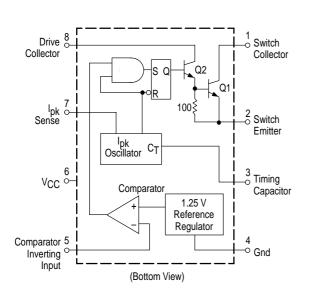


DC-DC Converter Control Circuits

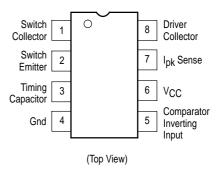
DESCRIPTION:


The LR34063 Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

LR34063

FEATURE:

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference



BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package
LR34063	DIP-8
LR34063D	SOP-8

PIN CONNECTIONS

LESHAN RADIO COMPANY, LTD.

LR34063

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	40	Vdc
Comparator Input Voltage Range	VIR	-0.3 to +40	Vdc
Switch Collector Voltage	VC(switch)	40	Vdc
Switch Emitter Voltage (VPin 1 = 40 V)	VE(switch)	40	Vdc
Switch Collector to Emitter Voltage	VCE(switch)	40	Vdc
Driver Collector Voltage	V _{C(driver)}	40	Vdc
Driver Collector Current (Note 1)	IC(driver)	100	mA
Switch Current	ISW	1.5	А
Power Dissipation and Thermal Characteristics DIP-8 Package, $T_A = 25^{\circ}C$ Thermal Resistance SOP-8 Package, D Suffix $T_A = 25^{\circ}C$ Thermal Resistance	PD R _{θJA} PD R _{θJA}	1.25 100 625 160	W ℃/W mW ℃/W
Operating Junction Temperature	Тј	+150	°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTES: 1. Maximum package power dissipation limits must be observed.

2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, T_A = T_{low} to T_{high} [Note 3], unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATOR		•	•		
Frequency (V _{Pin 5} = 0 V, C _T = 1.0 nF, T _A = 25°C)	fosc	24	33	42	kHz
Charge Current (V _{CC} = 5.0 V to 40 V, $T_A = 25^{\circ}C$)	l _{chg}	24	35	42	μΑ
Discharge Current (V _{CC} = 5.0 V to 40 V, T _A = 25°C)	Idischg	140	220	260	μA
Discharge to Charge Current Ratio (Pin 7 to V _{CC} , $T_A = 25^{\circ}C$)	Idischg/Ichg	5.2	6.5	7.5	-
Current Limit Sense Voltage ($I_{chg} = I_{dischg}, T_A = 25^{\circ}C$)	Vipk(sense)	250	300	350	mV
OUTPUT SWITCH (Note 4)					
Saturation Voltage, Darlington Connection (Note 5) $(I_{SW} = 1.0 \text{ A}, \text{Pins 1}, 8 \text{ connected})$	VCE(sat)	-	1.0	1.3	V
Saturation Voltage, Darlington Connection (I _{SW} = 1.0 A, R _{Pin 8} = 82 Ω to V _{CC} , Forced $\beta \simeq 20$)	VCE(sat)	-	0.45	0.7	V
DC Current Gain (I _{SW} = 1.0 A, V _{CE} = 5.0 V, T _A = 25°C)	hFE	50	75	-	-
Collector Off–State Current (V _{CE} = 40 V)	IC(off)	-	0.01	100	μA

NOTES: 3. T_{low} = 0°C, T_{high} = +70°C 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible. 5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non–Darlington configuration is used, the following output drive condition is recommended:

IC output

*The 100 Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

ELECTRICAL CHARACTERISTICS (continued) (V_{CC} = 5.0 V, T_A = T_{low} to T_{high} [Note 3], unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
COMPARATOR					
Threshold Voltage $T_A = 25^{\circ}C$ $T_A = T_{low}$ to T _{high}	V _{th}	1.23 1.21	1.25 -	1.27 1.29	V
Threshold Voltage Line Regulation (V_{CC} = 3.0 V to 40 V)	Reg _{line}	-	1.4	5.0	mV
Input Bias Current (V _{in} = 0 V)	IIB	-	-20	-400	nA
TOTAL DEVICE					
Supply Current (V _{CC} = 5.0 V to 40 V, C _T = 1.0 nF, Pin 7 = V _{CC} , V _{Pin 5} > V _{th} , Pin 2 = Gnd, remaining pins open)	Icc	-	-	4.0	mA

NOTES: 3. T_{low} = 0°C, T_{high} = +70°C
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
5. If the output switch is driven into hard saturation (non–Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 µs for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non–Darlington configuration is used, the following output drive condition is recommended:

IC output Forced β of output switch : $\frac{1000 \text{ GeV}}{1000 \text{ GeV}} \ge 10$

*The 100 Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

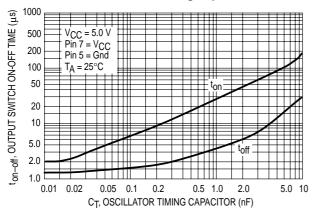


Figure 1. Output Switch On-Off Time versus **Oscillator Timing Capacitor**

Figure 3. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

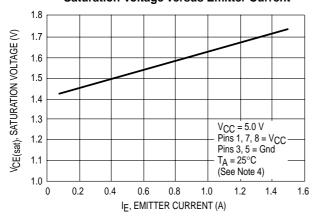


Figure 2. Timing Capacitor Waveform

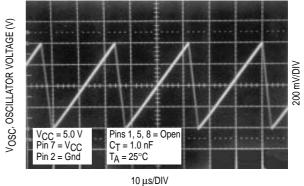
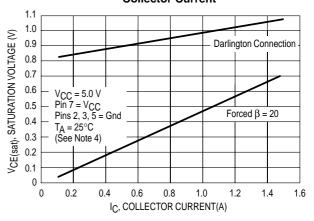
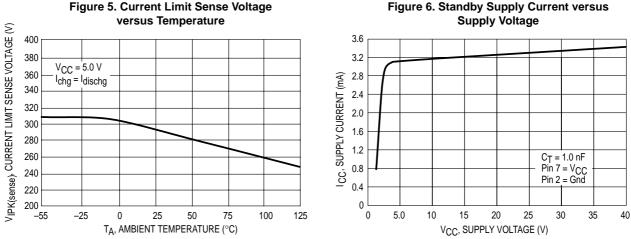
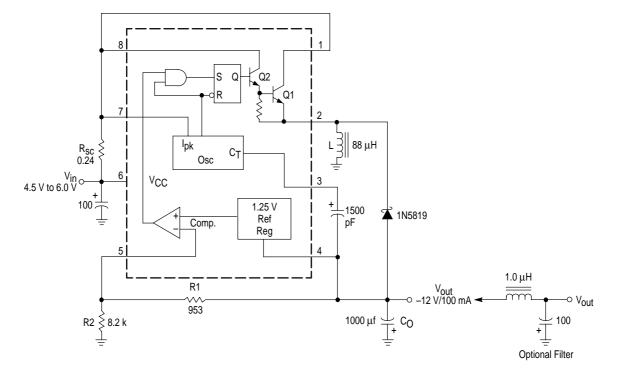




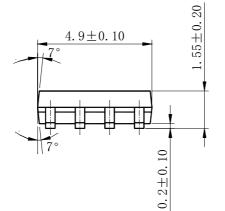
Figure 4. Common Emitter Configuration Output Switch Saturation Voltage versus **Collector Current**

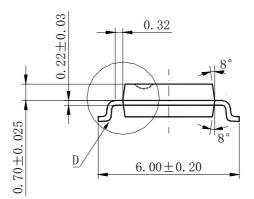

NOTE: 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

LR34063-4/7

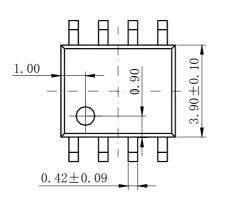
Figure 7. Voltage Inverting Converter

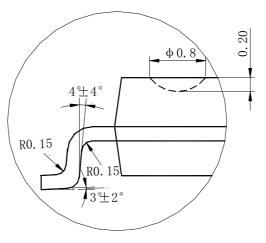
LR34063

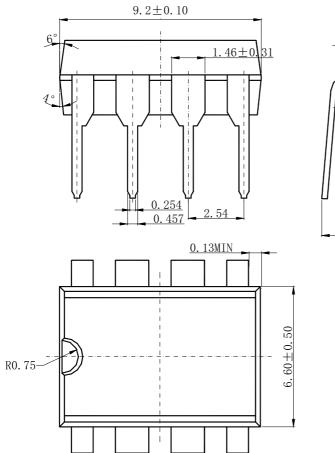

Test	Conditions	Results
Line Regulation	V_{in} = 4.5 V to 6.0 V, I _O = 100 mA	3.0 mV = ±0.012%
Load Regulation	V_{in} = 5.0 V, I _O = 10 mA to 100 mA	0.022 V = ±0.09%
Output Ripple	V _{in} = 5.0 V, I _O = 100 mA	500 mVpp
Short Circuit Current	V_{in} = 5.0 V, R _L = 0.1 Ω	910 mA
Efficiency	V _{in} = 5.0 V, I _O = 100 mA	62.2%
Output Ripple With Optional Filter	V_{in} = 5.0 V, I _O = 100 mA	70 mVpp



Mechanical Dimensions


SOP-8


Unit: mm



Mechanical Dimensions (Continued)

DIP-8

Unit: mm

