute value specified for the rating and provides
standard error checking and appropriate warning and error messages.
The ratingbp  function can be found in install_home/template/
function/ratingbp.sin.

In the following example, this function is used to assign the absolute
value of the rating vmax to the variable xvmax  and to check the value
for errors.

element template r  p m = rnom, tc, tnom, nons,
model, l, w, ratings, rth_ja, rth_jc, rth_hs,
part_type, part_class

number r, #Final resistance.
g, #Final conductance.

nx, #Noise flag.
xl, #Effective resister length.
xw, #Effective resister width.
dl, #Final value of geometry reduction.

rth_eff, #Final value of thermal resistance.
pdmax, #Final value of power diss. rating.
xvmax, #Final value of max. voltage rating.

xtjmax, #Final value of max temp rating.
xtjmin #Final value of min temp rating.

number tempj_tnom=25 #Ref_rating for temp stress.

xvmax = ratingbp(ratings->vmax,"vmax")
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Chapter 9: Adding Stress Measures to a MAST Template
The second part of this section of the example handles the special case
of tjmax  and tjmin  where a negative value is allowed. It checks for
values of undef (no value provided) and inf (non-applicable value) and
determines if xtjmax  is greater than xtjmin . If tjmax  is not greater
then tjmin , the message TMPL_S_REL_VALUE is displayed that states
that “the maximum value should be greater than the minimum value.”

Add Thermal Resistances (Optional)

Thermal resistances are typically passed in as arguments to the template. An
intrinsic function called thermpar  can be used to determine the effective
thermal resistance and maximum power dissipation from the values that are
passed in.

❑ In the header declarations section of the template, add thermal
resistance variables as shown in the example below:

xtjmax = ratings->tjmax
xtjmin = ratings->tjmin
if(xtjmin ~= undef & xtjmin ~= inf) {

if(xtjmax ~= undef & xtjmax~=inf &
xtjmax < xtjmin) {

saber_message("TMPL_S_REL_VALUE",instance(),
"tjmax","tjmin")

 xtjmin = undef
}

}

number rnom=undef, # Nominal resistance.
tnom=27, # Nominal temperature.

tc[2]=[0,0], # Temperature coefficients.
nons=0.0, # Resistor will be noiseless

# if non-zero value.
l=0.0, # Optional length of resistor.
w=0.0, # Optional width of resistor.

rth_ja=undef, # Junction-Ambient Thermal
# resistance deg C/W).

rth_jc=undef, # Junction-Case Thermal
# resistance (deg C/W).

rth_hs=undef # Heatsink Thermal resistance
# (deg C/W).
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❑ Add local variables to the body of the template for thermal resistance
and power dissipation:

❑ Add a statement to the template that determines the effective thermal
resistance rth_eff  and the power dissipation pdmax to be used. The
following example makes use of the thermpar  function.

Note that the thermpar  function has five arguments separated by
commas. The fourth argument contains an if then else  condition.
The thermpar  function can be found in install_home/template/
function/thermpar.sin .

number r, # Final resistance.
g, # Final conductance.

nx, # Noise flag.
xl, # Effective resister length.
xw, # Effective resister width.
dl, # Final value of geometry reduction.

rth_eff, # Final value of thermal resistance.
pdmax, # Final value of power diss. rating.
xvmax, # Final value of max. voltage rating.

xtjmax, # Final value of max temp rating.
xtjmin # Final value of min temp rating.

number tempj_tnom=25 # Ref_rating for temp stress.

(rth_eff,pdmax) = thermpar(rth_ja,rth_jc,rth_hs,
if(ratings->pdmax_ja==undef) then r_pdmax

else ratings->pdmax_ja,
ratings->pdmax_jc)
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The thermpar  function implements the truth table shown as follows:

Add a Way to Disable Stress (Optional)

A mechanism can be implemented in a template to allow you to inactivate the
stress statements in a template when they are not needed. This feature is
useful if a template is to be used as a macromodel building block. Typically, in
a macromodel, an overall value for an operating condition such as power is
calculated by combining values from the building blocks and then stress
measures for the macromodel itself are extracted. In this case, the stress
measures in the individual templates are typically of less use in a stress
report.

❑ In the header declarations section of the template, add
include_stress  to the list of parameters declared as external
numbers as shown in the following example:

The parameter name include_stress  is not a MAST reserved word.
It is the name used by convention in MAST templates

Values declared in external statements are found at a higher level in
the hierarchy of a design. The include_stress  parameter, for
example, is set to a default value of 1 in the header.sin  file.

INPUTS OUTPUTS

rth_ja rth_jc rth_hs rth_eff pdmax

undef undef undef 0 pdmax_ja

undef undef val_hs 0 pdmax_ja

undef val_jc undef val_jc pdmax_jc

undef val_jc val_hs val_jc+val_hs pdmax_jc

val_ja undef undef val_ja pdmax_ja

val_ja undef val_hs val_ja pdmax_ja

val_ja val_jc undef val_ja pdmax_ja

val_ja val_jc val_hs val_jc+val_hs pdmax_jc

external number temp, include_stress,
r_tol, r_pdmax
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The header.sin  file contains declarations for various global variables
such as temp  and include_stress . It is included in the Saber input
file (netlist) for the design when the Saber simulator is invoked.

❑ Place a conditional statement around the stress_measure statements
in the control section of the template to detect if they are to be included
in the simulation. See the following example:

Add a Way to Specify Device Type and Class (Optional)

Information about the type and class of a device provided in the template are
used as sorting criteria for the stress report.

❑ Add a device_type statement to the control section of the template as
shown in the following example:

In the previous statement, part_type  and part_class  could be
replaced by the actual part type and part class of the device.
Alternatively, these values can be passed in as arguments to the
template as shown next.

if(include_stress) {
stress_measure(pdmax,power,"Max Power Diss.",

pwrd,winmax,pdmax)
stress_measure(pdavg,power,"Avg Power Diss.",

pwrd,average,pdmax)
stress_measure(tjmax,temperature,

"Max Temperature",tempj,winmax,
xtjmax,tempj_tnom)

stress_measure(tjavg,temperature,
"Avg Temperature",tempj,average,
xtjmax, tempj_tnom)

stress_measure(tjmin,temperature,
"Min Temperature",tempj,min,
xtjmin, tempj_tnom)

stress_measure(vmax,voltage,"Max Voltage",
abs(v),max,xvmax)

}

device_type(part_type,part_class)
Saber MAST Language, Book 2, User Guide (Dec. 2004) 9-9
Copyright © 1985-2004 Synopsys, Inc.



Chapter 9: Adding Stress Measures to a MAST Template
❑ In the header declarations section, declare part_type  and
part_class  as strings and give them default values as shown in the
following example:

The part_type  string must be limited to 9 characters and the
part_class  string to 18 characters to fit into the format of the stress
report.

If you are modifying an existing template to add stress measures,
device_type , part_type , and part_class  statements may have already
been defined in the template. However, you can alter them to provide part
type or part class names that may be more useful as sorting criteria in your
stress reports.

string part_type="resistor",# type of the device
part_class="generic" # class of the device
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MAST Example Including Stress Statements

A complete listing of the example resistor template is shown below. Stress-
related statements are shown in bold.

1 #*****************************************************************
2 # Constant resistor (called by: r )
3 # Zero value is not allowed and will generate an error message.
4 # Geometric description is allowed.
5 #*****************************************************************
6
7 #*****************************************************************
8 # This template created by Analogy, Inc. for exclusive use with
9 # the Saber simulator.
10 # Copyright 1987,1988,1989,1993 Analogy, Inc.
11 # This template may not be reproduced in any way (physically or
12 # electronically) without permission from Analogy, Inc.
13 # The content of this template is subject to change without
14 # notice. Analogy does not assume liability for the use of this
15 # template or the results obtained from using it.
16 #****************************************************************
17
18 element template r  p m = rnom,tc,tnom,nons,model,l,w,

19 ratings, rth_ja,rth_jc,
20 rth_hs,part_type,part_class
21
22 #...declaration of connections:
23 electrical p,m
24 process..imodel model = ()# Process model for resistor.
25
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Chapter 9: Adding Stress Measures to a MAST Template
26 #...declaration of arguments (tnom is in degrees celsius)
27
28 number rnom=undef, # Nominal resistance.
29 tnom=27, # Nominal temperature.
30 tc[2]=[0,0], # Temperature coefficients.
31 nons=0.0, # Resistor will be noiseless if
32 # non-zero value.
33 l=0.0, # Optional length of resistor.
34 w=0.0, # Optional width of resistor.

35 rth_ja=undef, # Junction-Ambient Thermal
36 # resistance (deg C/W)
37 rth_jc=undef, # Junction-Case Thermal
38 # resistance (deg C/W)
39 rth_hs=undef # Heatsink Thermal
40 # resistance (deg C/W)
41 #...Bring in external numbers
42 external number temp, include_stress, r_tol, r_pdmax
43 external standard..pdist pdist
44

45 struc {
46 number pdmax_ja= undef,# Max. power diss. w/out heatsink
47 pdmax_jc=undef, # Max. power diss. w/ heatsink
48 tjmax=undef, # Max. temperature
49 tjmin=undef, # Min. temperature
50 vmax=undef # Max. voltage
51 } ratings=()
52

53 string part_type="resistor",# type of the device
54 part_class="generic" # class of the device
55
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56 export val tc tempj # instantaneous junction temperature
57 export val p  pwrd # instantaneous power dissipation
58 export val i  i # instantaneous current
59
60 #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
61 # Start the definition
62 {
63 #...Quantities useful for output:
64
65 val v v
66 val p power
67 val ni nsr
68 val tc temp_case
69 val rth rth_hs_tjmax
70
71 #...Define a group for extraction purposes
72 group {nsr} noise
73 group {power,pwrd} pwr

74 #...Define quantities used later
75
76 number r, # Final resistance.
77 g, # Final Conductance.
78 nx, # Noise flag.
79 xl, # Effective resister length.
80 xw, # Effective resister width.
81 dl, # Final value of geometry reduction.

82 rth_eff, # Final value of thermal resistance.
83 pdmax, #Final value of power dissipation rating.
84 xvmax, # Final value of max. voltage rating.
85 xtjmax, # Final value of max temp rating.
86 xtjmin # Final value of min temp rating
87 number tempj_tnom=25 # Ref_rating for temp stress.
88
89 #...Bring in mathematical constants
90 <consts.sin
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91 #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
92
93 parameters {
94 #...Check input parameters.
95 if ( (rnom == undef) & ((model->rsh == 0)|(l == 0)|
96 ((w == 0)&(model->wdf == 0))) ) {
97 # Resistance is not specified.
98 saber_message("TMPL_S_ALT_SPEC",  instance(),
99 "resistance","rnom","model->rsh, l, and w")
100 }
101
102 #...Include temperature effects
103 if (rnom ~= undef) {
104 #...Resistor specification.
105 if (rnom == inf) {
106 r = inf
107 }
108 else {
109 #...Call function to apply distribution
110 #...to resistor value
111 r = distfunc(rnom,r_tol,pdist)
112 r = r*(1 + tc[1]*(temp-tnom) + tc[2]*((temp-tnom)**2))
113 }
114 }
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115 else {
116 #...Process specification.
117 #...Check input parameters.
118 if ((model->dl == undef)|(model->dl < 0)) {
119 dl = 0
120 }
121 else {
122 dl = model->dl
123 }
124 if ( ((w == 0)|(w == undef)) &
125 ((model->wdf == 0)|(model->wdf == undef)) ) {
126 saber_message("TMPL_S_ALT_SPEC",  instance(),
127 "resistor width","w","model->wdf")
128 }
129 #...Take into account the geometry
130 #...reduction of the length.
131 xl = l - dl
132
133 if (xl <= 0) {
134 saber_message("TMPL_S_POS",instance(),
135 "effective resistor length")
136 }
137
138 #...Take into account the geometry
139 #...reduction of the width.
140 if ((w > 0)&(w ~= undef)) {
141 xw = w - dl
142 }
143 else {
144 xw = model->wdf
145 }
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146 #...Calculate the resistance from
147 #...the sheet resistance.
148 if (xw > 0) {
149 #...Call function to apply distribution
150 #...to resistor value
151 r = distfunc(model->rsh*(xl/xw),r_tol,pdist)
152 r = r*(1 + tc[1]*(temp-tnom) + tc[2]*((temp-tnom)**2))
153 }
154 else {
155 saber_message("TMPL_S_POS",instance(),
156 "effective resistor width")
157 }
158 }
159
160 #...Calculate conductance and print message if r=0
161 if (r == 0) {
162 saber_message("TMPL_S_RANGE_NE_0",instance(),
163 "resistance value")
164 g = 0
165 }
166 else if (r < 0) {
167 #...negative resistance
168 saber_message("TMPL_W_GE_REL_VALUE",instance(),
169 "resistance value","zero")
170 g = 1/r
171 }
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172 else if (r == inf) {
173 g = 0
174 }
175 else {
176 g = 1/r
177 }

178 #...Bulletproofing on ratings
179 (rth_eff,pdmax) = thermpar(rth_ja,rth_jc,rth_hs,
180 if(ratings->pdmax_ja==undef) then r_pdmax
181 else ratings->pdmax_ja,
182 ratings->pdmax_jc)
183

184 xvmax = ratingbp(ratings->vmax,"vmax")
185

186 xtjmax = ratings->tjmax
187 xtjmin = ratings->tjmin
188 if(xtjmin ~= undef & xtjmin ~= inf) {
189 if(xtjmax ~= undef & xtjmax~=inf & xtjmax < xtjmin) {
190 saber_message("TMPL_S_REL_VALUE",instance(),"tjmax",
191 "tjmin")
192 xtjmin = undef
193 }
194 }
195 #...Determine the noise "switch" multiplier
196 if ((nons == 0) & (r > 0)) {
197 nx = 1
198 }
199 else {
200 nx = 0
201 }
202 }
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203#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
204 values {
205 #...Definition of output quantities.

206 v  = v(p) - v(m)
207 i = g*v
208 # If r=0, i=0. The value for i is wrong but a
209 # message has been printed out indicating that r=0.
210
211 #...Calculate noise generator
212 if (freq_domain & nx) {
213 nsr = sqrt(abs(4.0*math_boltz*(temp + math_ctok)*g))
214 }
215 else {
216 nsr = 0.0
217 }
218 #...Determine power term for extraction
219

220 power = v*i
221 pwrd = power
222 tempj = temp + pwrd*rth_eff
223
224 if(rth_jc ~= undef & rth_jc ~= inf & rth_jc > 0) {
225 if (pwrd ~= 0) {
226 rth_hs_tjmax = (xtjmax - temp)/pwrd - rth_jc
227 }
228 else rth_hs_tjmax = inf
229 temp_case = tempj - pwrd*rth_jc
230 }
231 }
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232#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
233 control_section {
234 #...device type and class

235 device_type(part_type,part_class)
236
237 #...Specify noise source
238 noise_source(nsr,p,m)
239
240 #...Specify the stress measures

241 if(include_stress) {
242 stress_measure(pdmax,power,"Max Power Diss.",
243 pwrd,winmax,pdmax)
244 stress_measure(pdavg,power,"Avg Power Diss.",
245 pwrd,average,pdmax)
246 stress_measure(tjmax,temperature,"Max Temperature",
247 tempj,winmax,xtjmax, tempj_tnom)
248 stress_measure(tjavg,temperature,"Avg Temperature",
249 tempj,average,xtjmax,tempj_tnom)
250 stress_measure(tjmin,temperature,"Min Temperature",
251 tempj,min,xtjmin,tempj_tnom)
252 stress_measure(vmax,voltage,"Max Voltage",
253 abs(v),max,xvmax)
254 }
255 }
256#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
257 equations {
258 i(p->m) += i
259 }
260}
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Un-Structured Modeling Approach - Examples
Using MAST Functions - Unstructured bjtm Template

The BJT template (bjtm) is shown below using function calls and a
combination of the structured and unstructured modeling approach:

1 element template bjtm c b e = model, ic
2 electrical c,b,e
3 bjtm_arg..model model = () # use arguments from
4 # "companion" template
5 number ic[2]=[undef,undef]
6 external number temp
7 { # begin template body
8 # use local parameters from "companion" template
9 bjtm_arg..work work
10
11 struc {
12 number bp,inc;
13 } nv[*] = [(0,.1),(2,0)]
14 electrical cp #...local node
15 branch ibe=i(b->e),  vbe=v(b,e)
16 branch ibc=i(b->cp), vbc=v(b,cp)
17 branch ice=i(cp->e), vce=v(cp,e)
18 val i iec,icc,iba,ico #...declare variables
19 val q qbc,qbe
20 group {vbc,vbe} v               #...extraction groups
21 group {iba,ico} i
22 group {qbc,qbe} q
23

24 control_section {
25  #...If no collector resistance, collapse nodes c and cp
26 if(model->rc == 0) collapse(c,cp)
27
28 #...specification of sample points and newton steps
29 newton_step((vbc,vbe),nv)
30 }
31
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The functions calls and functions are identical to the bjtm structural model
described in the following topics found in Chapter 4:

• Function Call Overview - bjtm MAST Template

• bjtm_arg Declaration Template

• Local Parameters Function bjtm_pars

• Calculated Values Function bjtm_values

32 # calculate thermal voltage and 4 funct. of model param.
33 #... 1’st call to MAST function
34 work = bjtm_pars(model,temp)
35
36 #...calculation of currents and charges
37 #...2’nd call to MAST function
38 (iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)
39
40
41 #...calculate base and collector currents for extraction
42 iba = iec/model->br + icc/model->bf
43 ico = icc - iec - iec/model->br
44
45 #...calculation of branch currents
46 ibe = iec/model->br + icc/model->bf + d_by_dt(qbe)
47 ibc = d_by_dt(qbc)
48 ice = icc - iec - iec/model->br
49
50 #...current through collector resistor if present
51 if(model->rc ~= 0) i(c->cp) = v(c,cp)/model->rc
52 }
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Ideal Delay Line - Unstructured dline Template

The ideal delay line template (dline) is shown below using the delay function
and the unstructured modeling approach:

1 template dline inp inm outp outm = td, a
2 electrical inp, inm, outp, outm
3 number td=0.0, # time delay
4              a=1.0 # gain
5
6 {
7 branch iout=i(outp->outm) # output current
8 branch vin=v(inp,inm), vout= v(outp,outm) # input & output
9 # voltages
10 val v vdl # delayed voltage
11
12 vdl = vin*a
13 vout=delay(vdl, td)
14 }
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Multiple-Output Voltage Source - Unstructured vsource_2
Template

The vsource_2 template is a voltage source that provides three different,
time-varying outputs. The following template is modeled using the
unstructured approach:

1 element template  vsource_2 p m = supply, tran
2 electrical p, m
3 number supply = 0
4 union {
5 number off
6 struc {number vo, va, f, td;} sin
7 struc {number v1,v2,tau;} exp
8 struc {number v1,v2,tstep,tr;} step
9 } tran = (off=1)
10 {
11 number pi = 3.14159
12 branch is=i(p->m), vn=v(p,m)
13 val v vs
14
15 # define intermediate values depending on selected output
16 if (union_type (tran,sin)) {
17 td = tran->sin->td
18 vo = tran->sin->vo
19 va = tran->sin->va
20 w = 2*pi*tran->sin->f
21 ss = 0.05/tran->sin->f
22   }
23 else if (union_type (tran,exp)) {
24 v1 = tran->exp->v1
25 v2 = tran->exp->v2
26 tau = tran->exp->tau
27   }
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28 else if (union_type (tran,step)) {
29 tstep = tran->step->tstep
30 v1 = tran->step->v1
31 v2 = tran->step->v2
32 tr = tran->step->tr
33 slew = (v2-v1)/tr
34 }
35 # determine vs, which is set equal to vn in temp. equ.
36
37 if (dc_domain|time_domain) {
38 if (union_type (tran,sin)) {
39 if (time <= td) {
40 vs = vo
41 next_time = td
42 }
43 else {     # if (time > td)
44 vs = vo + va*sin(w*(time-td))
45 step_size = ss
46 }
47 } # end tran->sin
48 else if (union_type (tran,exp)) {
49 vs = v1 + (v2-v1)*(1-exp(-(time/tau)))
50 } # end tran->exp

51 else if (union_type (tran,step)) {
52 if (dc_domain|(time < tstep)) {
53 vs = v1
54 next_time = tstep
55 }
56 else if ((time >= tstep) & (time < tstep+tr)){
57 vs = v1 + (time-tstep)*slew
58 next_time = tstep + tr
59 }
60 else {
61 vs = v2
62 }
63 } # end tran->step
64 else vs = supply
65 } # end dc_domain|time_domain
66
67 else vs = 0
68
69 # template equation...find branch voltage, vn
70 vn = vs
71 }
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Making User Templates Visible for Unix

This topic describes the following:

How the Applications Find Files

Using Templates Written in MAST

Using Custom Models From Your Capture Tool

Using C or FORTRAN Routines Called by Templates

How the Applications Find Files

To make your own templates (or any other user files) available to the Saber
simulator or the other applications, you need to do one of the following:

• Place the files in a directory along the data search path where the
applications will find them. (The data search path is described in this
topic.)

• Use the appropriate environment variable to tell the applications where
they are located as shown in the following table.

The applications look for files containing data they need in directories along
the data search path, as listed in the following table in the order listed.

For example, the first directory to be searched is the working directory.

Data Search Path

SaberSketch Saber Simulator Description

. . Working directory where the
application was started.
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If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed in the above table. However, if you
have created a library of custom models that you would like to be available for
general use, the proper search path location for your directories is as part of
the original SABER_DATA_PATH environment variable (or AI_SCH_PATH in
the case of SaberSketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place
library items in the current directory. You should not rely on this
technique for long-term storage of your libraries, as the current
directory may change depending on where the Saber application was
invoked.

2. Templates and components are found by the Saber simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a colon-separated list of directories. Any custom libraries
intended for use by others at your site should be stored in a directory
that is part of SABER_DATA_PATH.

If such a directory does not exist, you should create one and add its path
to this variable.

The topic titled "Using Templates Written in MAST", describes how to
define or modify a SABER_DATA_PATH environment variable. The
AI_SCH_PATH variable can be modified in a similar way.

The topic titled Manually Creating Template Information Files, in the
Managing Symbols and Models Manual, describes how to update
custom templates that do not have the proper permissions for a user.
You must be a site manager with read and write permissions to use this
feature.

Never point SABER_DATA_PATHto install_home.

AI_SCH_PATH
(Locates
directories that
contain custom
symbols)

SABER_DATA_PATH
(Locates directories
that contain custom
templates and
components)

Environment variable that you
set to point to proper location(s)

install_home/config Directory to hold configuration
information specific to an
installation.

Directories and subdirectories in install_home specific to each application

SaberSketch Saber Simulator Description
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Symbols are found by your schematic capture tool using whichever
mechanism is provided with your particular tool (SaberSketch, Design
Architect, Artist, or ViewDraw).

SaberSketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The
AI_SCH_PATH variable is a colon-separated list of directories. Any
custom symbols intended for use by others at your site should be stored
in a directory that is part of AI_SCH_PATH. If such a directory does not
exist, you should create one and add its path to AI_SCH_PATH. If
AI_SCH_PATH does not exist, you should create it.

3. The install_home/config  directory holds configuration information
specific to an installation. Do not place any libraries in this directory.

4. The last place(s) an application will search are the additional
directory(s) that are appended by the application. These are the homes
for the software supplied data. For the Saber simulator these
directories are saber_home/bin , then saber_home/template/* , then
saber_home/component/*/* .

Precompiled files (.sld  files) created using the saber -p option are not
found by using the search path shown in the table titled "Data Search Path".
They are found by using the list of directories contained in your path
variable. For a procedure for modifying your path  variable, refer to Step 3 in
the topic titled Configuring for the UNIX Environment.

Precompiled (also called preloaded) model files have priority over all other
models. For more information on precompiled files, refer to the Guide to
Writing MAST Templates manual, the topic titled Predefined MAST
Declarations.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform
the software where they are located. The following methods can be used.

Method 1: Place the templates in a directory in the data search path. Once you
have done this, the templates will be found by the applications when they are
needed.

Method 2: Specify the directory containing the templates in an environment
variable called SABER_DATA_PATHin your user start-up file. To add your own
template library to the SABER_DATA_PATH environment variable, complete
the following procedure.
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Step 1. Define or modify the SABER_DATA_PATH environment variable

Edit the appropriate file for your shell as shown in the following table:

In this table, template_directory is the full path name to the directory
containing the templates or where dir1, dir2, and dir3 are full path
names to three different directories.

If a SABER_DATA_PATH environment variable already exists in your
.cshrc  or .profile  file, you can modify it to include the new
directory.

If your SABER_DATA_PATH environment variable includes directories
that are provided with the software, you should remove these
directories from the list. For example, directories containing template
or component libraries provided with the Saber simulator should not be
included in the SABER_DATA_PATH environment variable.

Shell &
File

SABER_DATA_PATH Definition

C
.cshrc

If a SABER_DATA_PATHenvironment variable does not
exist in your .cshrc  file, enter the following line
anywhere in the file:

setenv SABER_DATA_PATH "template_directory"

You may include more than one directory by specifying
a colon separated list as follows:

setenv SABER_DATA_PATH "dir1:dir2:dir3"

Bourne
.profile

If a SABER_DATA_PATH environment variable
does not exist in your .profile  file, enter the
following lines anywhere in the file:

SABER_DATA_PATH= " template_directory"
export SABER_DATA_PATH

You may include more than one directory by
specifying a colon separated list as follows:

SABER_DATA_PATH=" dir1:dir2:dir3"
export SABER_DATA_PATH
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Use care when you use the wildcard (*) character to include directories
in the SABER_DATA_PATHenvironment variable. If too many directories
are included in the SABER_DATA_PATH environment variable, some
files may not be found by the Saber simulator or the other software
applications.

Step 2. Re-initialize your startup file

To re-initialize your startup file, log out and log in to your computer.
You do not need to reboot your system.

Using Custom Models From Your Capture Tool

You must make modifications to allow your schematic capture tool to find your
new symbols. Each schematic capture tool has a different mechanism for
allowing symbols to show-up in its symbol browser. Refer to your schematic
capture tool documentation (SaberSketch, Design Architect, Artist, or
ViewDraw) for details. If you are using the SaberSketch design editor use the
following instructions.

Making Symbols Available in SaberSketch

To make symbols available in SaberSketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

SaberSketch finds symbols in the same way the Saber simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open SaberSketch and click on the Parts Gallery  button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery
window, you select the Edit pulldown menu, then you select the New Part menu
item to open the Create New Part window. You can browse the Category and
Symbol fields until you have your part set-up the way you want it, then click
on the Create  button.
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Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in
FORTRAN or C. Such routines are called foreign routines. A procedure for
incorporating such routines into a template is described in the Guide to
Writing MAST Templates manual, topic titled Foreign Routines in MAST.

To make foreign routines available to the Saber simulator, you complete the
following procedure.

Step 1. Compile each foreign routine

You must use one of the supported compilers listed in one of the tables
titled Compatible SUN Compiler Versions, or Compatible HP-UX
Operating System Compiler Versions, to avoid possible dynamic loading
problems when trying to use a foreign routine.

To compile a FORTRAN routine, use the command for your system as shown
in the following table.

Command to Compile a FORTRAN Foreign Routine

Replace filename with the name of the file you are compiling.

To compile a C routine, complete the following steps:

1. To find out if you need to add an underscore to the end of C routine
names on your system, refer to the table titled "Command to
Compile a C Foreign Routine". If a trailing underscore is required,
complete the following:

In the file containing the C routine, add an underscore (_) to the end
of the name of the routine in the header line of the routine.

Do not add an underscore to the name of the file or to the name used
in the MAST foreign  command in your template to call the
routine.

For more information, refer to the topic titled Foreign Routines in
MAST in Book 1 of the Guide to Writing MAST Templates Manual.

System Command

Solaris f77 -c -PIC -cg89 -dalign \
-ftrap=%none -xlibmil filename.f

HP-UX f77 -c +Z filename.f
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2. Compile the C routine by using the command for your system shown
in the following table.

Command to Compile a C Foreign Routine

Replace filename with the name of the file you are compiling.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created and compiled it must be made available
to the Saber simulator.

Step 1. Make the compiled routine available to the Saber simulator.

Complete one of the following:

• Place the compiled routine in a directory in the data search path.
For more information on the data search path, refer to the topic
titled "How the Applications Find Files".

• Use the procedure described in Step 1 and Step 2 to add the location
of the compiled routine to your SABER_DATA_PATH environment
variable.

System Command Trailing
Underscore?

Solaris cc -c -K PIC -cg89 \
-dalign -ftrap=%none \

-xlibmil filename.c

yes

HP-UX cc -c +Z filename.c no
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Step 2. Invoke the Saber simulator

Invoke the Saber simulator by using the saber  command and your usual
command options (if any).

In some cases, the Saber simulator tries to automatically load
subroutines into a simulation upon invocation. This can be the case
when subroutines have been compiled but not linked to a library. If this
is the case, the compiled subroutines will be in a file labeled filename.o ,
where filename indicates the original user-assigned subroutine file
name. When started under these conditions, the Saber simulator tries
to dynamically link the filename.o  files into the simulation by
automatically issuing one of the following UNIX commands:

Multiple subroutine files are indicated by filename.o. Several different
subroutines can be included in this list of file names. The single shared
library file is indicated by filename.so  (Sun) and filename.sl  (HP).

System Command

Solaris ld -o filename.so -dy -G filename.o

HP-UX ld -o filename.sl -b filename.o
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How to Make a Library of Routines Available to the Saber Simulator

Step 1. Compile the subroutines using the appropriate compiler.

Refer to the table titled Command to Compile a FORTRAN Foreign
Routine.

Step 2. Link the compiled files together into a single shared library file.

Once the subroutines have been compiled, they can be linked together
into a single shared library file.

To link multiple subroutines together, use one of the following UNIX
commands:

Multiple subroutine files are indicated by file1.o  and file2.o ...
Several different subroutines can be included in this list of file names.
The single shared library file is indicated by file.so  (Sun) and file.sl
(HP).

Step 3. Declare the shared library file as global

When several subroutines are combined to create a single shared
library file, you will need to specify a SABER_GLOBAL variable at the
operating system level. This variable needs to include the shared
library file and make it available anytime the Saber simulator is
started. The Saber simulator will then search the shared library file for
any subroutines which are used but not found by other means.

Create the SABER_GLOBAL variable using the same method you used
for creating the SABER_DATA_PATH variable, which is described in the
table titled "Data Search Path". You need to point the SABER_GLOBAL
variable to the shared library file that was created in However, you
must omit the .so  file name extension. For example, if you created a
file called my_lib_routines.so  with the ld  command, you need to
set the SABER_GLOBAL variable to my_lib_routines .

System Command

Solaris ld -o file.so -dy -G file1.o file2.o ...

HP-UX ld -o file.sl -b file1.o file2.o ...
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Step 4. Make the shared library file available to the Saber simulator.

Once you have created a shared library file and referenced it to the
libai_saber.lib  file, place the directory containing the shared
library file in the SABER_DATA_PATHpath variable, or place the shared
library file in a directory contained in the SABER_DATA_PATH path
variable.

Step 5. Re-initialize your startup environment

Reinitialize your start-up file by logging in to the machine (you may need to
log out first).

login login_name
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Making User Templates Visible for NT

This topic describes the following:

How Applications Find Files

Making Symbols Available in SaberSketch

Using Templates Written in MAST

Using C or FORTRAN Routines Called by Templates (NT)

To make your own templates (or any other user files) available to the Saber
simulator or other applications, you need to do one of the following:

• Place the files in a directory along the data search path where
applications will find them. (The data search path is described in this
subsection.)

• Use the appropriate environment variable to tell the applications where
they are located.

Applications look for files containing data they need in directories along the
data search path, as listed in the following table in the order listed.

For example, the first directory to be searched is the working directory.

Data Search Path

If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed in the Data Search Path table above.

SaberSketch Saber Simulator Description

1 . . Working directory of the design
that the application is invoked
on.

2 AI_SCH_PATH
(Locates
directories
that contain
custom
symbols.)

SABER_DATA_PATH
(Locates directories
that contain custom
templates and
components)

Environment variable that you
set to point to proper
location(s).

3 saber_home\config Directory to hold configuration
information specific to a site.

4 Directories and subdirectories in saber_home specific to each application
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However, if you have created a library of custom models that you would like to
be available for general use, the proper search path location for your
directories is as part of the SABER_DATA_PATH environment variable (or
AI_SCH_PATH in the case of SaberSketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place
library items in the current directory. You should not rely on this
technique for long-term storage of your libraries, as the current
directory changes depending on the location of the design that is being
used by the application.

2. Templates and components are found by the Saber simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a semicolon-separated list of directories. Any custom
libraries intended for use by others at your site should be stored in a
directory that is part of SABER_DATA_PATH. If such a directory does not
exist, you should create one and add its path to this variable.

The subsection titled "Using Templates Written in MAST", describes
how to define or modify a SABER_DATA_PATH environment variable.
The AI_SCH_PATH environment variable can be modified in a similar
way.

Manually Creating Template Information Files describes how to update
custom templates that do not have the proper permissions for a user.
You must be a site manager with read and write permissions to use this
feature.

NOTE
Never point SABER_DATA_PATH to saber_home.

SaberSketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The
AI_SCH_PATH variable is a semicolon-separated list of directories. Any
custom symbols intended for use by others at your site should be stored
in a directory that is part of AI_SCH_PATH. If such a directory does not
exist, you should create one and add its path to AI_SCH_PATH. If
AI_SCH_PATH does not exist, you should create it.

3. The saber_home\config  directory holds configuration information
specific to a site. Do not place any custom libraries in this directory.
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4. The last place(s) an application will search are the additional
directory(s) that are appended by the application. These are the homes
for specific-supplied data. For the Saber simulator these directories are

Do not place any custom libraries in this directory.

Precompiled files (.sld  files) created using the saber -p option are
found by using the list of directories contained in your Path  variable.
They are not found by using the search path shown in the "Data
Search Path".

Precompiled (also called preloaded) model files have priority over all
other models. For more information on precompiled files, refer to the
topic titled Predefined MAST Declarations.

To check the Path  variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the Path variable.

• Add the appropriate directory(s) to the value.

Making Symbols Available in SaberSketch

To make symbols available in SaberSketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

SaberSketch finds symbols in the same way the Saber simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open SaberSketch and click on the Parts Gallery  button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery
window, you select the Edit pulldown menu, then you select the New Part to
open the Create New Part window. You can browse the Category, Symbol, and
Template fields until you have your part set-up the way you want it, then click
on the Create button.

saber_home\bin , then saber_home\template\* , then
saber_home\component\*\* .
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Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform
the software where they are located. This description specifically refers to the
SABER_DATA_PATH variable. The AI_SCH_PATH variable might also need to
be set for custom symbols in SaberSketch using the same procedure. The
following methods can be used:

Method 1: Place the templates in a directory in the data search path. Once you
have done this, the templates will be found by the applications when they are
needed.

Method 2:  Specify the directory containing the templates in an environment
variable called SABER_DATA_PATH. To add your own template library to the
SABER_DATA_PATH environment variable, complete the following procedure.

Step 1. Define or modify the SABER_DATA_PATH environment variable

In this example, dir1, dir2, and dir3 are full pathnames to three
different directories.

To check the SABER_DATA_PATH variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the
SABER_DATA_PATH variable.

• If it does not exist, create it and add the appropriate directory(s) to
the value.

If your SABER_DATA_PATH environment variable includes directories
that are provided with the software, you can remove these directories
from the list. For example, directories containing template or
component libraries provided with the Saber simulator should not be
included in the SABER_DATA_PATH environment variable.

• Use care when you use the wildcard (*) character to include
directories in the SABER_DATA_PATH environment variable. If too
many directories are included in the SABER_DATA_PATH
environment variable, some files may not be found by the Saber
simulator or other applications.

SABER_DATA_PATH="dir1; dir2; dir3"
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Step 2. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer.
You do not need to reboot your system.

Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in
FORTRAN or C. Such routines are called foreign routines. A procedure for
incorporating such routines into a template is described in the topic titled
Foreign Routines in MAST.

To make foreign routines available to the Saber simulator on a Windows NT
system you must do the following:

• Insert the proper code in the header of each foreign routine

• Compile the routine on the Windows NT system

• Link multiple-compiled files into one file

• Set up environment variables so that the Saber simulator can find the
linked files

The C Language Header

If the C programming language is being used to create foreign routines for use
with MAST and the Saber simulator, the routine header must appear exactly
as follows (substitute your foreign routine name for CROUTINE):

The __declspec  statement is important for Windows NT since it indicates
that the routine is exported from the Dynamic Link Loader and can be found
by the Saber simulator. The __stdcall  statement is used to indicate that
this routine is called from FORTRAN with the FORTRAN calling conventions.

The CROUTINE string must be entered in upper-case characters.

__declspec(dllexport) void __stdcall CROUTINE(double* inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long* ofl,

long* nofl,double* aundef,long* ier)

{

}
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The FORTRAN Language Header

If the FORTRAN programming language is being used to create foreign
routines for use with MAST and the Saber simulator, the routine header must
appear exactly as follows (substitute your foreign routine name for
FROUTINE):

The ATTRIBUTES statement is important for Windows NT since it indicates
that the routine is exported from the Dynamic Link Loader and can be found
by the Saber simulator.

The FROUTINE string must be entered in upper-case characters.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created, it must be compiled to create the
executable Dynamic Link/Load Library (DLL) file and then referenced to the
Saber library. Both operations can be taken care of using the same command.
The compiling and referencing operations are part of the C or FORTRAN
language compilers and can be version-dependent.

One-Step Dynamic Librar y Linking

In some cases, the Saber simulator tries to automatically load subroutines
into a simulation upon invocation. This can be the case when subroutines
have been compiled but not linked to a library. If this is the case, the compiled
subroutines will be in a file labeled filename.obj , where filename indicates
the original user-assigned subroutine file name. When started under these
conditions, the Saber simulator tries to dynamically link the filename.obj
files into the simulation by automatically issuing the following command:

link /DLL /OUT: filename.dll filename.obj
saber_home\lib\libai_saber.lib
saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

This dynamic linking process, however, may not work if there are libraries
which need to be included but are not part of libai_saber.lib  or
libai_analogy.lib . If this is the case, refer to the following sections titled
“One-Step C Language Compiling and Linking"and "One-Step FORTRAN

subroutine FROUTINE(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: FROUTINE
integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef
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Language Compiling and Linking" depending on the programming language
being used.

One-Step C Langua ge Compiling and Linking

When the C programming language is used to create a subroutine, the
following command must be used:

cl /LD filename.c saber_home\lib\libai_saber.lib
saber_home\lib\libai_analogy.lib

Where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

where the name of the actual subroutine file, without extensions, is
substituted for filename, and filename indicates the original user-assigned
subroutine file name. The /LD  command indicates a DLL file will be created.
The resulting DLL file will be named filename.dll . For example, if the
original C file was called adder.c , the resulting DLL file would be called
adder.dll .

One-Step FOR TRAN Langua ge Compiling and Linking

When the FORTRAN programming language is used to create a subroutine,
the following command must be used:

fl32 /LD filename.f

saber_home\lib\ libai_saber.lib

saber_home\lib\ libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

Where the name of the actual subroutine file, without extensions, is
substituted for filename, and filename indicates the original user-assigned
subroutine file name. The /LD  command indicates a DLL file will be created.
The resulting DLL file will be named filename.dll . For example, if the
original FORTRAN file was called adder.f , the resulting DLL file would be
called adder.dll . The %SABER_HOME% string is a path variable, set during
the Saber software installation, which points to the location of the Saber
program and its associated files.
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How to Compile and Link Libraries of Routines

There may be situations where it is desirable to link several subroutines into
a single DLL file, and then reference this file to a Saber library as shown in the
following steps:

Step 1. Compile the subroutines using the appropriate compiler.

Compiling subroutines is a language-dependent operation.

You must use one of the supported compilers listed in the topic titled
Compatible Compiler Versions, to avoid possible dynamic loading
problems when trying to use a foreign routine.

Step 2. Link the compiled files together into a single DLL file.

Once the subroutines have been compiled, they can be linked together
into a single DLL file. To link multiple subroutines together, use the
following command:

where saber_home is the software location. In a standard installation
this is:

The /OUT: dllname.dll command assigns a user-specified name to the
resulting DLL file. Multiple subroutine files are indicated by
filename1.obj  and filename2.obj . Several different subroutines can
be included in this list of file names.

Step 3. Declare the DLL file as global.

When several subroutines are combined to create a single DLL file, it is
necessary to specify a SABER_GLOBA variable at the operating system
level. This variable will point to the combined DLL file and make it
available anytime the Saber simulator is started. The Saber simulator
will then search the combined DLL file for any subroutines which are
used but not found by other means.

link /DLL /OUT: dllname.dll filename1.obj filename2.obj
saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

C:\<filename>\SaberDesigner5.2
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Set the SABER_GLOBAL variable as follows:

Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment  tab

• Set the variable as follows:

The Value entry field contains the name of the DLL file assigned in Step
2, but does not contain the .dll  extension. More than one DLL file can
be assigned to the Value by using a comma-separated list of file names.
For example:

Step 4. Make the combined DLL file available to the Saber simulator.

Once a DLL file has been created and referenced to the
libai_saber.lib  and libai_analogy.lib files, the directory
containing the DLL file must be placed in the SABER_DATA_PATH path
variable, or the DLL file must be placed in a directory contained in the
SABER_DATA_PATH path variable. Use the following procedures to
check and edit the SABER_DATA_PATH variable.

Check or edit the SABER_DATA_PATH variable as follows:

Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment  tab

• In either the System or User environment variable list box, an entry
for SABER_DATA_PATH may appear. If it does not appear, create it.
Enter the path(s) to the directory(s). If there is more than one path,
list them and separate by colons.

Step 5. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your
computer. You do not need to reboot your system.

Variable: SABER_GLOBAL
Value: dllname

Variable: SABER_GLOBAL
Value: dllname1, dllname2, dllname3
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