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Converter Transfer Functions

The engineering design process is comprised of several major steps:

1.
2.

Specifications and other design goats defined.

A circuit is proposedThis is a creative process that draws on the physical insight and experience of the
engineer.

The circuit is modeledThe converter power stage is modeled as described in Chapter 7. Components and
other portions of the system are modeled as appropriate, often with vendor-supplied data.

Design-oriented analysisf the circuit is performed. This involves development of equations that allow
element values to be chosen such that specifications and design goals are met. In addition, it may be neces-
sary for the engineer to gain additional understanding and physical insight into the circuit behavior, so that
the design can be improved by adding elements to the circuit or by changing circuit connections.

Model verification Predictions of the model are compared to a laboratory prototype, under nominal oper-
ating conditions. The model is refined as necessary, so that the model predictions agree with laboratory
measurements.

Worst-case analysir other reliability and production yield analysis) of the circuit is performed. This
involves quantitative evaluation of the model performance, to judge whether specifications are met under
all conditions. Computer simulation is well-suited to this task.

Iteration. The above steps are repeated to improve the design until the worst-case behavior meets specifi-
cations, or until the reliability and production yield are acceptably high.

This chapter covers techniques of design-oriented analysis, measurement of experimental transfer func-
tions, and computer simulation, as needed in steps 4, 5, and 6.

Sections 8.1 to 8.3 discuss techniques for analysis and construction of the Bode plots of the con-

verter transfer functions, input impedance, and output impedance predicted by the equivalent circuit
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Fig. 8.1 Small-signal equivalent circuit model of the buck-boost converter, as derived in Chapter 7.

models of Chapter 7. For example, the small-signal equivalent circuit model of the buck-boost converter
is illustrated in Fig. 7.17(c). This model is reproduced in Fig. 8.1, with the important inputs and terminal
impeqances identified. The line-to-output transfer funcBgyfs) is found by setting duty cycle varia-
tionsd(s) to zero, and then solving for the transfer function fig(s) to i(s):

glsturba nces in the output voltag@). It is |mportant in design of an output voltage regulator For exam-

ple, in an off-line power supply, the converter input voltugqe contains undesired even harmonics of
the ac power line voltage. The transfer functi@gyys) is used to determine the effect of these harmonics
on the converter output voltagé).

The control-to-output transfer functidd,(s) is found by setting the input voltage variations
b4(s) to zero, and then solving the equivalent circuit modet(gras a function ofi(s):

O]
Gu(s) = e omo (8.2)

This transfer function describes how control input variatiffgsinfluence the output voltagés). In an

output voltage regulator systef®,(s) is a key component of the loop gain and has a significant effect on
regulator performance.

The output impedancg, (s) is found under the conditions thza(s) andd(s) variations are set
to zero.Z,(s) describes how variations in the load current affect the output voltage. This quantity is also
important in voltage regulator design. It may be appropriate to d&fj{e) either including or not
including the load resistanée

The converter input impedangg(s) plays a significant role when an electromagnetic interfer-
ence (EMI) filter is added at the converter power input. The relative magnitudgsiofl the EMI filter
output impedance influence whether the EMI filter disrupts the transfer fuGfj@h Design of input
EMI filters is the subject of Chapter 10.

An objective of this chapter is the construction of Bode plots of the important transfer functions
and terminal impedances of switching converters. For example, Fig. 8.2 illustrates the magnitude and
phase plots 0B, ((s) for the buck-boost converter model of Fig. 8.1. Rules for construction of magnitude
and phase asymptotes are reviewed in Section 8.1, including two types of features that often appear in
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Fig. 8.2 Bode plot of control-to-output transfer function predicted by the model of Fig. 8.1, with arlalytica
expressions for the important features.

converter transfer functions: resonances and right half-plane zeroes. Bode diagrams of the small-signal
transfer functions of the buck-boost converter are derived in detail in Section 8.2, and the transfer func-
tions of the basic buck, boost, and buck-boost converters are tabulated. The physical origins of the right
half-plane zero are also described.

A difficulty usually encountered in circuit analysis (step 5 of the above list) is the complexity of
the circuit model: practical circuits may contains hundreds of elements, and hence their analysis may
leads to complicated derivations, intractable equations, and lots of algebra miBedigs-oriented
analysi¢l] is a collection of tools and techniques that can alleviate these problems. Some tools for
approaching the design of a complicated converter system are described in this chapter. Writing the
transfer functions in normalized form directly exposes the important features of the response. Analytical
expressions for these features, as well as for the asymptotes, lead to simple equations that are useful in
design. Well-separated roots of transfer function polynomials can be approximated in a simple way. Sec-
tion 8.3 describes a graphical method for constructing Bode plots of transfer functions and impedances,
essentially by inspection. This method can: (1) reduce the amount of algebra and associated algebra mis-
takes; (2) lead to greater insight into circuit behavior, which can be applied to design the circuit; and
(3) lead to the insight necessary to make suitable approximations that render the equations tractable.

Experimental measurement of transfer functions and impedances (needed in step 4, model veri-
fication) is discussed in Section 8.5. Use of computer simulation to plot converter transfer functions (as
needed in step 6, worst-case analysis) is covered in Appendix B.

8.1 REVIEW OF BODE PLOTS

A Bode plot is a plot of the magnitude and phase of a transfer function or other complex-valued quantity,
vs. frequency. Magnitude in decibels, and phase in degrees, are plotted vs. frequency, using semilogarith-
mic axes. The magnitude plot is effectively a log-log plot, since the magnitude is expressed in decibels
and the frequency axis is logarithmic.

The magnitude of a dimensionless quarf@itgan be expressed in decibels as follows:
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|G| =20 |0910(|| G||) (8.3) Table 8.1 Expressing magnitudes in decibels

Actual magnitude Magnitude in dB

Decibel values of some simple magnitudes are

listed in Table 8.1. Care must be used when the 12 —6dB
magnitude is not dimensionless. Since it is not 1 0dB

proper to take the logarithm of a quantity having 2 6dB
dimensions, the magnitude must first be normal- 5=10/2 20dB-6dB=14dB
ized. For example, to express the magnitude of 10 20 dB

an impedancé in decibels, we should normal- 1000 = 18 3.20 dB = 60 dB

ize by dividing by a base impedariRg,.;

zle=2ion L] @9

The value oR, . is arbitrary, but we need to tell others what value we have used|| 3¢{ i 5Q, and
we choos®, .= 10Q, then we can say thAZ ||,z = 20 logy(5 Q/10Q) = — 6dB with respect to 1Q.
A common choice iR .= 1Q; decibel impedances expressed ViRf)..= 1 Q are said to be expressed
in dBQ. So 5Q is equivalent to 14 d8. Current switching harmonics at the input port of a converter are
often expressed in dBuA, or dB using a base current of 1 pA: 60 dBUA is equivalent to 1000 A, or
1 mA.

The magnitude Bode plots of functions equal to poweifsapé linear. For example, suppose
that the magnitude of a dimensionless quagity is

Ly (8.5)
Gl=|+ .
lel=(¢]
wheref, andn are constants. The magnitude in decibels is

f\" f
|G| z=20 Ioglo(f—o) =20n 'Oglo(To) (8.6)

This equation is plotted in Fig. 8.3, for several values. dhe magnitudes have valué¢110 dB at fre-
quencyf =f,. They are linear functions of lggf). The slope is the change||iG ||,5 arising from a unit
change in logy(f); a unit increase in Iqg(f) corresponds to a factor of 10, or decade, increasdé-iom
Eq. (8.6), a decade increasd Iaads to an increase [iG ||,z of 20n dB. Hence, the slope is 2dB per
decade. Equivalently, we can say that the sloperidd@f)(2) = 6n dB per octave, where an octave is a
factor of 2 change in frequency. In practice, the magnitudes of most frequency-dependent functions can
usually be approximated over a limited range of frequencies by functions of the form (8.5); over this
range of frequencies, the magnitude Bode plot is approximately linear with stod8/2@cade.

A simple transfer function whose magnitude is of the form (8.5) ipdleat the origin

G9=,1; (8.7)
()

The magnitude is
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Fig. 8.3 Magnitude Bode plots of functions which varyfasre linear, with slope dB per decade.
- -1
| Gliw) | = @) (8.8)
i 718)
If we definef = w/2mandf, = w,/2m, then Eq. (8.8) becomes
fF1? 8.9
lol=({] ©9)

which is of the form of Eq. (8.5) with= —1. As illustrated in Fig. 8.3, the magnitude Bode plot of the
pole at the origin (8.7) has a —20 dB per decade slope, and passes through 0 dB at frecfyiency

8.1.1 Single Pole Response
R
: . I - WV +
Consider the simplB-C low-pass filter illustrated in Fig. 8.4.
The transfer function is given by the voltage divider ratio
) wo ©) C== o
Gg =2 - sC (8.10)
vy(9) S 1 +R —

This transfer function is a ratio of voltages, and hence Fé
dimensionless. By multiplying the numerator and denomind”

g. 8.4 Simple R-C low-pass filter
ample.

tor by sC, we can express the transfer function as a rational

fraction:

G(s) =

1+sRC

(8.11)



270 Converter Transfer Functions

The transfer function now coincides with the following standard normalized form for a single pole:

G(9) = 7(1 +1 s ) (8.12)

The parametew, = 2t is found by equating the coefficientssaf the denominators of Egs. (8.11) and
(8.12). The result is

=1
= o (8.13)

SinceR andC are real positive quantitiegy, is also real and positive. The denominator of Eq. (8.12)
contains a root &= —wy,, and hencé&(s) contains a real pole in the left half of the complex plane.
To find the magnitude and phase of the transfer function.

we lets = jw, whergj is the square root of —1. We then find the ma M(G()) ¢ _
nitude and phase of the resulting complex-valued function. $¥th G(jw)
jw, Eg. (8.12) becomes N
)
iy 7
Gjw=—1 = 8.14 .
T8 (g (614 06w,
’ Re(G(w)
The complex-value(jw) is illustrated in Fig. 8.5, for one value of
w. The magnitude is

_ _ 5 _ 5 Fig. 8.5 Magnitude and phase of
|Giw | = w[Re (G(J(D))] + [Im (G(Jw))] the complex-valued functioB(jw).

_ 1 (8.15)
V()

Here, we have assumed tlogtis real. In decibels, the magnitude is

| GG ||dB:—20Iogm(\/W) dB (8.16)

The easy way to sketch the magnitude Bode pl@ wfto investigate the asymptotic behavior for large
and small frequency.
For small frequencyy < w, andf < f, it is true that

(%) <1 (8.17)

The (m/ooo)2 term of Eq. (8.15) is therefore much smaller than 1, and hence Eq. (8.15) becomes

| G(jw) ||=%:1 (8.18)

In decibels, the magnitude is approximately
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Thus, as illustrated in Fig. 8.6, at low frequen&(jtv) ||z is asymptotic to 0 dB.
At high frequencyw > w, andf > f,. In this case, it is true that

(%) =1 (8.20)
We can then say that
2 2
1+(%) :(%) (8.21)
Hence, Eq. (8.15) now becomes
. _ 1 (f\7?
|elw) === (70) (8.22)
(&)

This expression coincides with Eq. (8.5), witk —1. So at high frequency3(jw) ||,z has slope —20 dB
per decade, as illustrated in Fig. 8.6. Thus, the asymptoteG(pd)||| are equal to 1 at low frequency,
and (f/fo)‘1 at high frequency. The asymptotes intersedf. athe actual magnitude tends toward these
asymptotes at very low frequency and very high frequency. In the vicinity of the corner frefjuémey
actual curve deviates somewhat from the asymptotes.

The deviation of the exact curve from the asymptotes can be found by simply evaluating
Eqg. (8.15). At the corner frequenty f,, Eq. (8.15) becomes

|cjwg |=——L—=-L
2 (8.23)
1+ (%) \/7
In decibels, the magnitude is
1 G(iw0) | 5 :—20|oglo( 1+ (%)2 ) ~_3dB (8.24)

So the actual curve deviates from the asymptotes by —3 dB at the corner frequency, as illustrated in
Fig. 8.7. Similar arguments show that the actual curve deviates from the asymptotes by £ Q2 at
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f
and aff = 2.
The phase o&(jw) is
Im(G(jw)
O0G(jw) = tan™?! M (8.25)
Re(G(jw))
Insertion of the real and imaginary parts of Eq. (8.14) into Eq. (8.25) leads to
0G(jw) = —tan (‘*’) (8.26)
0

This function is plotted in Fig. 8.8. It tends to 0° at low frequency, and to —90° at high frequency. At the
corner frequency=f,, the phase is —45°.
Since the high-frequency and low-frequency phase asymptotes do not intersect, we need a third
asymptote to approximate the phase in the vicinity of the corner fregiye@rye way to do this is illus-
O e 0° asymptote

~15°

Fig. 8.8 Exact phase —307
plot, single real pole. L
—45°—

—90° asymptote
" |

0.01, 0.1f, fo 10f, 100,
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trated in Fig. 8.9, where the slope of the asymptote is chosen to be identical to the slope of the actual
curve aff =f,. It can be shown that, with this choice, the asymptote intersection frequigrzsid§, are
given by

f
f=foe 2=, 00 801 (8.27)

f,= f,ev2=4.81f,
A simpler choice, which better approximates the actual curve, is

f
=10 (8.28)

f, = 10f,

This asymptote is compared to the actual curve in Fig. 8.10. The pole causes the phase to change over a
frequency span of approximately two decades, centered at the corner frequency. The slope of the asymp-
tote in this frequency span is —45° per decade. At the break frequgreeslf,, the actual phase devi-
ates from the asymptotes by 1§0.1) = 5.7°.
The magnitude and phase asymptotes for the single-pole response are summarized in Fig. 8.11.
It is good practice to consistently express single-pole transfer functions in the normalized form
of Eq. (8.12). Both terms in the denominator of Eq. (8.12) are dimensionless, and the coeffiiant of
unity. Equation (8.12) is easy to interpret, because of its normalized form. At low frequencies, where the
(Jwy) term is small in magnitude, the transfer function is approximately equal to 1. At high frequencies,
where the §wy,) term has magnitude much greater than 1, the transfer function is approxisiagiy. (
This leads to a magnitude dﬁ&)'l. The corner frequency fs = wy/2m So the transfer function is writ-
ten directly in terms of its salient features, that is, its asymptotes and its corner frequency.
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Fig. 8.10 A simpler choice for the midfrequency phase asymptote, which better approximates the curve over th
entire frequency range.
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Fig. 8.11 Summary of the magnitude and phase Bode plot for the single real pole.
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Fig. 8.12 Summary of the
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8.1.2  Single Zero Response

A single zero response contains a root in the numerator of the transfer function, and can be written in the
following normalized form:

G(9) = (1+%) (8.29)

This transfer function has magnitude

|GGiw)|=,/1+ (%)2 (8.30)

At low frequencyf << f, = wy/21 the transfer function magnitude tends t@ 1 dB. At high frequency,
f > f, the transfer function magnitude tends fify) As illustrated in Fig. 8.12, the high-frequency
asymptote has slope +20 dB/decade.

The phase is given by

0G(jw) = tan (c(:o) (8.31)

With the exception of a minus sign, the phase is identical to Eq. (8.26). Hence, suitable asymptotes are as
illustrated in Fig. 8.12. The phase tends to 0° at low frequency, and to +90° at high frequency. Over the
intervalfy10 <f < 1(f,, the phase asymptote has a slope of +45°/decade.
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8.1.3 Right Half-Plane Zero

Right half-plane zeroes are often encountered in the small-signal transfer functions of switching convert-
ers. These terms have the following normalized form:

G(s) = (1—%) (8.32)
The root of Eq. (8.32) is positive, and hence lies in the right half of the complare. The right half-
plane zero is also sometimes called a nonminimum phase zero. Its normalized form, Eq. (8.32), resem-
bles the normalized form of the (left half-plane) zero of Eqg. (8.29), with the exception of a minus sign in
the coefficient ok. The minus sign causes a phase reversal at high frequency.

The transfer function has magnitude

lGGiw)|=,/1+ (w%)z (8.33)

This expression is identical to Eq. (8.30). Hence, it is impossible to distinguish a right half-plane zero
from a left half-plane zero by the magnitude alone. The phase is given by

0G(j6) =—tan* (o‘;’o) (8.34)

This coincides with the expression for the phase of the single pole, Eq. (8.26). So the right half-plane
zero exhibits the magnitude response of the left half-plane zero, but the phase response of the pole. Mag-
nitude and phase asymptotes are summarized in Fig. 8.13.
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Fig. 8.14 Inversion of the fre-

guency axis: summary of the
magnitude and phase Bode plots

for the inverted real pole. 1 G(0) llgs

+20 dB/decade

o f /10
0G(w) +90 0 v

8.1.4  Frequency Inversion

Two other forms arise, from inversion of the frequency axis. The inverted pole has the transfer function

G(s) = (1+1‘*§°) (8.35)

As illustrated in Fig. 8.14, the inverted pole has a high-frequency gain of 1, and a low frequency asymp-
tote having a +20 dB/decade slope. This form is useful for describing the gain of high-pass filters, and of
other transfer functions where it is desired to emphasize the high frequency gain, with attenuation of low
frequencies. Equation (8.35) is equivalent to

G(9 = ((%0) (8.36)

4]

However, Eqg. (8.35) more directly emphasizes that the high frequency gain is 1.
The inverted zero has the form

69 =(1+%] (8.37)

As illustrated in Fig. 8.15, the inverted zero has a high-frequency gain asymptote equal to 1, and a low-
frequency asymptote having a slope equal to —20 dB/decade. An example of the use of this type of trans-
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—20 dB/decade

1 G() lle

Fig. 8.15 Inversion of the fre- )
guency axis: summary of the : R v 1dB 0dB
magnitude and phase Bode plot *

for the inverted real zero.

OG(jw)

fer function is the proportional-plus-integral controller, discussed in connection with feedback loop
design in the next chapter. Equation (8.37) is equivalent to

s
1)
'S
(‘*’0)
However, Eq. (8.37) is the preferred form when it is desired to emphasize the value of the high-frequency

gain asymptote.
The use of frequency inversion is illustrated by example in the next section.

G = (8.38)

8.1.5 Combinations

The Bode diagram of a transfer function containing several pole, zero, and gain terms, can be constructed

by simple addition. At any given frequency, the magnitude (in decibels) of the composite transfer func-

tion is equal to the sum of the decibel magnitudes of the individual terms. Likewise, at a given frequency

the phase of the composite transfer function is equal to the sum of the phases of the individual terms.
For example, suppose that we have already constructed the Bode diagrams of two complex-val-

ued functions ofv, G,(w) andG,(w). These functions have magnitudegw) andR,(w), and phases

0,(w) and 6,(w), respectively. It is desired to construct the Bode diagram of the pr@i(w) =

G,(0) Gy(w). Let G5(w) have magnitud®,(w), and phas@,(w). To find this magnitude and phase, we

can expres§,;(w), G,(w), andG,(w) in polar form:
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G,(w) = Ry(w) ei®1@
G,(w) = Ry(w) el®2® (8.39)
G;(w) = Ry(w) €/%3@
The producG,(w) can then be expressed as
G3(w) = G1(w) Gy(0) = Ry(w) €11 R,() ei®2(® (8.40)
Simplification leads to
Gy(w) = (Rl(w) Rz(w)) i(01(c) +8(w)) (8.41)
Hence, the composite phase is
0(00) = 6,(w) + 6,(w) (8.42)
The total magnitude is
Ry(w) = Ry(w) Ry(w) (8.43)
When expressed in decibels, Eq. (8.43) becomes
| Ro(0) | g = | Ru(@) | g + | Ro(@) | 5 (8.44)

So the composite phase is the sum of the individual phases, and when expressed in decibels, the compos-
ite magnitude is the sum of the individual magnitudes. The composite magnitude slope, in dB per
decade, is therefore also the sum of the individual slopes in dB per decade.

Go =400 32dB
Gl . 06
IGI f —20 dB/decade
20dB+
0dB
0dB
20 dB o <40 dB/decade o
06 1n0
_40dB+ 10 Hz _a5°
—-60 dBt -90°
10,
20 kHz o
| 1 —135
1 kHz —45°/decadé
’ = ; — -180°
1Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz

Fig. 8.16 Construction of magnitude and phase asymptotes for the transfer function of Eq.(8.45). Dashed line
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For example, consider construction of the Bode plot of the following transfer function:

Go

G(s) =

whereG, = 400 32 dB,f; = w,/2m= 100 Hzf, = w,/2r= 2 kHz. This transfer function contains three
terms: the gais,, and the poles at frequencfgandf,. The asymptotes for each of these terms are illus-
trated in Fig. 8.16. The gai@, is a positive real number, and therefore contributes zero phase shift with
the gain 32 dB. The poles at 100 Hz and 2 kHz each contribute asymptotes as in Fig. 8.11.

At frequencies less than 100 Hz, tBgterm contributes a gain magnitude of 32 dB, while the
two poles each contribute magnitude asymptotes of 0 dB. So the low-frequency composite magnitude
asymptote is 32 dB + 0 dB + 0 dB = 32 dB. For frequencies between 100 Hz and 2 k8z gtie
again contributes 32 dB, and the pole at 2 kHz continues to contribute a 0 dB magnitude asymptote.
However, the pole at 100 Hz now contributes a magnitude asymptote that decreases with a —20 dB per
decade slope. The composite magnitude asymptote therefore also decreases with a —20 dB per decade
slope, as illustrated in Fig. 8.16. For frequencies greater than 2 kHz, the poles at 100 Hz and 2 kHz each
contribute decreasing asymptotes having slopes of —20 dB/decade. The composite asymptote therefore
decreases with a slope of —20 dB/decade —20 dB/decade = —40 dB/decade, as illustrated.

The composite phase asymptote is also constructed in Fig. 8.16. Below 10 Hz, all terms con-
tribute 0° asymptotes. For frequencies betwigd® = 10 Hz, and,/10 = 200 Hz, the pole &t contrib-
utes a decreasing phase asymptote having a slope of —45°/decade. Between 200 Hz=ahdkH®,
both poles contribute decreasing asymptotes with —45°/decade slopes; the composite slope is therefore
—90°/decade. Between 1 kHz and,1 20 kHz, the pole & contributes a constant —90° phase asymp-
tote, while the pole d contributes a decreasing asymptote with —45°/decade slope. The composite slope
is then —45°/decade. For frequencies greater than 20 kHz, both poles contribute constant —90° asymp-
totes, leading to a composite phase asymptote of —180°.

As a second example, con- f, 1A, llys
sider the transfer functiofi(s) rep- [ A]] |
resented by the magnitude anc f//
phase asymptotes of Fig. 8.17. Lel I Aq llys 1 +20 dB/decade

us write the transfer function that
corresponds to these asymptotes

The dc asymptote i8,. At corner 10F, f,/10

frequencyf,, the asymptote slope . .
increases from 0 dB/decade to +2¢ 0 A +45'/dec 90 —45'/decade
dB/decade. Hence, there must be o’ 0°
zero at frequency,. At frequency f, 110 101,

f,, the asymptote slope decreases
from +20 dB/decade to O dB/ Fig. 8.17 Magnitude and phase asymptotes of example transfer
decade. Therefore the transfer func- functionA(s).

tion contains a pole at frequeniy

So we can express the transfer function as

(8.46)

A9 = A,
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wherew,; andw, are equal to#; and 2t,, respectively.

We can use Eq. (8.46) to derive analytical expressions for the asymptotes.ffand letting
s = jw, we can see that the/@,) and §w,) terms each have magnitude less than 1. The asymptote is
derived by neglecting these terms. Hence, the low-frequency magnitude asymptote is

(1+%)
(1+a%)

Forf, <f <f,, the numerator terns/o,) has magnitude greater than 1, while the denominator &3) (
has magnitude less than 1. The asymptote is derived by neglecting the smaller terms:

S S
(/1%-'—(‘01) =A le s:Jw_Aole:Ao

(1+%) ._ ° 17

s=jw

Ao

= Aot =A, (8.47)

S=jw

f

T (8.48)

Ao

This is the expression for the midfrequency magnitude asympté{g)ofForf >f,, the §w,) and gw,)
terms each have magnitude greater than 1. The expression for the high-frequency asymptote is therefore:
|

+ S
A (/lf ("s)l) - AOM :AO% =A, f (8.49)

sl s :

: o,
= jw

s=jw
We can conclude that the high-frequency gain is
A=A, 2 (8.50)
f;

Thus, we can derive analytical expressions for the asymptotes.

The transfer functio”A(s) can also be written in a second form, using inverted poles and zeroes.
Suppose thal\(s) represents the transfer function of a high-frequency amplifier, whose dc gain is not
important. We are then interested in expressifg) directly in terms of the high-frequency gaip. We
can view the transfer function as having an inverted pole at freqéigmdyich introduces attenuation at
frequencies less thdpn In addition, there is an inverted zerd atf,. SoA(s) could also be written

M (8.51)

[1+¢]

It can be verified that Egs. (8.51) and (8.46) are equivalent.

A(S) = A,

48| 0 €
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8.1.6  Quadratic Pole Response: Resonance L

Consider next the transfer functi@gs) of the two-pole
low-pass filter of Fig. 8.18. The buck converter contai |, © C) c=— R S v,(9)
a filter of this type. When manipulated into canonic * = T 2
form, the models of the boost and buck-boost also ct
tain similar filters. One can show that the transfer fur -
tion of this network is

Fig. 8.18 Two-pole low-pass filter example.

_V(s) _ 1
G==-22=_ &+ .
© vi(9) 1+ %RL +s2LC (8:52)

This transfer function contains a second-order denominator polynomial, and is of the form

_ 1
G =15 ast s (8.53)

with a; =L/Randa, = LC.

To construct the Bode plot of this transfer function, we might try to factor the denominator into
its two roots:

G(9 :7(1_ s)l(l_ssz) (8.54)

Use of the quadratic formula leads to the following expressions for the roots:

- & 42, 8.55
8= g |17/ 1 : (8.55)
- _ & _43 8.56
= =g |11/ L : (8.56)

If 4a, < &% then the roots are real. Each real pole then exhibits a Bode diagram as derived in
Section 8.1.1, and the composite Bode diagram can be constructed as described in Section 8.1.5 (but a
better approach is described in Section 8.1.7).

If 4a, > af, then the roots (8.55) and (8.56) are complex. In Section 8.1.1, the assumption was
made thaty, is real; hence, the results of that section cannot be applied to this case. We need to do some
additional work, to determine the magnitude and phase for the case when the roots are complex.

The transfer functions of Egs. (8.52) and (8.53) can be written in the following standard nor-
malized form:

69=— 1
© 1+2zwio+(%)2 (8.57)

If the coefficientsa; anda, are real and positive, then the paramefeandw, are also real and positive.

The parametemy, is again the angular corner frequency, and we can dgfig,/2m. The paramete]f is
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called thedamping factar controls the shape of the transfer function in the viciniti/=of,. An alter-
native standard normalized form is

Ge)=—5"7352 1 512 (8.58)
1+ Quy, " ((.00)
where
-1
Q—z (8.59)

The paramete is called theguality factorof the circuit, and is a measure of the dissipation in the sys-
tem. A more general definition @, for sinusoidal excitation of a passive element or network, is

(peak stored energy) (8.60)

Q=2m (energy dissipated per cycle)

For a second-order passive system, Egs. (8.59) and (8.60) are equivalent. We will seetfattdre

has a very simple interpretation in the magnitude Bode diagrams of second-order transfer functions.
Analytical expressions for the paramet@randw, can be found by equating like powerssat

the original transfer function, Eq. (8.52), and in the normalized form, Eq. (8.58). The result is

:&: 1
07 2n 2m/LC (8.61)

Q=Rr/E

The rootss, ands, of Egs. (8.55) and (8.56) are real wiigs 0.5, and are complex wh€nh> 0.5.
The magnitude o6 is

| Gliey | = L (8.62)
V(18I gl

Asymptotes of |5 || are illustrated in Fig. 8.19. At low frequencies/u§) < 1, and hence

|G| -1 for w<w, (8.63)
| G(w) llys
0dB 0dB
—20 dB 4
~40 dB-
-60 dB

0.1f,

Fig. 8.19 Magnitude asymptotes for the two-pole transfer function.
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At high frequencies wheran(w,) > 1, the (u/ooo)"' term |G|
dominates the expression inside the radical of Eq. (8.€ TR
Hence, the high-frequency asymptote is 0dB i

-2
[G] - (fi) for o= (8.64)
0
This expression coincides with Eg. (8.5), with= —2.
Therefore, the high-frequency asymptote has slope —40
decade. The asymptotes intersedt=af,, and are indepen-
dent ofQ.
I de Bode plot, for the two-pole transf

The paramete® affects the deviation of the actu Enitio: e ot for the two-pole franster
curve from the asymptotes, in the neighborhood of the cor-
ner frequency,. The exact magnitude && f, is found by substitution ab = w, into Eq. (8.62):

Fig. 8.20 Important features of the magni-

|G(iwg [ =Q (8.65)

So the exact transfer function has magnitQca the corner frequendy. In decibels, Eq. (8.65) is

|| G(joo) ||dB =] Qlg (8.66)

So if, for exampleQ = 20 6 dB, then the actual curve deviates from the asymptotes by 6 dB at the cor-
ner frequency = f,. Salient features of the magnitude Bode plot of the second-order transfer function are
summarized in Fig. 8.20.

The phase o6 is

o)
0G(je) = —tan-1|-21%0) (8.67)

The phase tends to 0° at low frequency, and to —180° at high frequericyfAthe phase is —90°. As
illustrated in Fig. 8.21, increasing the value®@fcauses a sharper phase change between the 0° and
—-180° asymptotes. We again need a midfrequency asymptote, to approximate the phase transition in the

0° -

IncreasingQ

Fig. 8.21 Phase plot, second-order pole oG 90 +
IncreasingQ causes a sharper phase chang

-18C !
0.1 1 10
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Fig. 8.22 One choice for the midfrequency
phase asymptote of the two-pole response,
which correctly predicts the actual slope at
f=f,

0

Fig. 8.23 A simpler choice for the
midfrequency phase asymptote, which
better approximates the curve over the
entire frequency range and is consistent
with the asymptote used for real poles.

0.1 1 f, 10

/1,
vicinity of the corner frequendl, as illustrated in Fig. 8.22. As in the case of the real single pole, we
could choose the slope of this asymptote to be identical to the slope of the actual Carfyelatan be
shown that this choice leads to the following asymptote break frequencies:

(8.68)

A better choice, which is consistent with the approximation (8.28) used for the real single pole, is

— -1/
f= 101,12 = (8.69)
f, = 10Y% f,

With this choice, the midfrequency asymptote has slope@ti&@rees per decade. The phase asymp-
totes are summarized in Fig. 8.23. W@h= 0.5, the phase changes from 0° to —180° over a frequency
span of approximately two decades, centered at the corner fredyidncyeasing th€ causes this fre-
guency span to decrease rapidly.

Second-order response magnitude and phase curves are plotted in Figs. 8.24 and 8.25.
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8.1.7 The LowQ Approximation

As mentioned in Section 8.1.6, when the roots of second-order denominator polynomial of Eq. (8.53) are
real, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real
poles. We would then use the following normalized form:

G(9 :(1+£l)1(1+£2) (8.70)

This is a particularly desirable approach when the corner frequengiasd w, are well separated in
value.

The difficulty in this procedure lies in the complexity of the quadratic formula used to find the
corner frequencies. Expressing the corner frequengiesidw, in terms of the circuit elemen& L, C,
etc., invariably leads to complicated and unilluminating expressions, especially when the circuit contains
many elements. Even in the case of the simple circuit of Fig. 8.18, whose transfer function is given by
Eq. (8.52), the conventional quadratic formula leads to the following complicated formula for the corner
frequencies:

L L\?
ke () -ac (8.71)
00y, 0 = 2LC

This equation yields essentially no insight regarding how the corner frequencies depend on the element
values. For example, it can be shown that when the corner frequencies are well separated in value, they
can be expressed with high accuracy by the much simpler relations

wﬁ% %z% (8.72)
In this caseq, is essentially independent of the valueCpfandw, is essentially independent bf yet
Eq. (8.71) apparently predicts that both corner frequencies are dependent on all element values. The sim-
ple expressions of Eq. (8.72) are far preferable to Eq. (8.71), and can be easily derived usin@the low-
approximation [2].

Let us assume that the transfer function has been expressed in the standard normalized form of
Eq. (8.58), reproduced below:

G(s) = s 1+ ((30)2 (8.73)

1+ =

" Quy

For Q < 0.5, let us use the quadratic formula to write the real roots of the denominator polynomial of
Eq. (8.73) as

W,

- % 1-y1-4Q° v12—4Q2 (8.74)

w,= o 1+V1-4Q% (8.75)
Q
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Fig. 8.26 F(Q) vs. Q, as given by
Eq. (8.77). The approximatidi(Q) = 1 is
within 10% of the exact value f@ < 3.

0 0.1 0.2 0.3 0.4 0.5
Q
The corner frequenay, can be expressed
©= FFQ (8.76)
whereF(Q) is defined as [2]:
FQ=1 (1+/1-4Q7) (8.77)

Note that, whel < 0.5, then ©* < 1 andF(Q) is approximately equal to 1. We then obtain

wf-% forQ =13 (8.78)
The functionF(Q) is plotted in Fig. 8.26. It can be seen tR4Q) approaches 1 very rapidly &
decreases below 0.5.
To derive a similar approximation fap,, we can multiply and divide Eq. (8.74) %Q),
Eq. (8.77). Upon simplification of the numerator, we obtain

_ Qu,
0, = ﬁQ(; (8.79)

Again, F(Q) tends to 1 for smalD. Hencew, can be approximated as

0, =Qu, forQ= % (8.80)
Magnitude asymptotes for the lo@-case are summarized in Fig. 8.27. Ebok 0.5, the two
poles atw, split into real poles. One real pole occurs at corner frequensyw,, while the other occurs
at corner frequencw, > w, The corner frequencies are easily approximated, using Egs. (8.78) and
(8.80).
For the filter circuit of Fig. 8.18, the paramet@andw, are given by Eq. (8.61). For the case
whenQ < 0.5, we can derive the following analytical expressions for the corner frequencies, using
Egs. (8.78) and (8.80):
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G _ Qfg
S = © f
Fig. 8.27 Magnitude asymptotes predicted 0dB =Qfy 0 f,= f,F(Q)
by the lowQ approximation. Real poles occur '
at frequencie®f, andfyQ.

(8.81)

So the lowQ approximation allows us to derive simple design-oriented analytical expressions for the
corner frequencies.

8.1.8  Approximate Roots of an Arbitrary-Degree Polynomial

The low-Q approximation can be generalized, to find approximate analytical expressions for the roots of
then®-order polynomial

P()=1+a;s+a,s?+ - +a,s" (8.82)
It is desired to factor the polynomig({s) into the form
P(9) = (1+T,8) (14 1,8) - (1+ 71, (8.83)

In a real circuit, the coefficients, ...,a, are real, while the time constants...,t, may be either real or
complex. Very often, some or all of the time constants are well separated in value, and depend in a very
simple way on the circuit element values. In such cases, simple approximate analytical expressions for
the time constants can be derived.

The time constants,, ..., T, can be related to the original coefficieals..., a, by multiplying
out Eq. (8.83). The result is

=T+, 4+ 4T,
a,= Tl(T2+ e Tn) + '[2('[3+ et Tn) + ...

a;= '[1'[2('[3 +oeee '[n) + '[2'[3('[4+ e+ Tn) + ... (8.84)

an =Ty TLT5 - T,

General solution of this system of equations amounts to exact factoring of the arbitrary degree polyno-
mial, a hopeless task. Nonetheless, Eq. (8.84) does suggest a way to approximate the roots.

Suppose that all of the time constams..., T, are real and well separated in value. We can fur-
ther assume, without loss of generality, that the time constants are arranged in decreasing order of magni-
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tude:

[l = 1] = - =[]

(8.85)

When the inequalities of Eq. (8.85) are satisfied, then the expressi@ys.for, of Eq. (8.84) are each

dominated by their first terms:
a; =T,
B=TT;
a3 = TyT5T3
an =TTl Ty

These expressions can now be solved for the time constants, with the result

.=,

Hence, if

an
a-n— 1

ag

a,

2,

1

|a1|>> > R

then the polynomidP(s) given by Eq. (8.82) has the approximate factorization

P(s)=(1+a,s) 1+%s 3 ~~(1+aan s)
1 2 n-1

(1+§s

(8.86)

(8.87)

(8.88)

(8.89)

Note that if the original coefficients in Eq. (8.82) are simple functions of the circuit elements, then the
approximate roots given by Eq. (8.89) are similar simple functions of the circuit elements. So approxi-
mate analytical expressions for the roots can be obtained. Numerical values are substituted into

Eq. (8.88) to justify the approximation.

In the case where two of the roots are not well separated, then one of the inequalities of
Eq. (8.88) is violated. We can then leave the corresponding terms in quadratic form. For example, sup-

pose that inequalitly is not satisfied:

A A+1 an

anl

Ll s

|a1|>> > e >

>

] a

Then an approximate factorization is

(8.90)



8.1 Review of Bode Plots 291

(8.91)
|Gl =20100:(] G
The conditions for accuracy of this approximation are
|a,| > Bls o] K ak‘zzak” oy S PR (8.92)
) a1 Q41 an_1
Complex conjugate roots can be approximated in this manner.
When the first inequality of Eq. (8.88) is violated, that is,
|al|>$> L R Y PR (8.93)
a a an_1
then the first two roots should be left in quadratic form:
P(S)’~'(1+a1$+3.232) 1+%s 1+—an S (8.94)
a, an_1
This approximation is justified provided that
2
G R PO L L PR (8.95)
2 a3 An_1

If none of the above approximations is justified, then there are three or more roots that are close in mag-
nitude. One must then resort to cubic or higher-order forms.

As an example, consider the damped EMI filter illustrated in Fig. 8.28. Filters such as this are
typically placed at the power input of a converter, to attenuate the switching harmonics present in the
converter input current. By circuit analysis, on can show that this filter exhibits the following transfer
function:

, Ly+L
_ig® _ R

1S _ (8.96)
Ic(s) 1+SL1;L2+SZL1C+S3

G(s)

[,L,C
R

This transfer function contains a third-order denominator, with the following coefficients:

- L, R Converter
20 c ==

Fig. 8.28 Input EMI filter example.
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a,=L,C (8.97)

It is desired to factor the denominator, to obtain analytical expressions for the poles. The correct way to
do this depends on the numerical valueRdf,, L,, andC. When the roots are real and well separated,
then Eq. (8.89) predicts that the denominator can be factored as follows:

(1+sL1;RL2) (1+sRC

(1 . SLRz) (8.98)

Ll
L,+L,
According to Eg. (8.88), this approximation is justified provided that

L,+L,
R

Ly L, 8.99
>>RCL =+ L, >ﬁ ( )

These inequalities cannot be satisfied urllgss- L,. WhenL, > L,, then Eq. (8.99) can be further sim-
plified to

Ly

L, 8.100
= ( )

>>RC>>R

The approximate factorization, Eq. (8.98), can then be further simplified to

L,
R

1+ Sg) (8.101)

)(1+sRc) =

(1 +s—=
Thus, in this case the transfer function contains three well separated real poles. Equations (8.98) and
(8.101) represent approximate analytical factorizations of the denominator of Eq. (8.96). Although
numerical values must be substituted into Egs. (8.99) or (8.100) to justify the approximation, we can
nonetheless express Egs. (8.98) and (8.101) as analytical functions 9fR, andC. Equations (8.98)
and (8.101) are design-oriented, because they yield insight into how the element values can be chosen
such that given specified pole frequencies are obtained.

When the second inequality of Eq. (8.99) is violated,

LlEL ~Re L = |_2 } (8.102)
then the second and third roots should be left in quadratic form:
(1+s%) (1+SRC L LC (8.103)

This expression follows from Eq. (8.91), with= 2. Equation (8.92) predicts that this approximation is
justified provided that



8.2 Analysis of Converter Transfer Functions 293

L,+L,

g 2=RC L, Lallt, RC (8.104)

I‘1+L2 I‘1+L2

In application of Eq. (8.92), we takg to be equal to 1. The inequalities of Eq. (8.104) can be simplified
to obtain

Li=L, ad Z=RC (8.105)

Note that it is no longer required tH€ > L,/R. Equation (8.105) implies that factorization (8.103) can
be further simplified to

1+SI%R1

(1+SRC+SZL2C) (8.106)

Thus, for this case, the transfer function contains a low-frequency pole that is well separated from a high-
frequency quadratic pole pair. Again, the factored result (8.106) is expressed as an analytical function of
the element values, and consequently is design-oriented.

In the case where the first inequality of Eq. (8.99) is violated:

ng L+1 L (8.107)

L2
+RC =

Ly

then the first and second roots should be left in quadratic form:

L,+L L
l+s=i—2 2+52L1C)(1+5Rz) (8.108)

This expression follows directly from Eq. (8.94). Equation (8.95) predicts that this approximation is jus-
tified provided that

L,RC  L,+L, L, 8.109
L, ~ R R (8.109)
that is,
L,=L, and RC>>% (8.110)

For this case, the transfer function contains a low-frequency quadratic pole pair that is well separated
from a high-frequency real pole. If none of the above approximations are justified, then all three of the

roots are similar in magnitude. We must then find other means of dealing with the original cubic polyno-

mial. Design of input filters, including the filter of Fig. 8.28, is covered in Chapter 10.

8.2 ANALYSIS OF CONVERTER TRANSFER FUNCTIONS

Let us next derive analytical expressions for the poles, zeroes, and asymptote gains in the transfer func-
tions of the basic converters.
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VARV

549 1d(s) %\é g\é ld =—=c "9 SR

Fig. 8.29 Buck-boost converter equivalent circuit derived in Section 7.2.

8.2.1  Example: Transfer Functions of the Buck-Boost Converter

The small-signal equivalent circuit model of the buck-boost converter is derived in Section 7.2, with the
result [Fig. 7.16(b)] repeated in Fig. 8.29. Let us derive and plot the control-to-output and line-to-output
transfer functions for this circuit.

The converter contains two independent ac inputs: the controld(guatnd the line inpuﬁg(s).
The ac output voltage variatiofiés) can be expressed as the superposition of terms arising from these
two inputs:

9(9) = Gug(9d(S) + Gyg(S) 7¢(9) (8.111)

Hence, the transfer functio; (s) andGVg(s) can be defined as

_ (9 _ 99
Gu(s = s o and Gs) = 59 o (8.112)

To find the line-to-output transfer functi@(s), we set thel sources to zero as in Fig. 8.30(a). We can
then push the(s) source and the inductor through the transformers, to obtain the circuit of Fig. 8.30(b).
The transfer functio®,(s) is found using the voltage divider formula:

(@) 1:D D':1
I —
L
Pg(S) %Né %N? —cC "9 SR
(b) ’“G'f'l?\ —

Ms)(—%)c_') —c "9 SR

Fig. 8.30 Manipulation of buck-boost equivalent circuit to find the line-to-output transfer fun@ggs)
(@ setd sources to zero; (b) push inductor a»gctource through transformers.
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D (R" %) (8.113)

(8.114)

We aren’t done yet—the next step is to manipulate the expression into normalized form, such that the
coefficients ofs in the numerator and denominator polynomials are equal to one. This can be accom-
plished by dividing the numerator and denominatoRby

D 1

d®=0 I+s5o+s 53

D?R D2

_ 9
Gol9= ¢ g

Thus, the line-to-output transfer function contains a dc @Qgrand a quadratic pole pair;

Gvg(s):Ggo—l = (5)2 (8.116)

T, e
Analytical expressions for the salient features of the line-to-output transfer function are found by equat-

ing like terms in Egs. (8.115) and (8.116). The dc gain is

-_D (8.117)

Gyo=— 1

By equating the coefficients st in the denominators of Egs. (8.115) and (8.116), we obtain

r—
@]

1 _LC 8.118
w; D*? ( )
Hence, the angular corner frequency is
=D 8.119
“=Tre (6.119)
By equating coefficients &fin the denominators of Eqgs. (8.115) and (8.116), we obtain
1 -1 (8.120)

Quw, DR

Elimination ofwy, using Eq. (8.119) and solution fQrleads to
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L .
@ s )—r-1
\J *
(Vy-Vd(e
%\é lde =—=c 7 SR

(b) - 53“ +

V,-V . D? 2

“e2 XA C) 1d(s) C—= 79 SR

Fig. 8.31 Manipulation of buck-boost equivalent circuit to find the control-to-output transfer fur@jgs):
(@ se'u?g source to zero; (b) push inductor and voltage source through transformer.

Equations (8.117), (8.119), and (8.121) are the desired results in the analysis of the line-to-output trans-
fer function. These expressions are useful not only in analysis situations, where it is desired to find
numerical values of the salient featuf%g, Wy, andQ, but also in design situations, where it is desired to
select numerical values f& L, andC such that given values of the salient features are obtained.

Derivation of the control-to-output transfer functiGy(s) is complicated by the presence in
Fig. 8.29 of three generators that dependi@h One good way to fin®,(s) is to manipulate the cir-
cuit model as in the derivation of the canonical model, Fig. 7.60. Another approach, used here, employs
the principle of superposition. First, we set thesource to zero. This shorts the input to the ttans-
former, and we are left with the circuit illustrated in Fig. 8.31(a). Next, we push the inductbwaitd
age source through ti¥:1 transformer, as in Fig. 8.31(b).

Figure 8.31(b) contains &dependent voltage source and-dependent current source. The
transfer functiorG, ((s) can therefore be expressed as a superposition of terms arising from these two
sources. When the current source is set to zero (i.e., open-circuited), the circuit of Fig. 8.32(a) is
obtained. The outpuXs) can then be expressed as

\7(5)_(_\/9_'\/) (R”%) (8.122)
Y

When the voltage source is set to zero (i.e., short-circuited), Fig. 8.31(b) reduces to the circuit illustrated
in Fig. 8.32(b). The outpuXs) can then be expressed as

"(s) _ (st 1
% =1 (F IRl i) (8.123)

The transfer functio, 4(s) is the sum of Egs. (8.122) and (8.123):
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(@) 556 —
L
DIZ
V,-V .
9 —— ~
Fig. 8.32 Solution of the model of Fig. D' d(s) C/= 706 5 R
8.32(b) by superposition: (a) current
source set to zero; (b) voltage source set _
to zero.
(b) +
1des (1 L Czo= 9 SR
Dl2 ——
1
V, -V (R||§)
G :_9,) ISt iri-L (8.124)
A9=[-Y55 g SR
D*? sC

By algebraic manipulation, one can reduce this expression to

_ LI
D(V,—-V
G = :(_ ng—v) a=Y) (8.125)
VI dA g
© 7g(9)=0 (1 + siD!-zR + SZ%)
This equation is of the form
1—%2)
Gu(9) =Gy 77— (8.126)
(&)
Quyp (%o

The denominators of Eqg. (8.125) and (8.115) are identical, and BgjseandG, (s) share the same,
andQ, given by Egs. (8.119) and (8.121). The dc gain is

S VoV Vo_ v 8.127
Co=-—"p =" p2” DD’ (6.120)
The angular frequency of the zero is found by equating coefficieais tiie numerators of Egs. (8.125)
and (8.126). One obtains

_ _DR (8.128)
@=— “pr (RHP)
This zero lies in the right half-plane. Equations (8.127) and (8.128) have been simplified by use of the dc
relationships
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V=-5V,

9 (8.129)

<U_‘U

"DR

Equations (8.119), (8.121), (8.127), and (8.128) constitute the results of the analysis of the control-to-
output transfer function: analytical expressions for the salient featyr€s G,,, andw,. These expres-
sions can be used to choose the element values such that given desired values of the salient features are
obtained.

Having found analytical expressions for the salient features of the transfer functions, we can
now plug in numerical values and construct the Bode plot. Suppose that we are given the following val-
ues:

D=06
R=100Q

V, =30V (8.130)
L =160 uH

C=160pF

We can evaluate Egs. (8.117), (8.119), (8.121), (8.127), and (8.128), to determine numerical values of the
salient features of the transfer functions. The results are:

|G| =2 =150 3508

Vv
|Gd0| = % =187.5V O 45.5dBV
=%__ D _ (8.131)
fo 2n  2n/LC 400Hz

Q:D'R«/% =40 12dB

_W,_ DR _
f,= 5 = o = 2.65kHz
The Bode plot of the magnitude and phas&gfis constructed in Fig. 8.33. The transfer function con-
tains a dc gain of 45.5 dBV, resonant poles at 400 Hz havipgfad [0 12 dB, and a right half-plane
zero at 2.65 kHz. The resonant poles contribute —180° to the high-frequency phase asymptote, while the
right half-plane zero contributes —90°. In addition, the inverting characteristic of the buck-boost con-
verter leads to a 180° phase reversal, not included in Fig. 8.33.
The Bode plot of the magnitude and phase of the line-to-output transfer fuBgtias con-
structed in Fig. 8.34. This transfer function contains the same resonant poles at 400 Hz, but is missing
the right half-plane zero. The dc g@ao is equal to the conversion rati(D) of the converter. Again,
the 180° phase reversal, caused by the inverting characteristic of the buck-boost converter, is not included
in Fig. 8.34.
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B0OBV T |G| -
vd
I Gygll 0 Gq
60 dBV--G =187V A
0 0 455 dw\ iQ:4D 12 dB
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vd —20 dB/decade
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Fig. 8.33 Bode plot of the control-to-output transfer functi@yy,, buck-boost converter example. Phase reversa

owing to output voltage inversion is not included.

20dB T G =15 i T
” Gvg ” Y _D 35 dBJ\ IQ:4D 12 dB D Gvg
0dB T ' 4
I Gyl f,
400 Hz\ —40 dB/decade
—20dB+t
—40 dBt
107Y% {,
0° 300 Hz
—60 dB { 0
O GVg
-80 dB+ -90°
. —180 | g0
10Y%0 £,
533 Hz 5
} t t 270
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
f

Fig. 8.34 Bode plot of the line-to-output transfer functiﬁnlg, buck-boost converter example. Phase

owing to output voltage reversal is not included.

reVersa
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Table 8.2 Salient features of the small-signal CCM transfer functions of some basic dc—dc converters

Converter Gyo Gao Wy Q o,
Buck D % % R % P
Boost % % JII?T DR % DTZR
Buck-boost - % DVD' \/II?T DR % DJ_R

8.2.2  Transfer Functions of Some Basic CCM Converters

The salient features of the line-to-output and control-to-output transfer functions of the basic buck,
boost, and buck-boost converters are summarized in Table 8.2. In each case, the control-to-output trans-
fer function is of the form

1 —%)
Gu(9) = Ggo 5 (8.132)
e 4]
Quy 0
and the line-to-output transfer function is of the form
Guy(S) = Ggo —1 (8.133)
S S .
L+ o * ()

The boost and buck-boost converters exhibit control-to-output transfer functions containing two poles
and a right half-plane zero. The buck conve@g(s) exhibits two poles but no zero. The line-to-output
transfer functions of all three ideal converters contain two poles and no zeroes.

These results can be easily adapted to transformer-isolated versions of the buck, boost, and
buck-boost converters. The transformer has negligible effect on the transfer fugGtshandG,(s),
other than introduction of a turns ratio. For example, when the transformer of the bridge topology is
driven symmetrically, its magnetizing inductance does not contribute dynamics to the converter small-
signal transfer functions. Likewise, when the transformer magnetizing inductance of the forward con-
verter is reset by the input voltagg as in Fig. 6.23 or 6.28, then it also contributes negligible dynamics.
In all transformer-isolated converters based on the buck, boost, and buck-boost converters, the line-to-
output transfer functio®,(s) should be multiplied by the transformer turns ratio; the transfer functions
(8.132) and (8.133) and the parameters listed in Table 8.2 can otherwise be directly applied.

8.2.3  Physical Origins of the Right Half-Plane Zero in Converters

Figure 8.35 contains a block diagram that illustrates the behavior of the right half-plane zero. At low fre-
quencies, the gairs/(o,) has negligible magnitude, and hengg, = u;,. At high frequencies, where the
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\
=

Fig. 8.35 Block diagram having a right half-plane
zero transfer function, as in Eq. (8.32), wih= w,. Uin(9) Uoyu(S)

\/

S
(%)

Z

magnitude of the gairs/w,) is much greater than @, , = —(§w,)u,,. The negative sign causes a phase
reversal at high frequency. The implication for the transient response is that the output initially tends in
the opposite direction of the final value.

We have seen that the control-to-output transfer functions of the boost and buck-boost convert-
ers, Fig. 8.36, exhibit RHP zeroes. Typical transient response waveforms for a step change in duty cycle
are illustrated in Fig. 8.37. For this example, the converter initially operates in equilibridns, &g
andd' = 0.6. Equilibrium inductor currei(t), diode curreni;(t), and output voltage(t) waveforms are
illustrated. The average diode current is

(ip) =d (i), (8.134)

By capacitor charge balance, this average diode current is equal to the dc load current when the converter
operates in equilibrium. At time=t,, the duty cycle is increased to 0.6. In consequehciscreases to

0.4. The average diode current, given by Eq. (8.134), therefore decreases, and the output capacitor begins
to discharge. The output voltage magnitude initially decreases as illustrated.

(a)
L 2 iD(t)

iL(®)

(b)

JO AT S

Fig. 8.36 Two basic converters whose CCM control-to-output transfer functions exhibit RHP zeroes: (a) boost
(b) buck-boost.
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i 1

Fig. 8.37 Waveforms of the converter:

of Fig. 8.36, for a step response in du ip(t) 1
cycle. The average diode current and o

put voltage initially decrease, as predict [[ID(I)QS
by the RHP zero. Eventually, the inducts
current increases, causing the avere —
diode current and the output voltage
increase.

A\

[v() ] 4

\

d=04 | d=0.6

The increased duty cycle causes the inductor current to slowly increase, and hence the average
diode current eventually exceeds its origidat 0.4 equilibrium value. The output voltage eventually
increases in magnitude, to the new equilibrium value correspondig @6.

The presence of a right half-plane zero tends to destabilize wide-bandwidth feedback loops,
because during a transient the output initially changes in the wrong direction. The phase margin test for
feedback loop stability is discussed in the next chapter; when a RHP zero is present, it is difficult to
obtain an adequate phase margin in conventional single-loop feedback systems having wide bandwidth.
Prediction of the right half-plane zero, and the consequent explanation of why the feedback loops con-
trolling CCM boost and buck-boost converters tend to oscillate, was one of the early successes of aver-
aged converter modeling.

8.3 GRAPHICAL CONSTRUCTION OF IMPEDANCES AND TRANSFER FUNCTIONS

Often, we can draw approximate Bode diagrams by inspection, without large amounts of messy algebra
and the inevitable associated algebra mistakes. A great deal of insight can be gained into the operation of
the circuit using this method. It becomes clear which components dominate the circuit response at vari-
ous frequencies, and so suitable approximations become obvious. Analytical expressions for the approx-
imate corner frequencies and asymptotes can be obtained directly. Impedances and transfer functions of
quite complicated networks can be constructed. Thus insight can be gained, so that the design engineer
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can modify the circuit to obtain a desired frequency response.
The graphical construction method, also known as “doing algebra on the graph,” involves use of
a few simple rules for combining the magnitude Bode plots of impedances and transfer functions.

8.3.1  Series Impedances: Addition of Asymptotes

A series connection represents the addition of impedances. If the | R

diagrams of the individual impedance magnitudes are known, ther 10Q
asymptotes of the series combination are found by simply taking M
largest of the individual impedance asymptotes. In many cases,

result is exact. In other cases, such as when the individual asymg Z(9) c

have the same slope, then the result is an approximation; noneth—p — 1 pF
the accuracy of the approximation can be quite good.

Consider the series-connectedC network of Fig. 8.38. It is
desired to construct the magnitude asymptotes of the total series impea=
anceZ(s), where Fig. 8.38 Series R—C network

example.

29 =R+ & (8.135)

Let us first sketch the magnitudes of the individual impedances. Tkeré6istor has an impedance
magnitude of 1@ O 20 dBQ. This value is independent of frequency, and is given in Fig. 8.39. The
capacitor has an impedance magnitude @C1/This quantity varies inversely with, and hence its mag-
nitude Bode plot is a line with slope —20 dB/decade. The line passes thrugh@ dBQ at the angu-

lar frequencyw where

1 _ 8.136
ac=1e ( )

that is, at

_ 1 _ 1 — 106
w= TQ)C™ a Q)(10-6 3 =10° rad/sec (8.137)

80 dBEQ T 7 10 KQ
1
60 dBQ + wC T 1kQ
—20 dB/decade
40 dBQ + T 100Q
20 dBEQ
R=1000 20 dm 100
=0 S— 10
1 _ :
ok 1Qat 159kH
—-20 dE2 } } T 0.1Q
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

Fig. 8.39 Impedance magnitudes of the individual elements in the network of Fig. 8.38.
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80 dBQ T 7 10 KQ
I1Z ]|
60 dBQ + T 1kQ
40 dBQ + + 100Q
20 dBQ PR D 100
fo
1 _-16kHz 1
0dBQ 5TRC z o 110
-20 dED } } } 0.1Q
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

Fig. 8.40 Construction of the composite asymptoteq|& || The asymptotes of the series combination @n b
approximated by simply selecting the larger of the individual resistor and capacitor asymptotes.

In terms of frequencf; this occurs at

f=9 =10 159kp; (8.138)
2n  2m

So the capacitor impedance magnitude is a line with slope —20 dB/dec, and which passes thr@ugh 0 dB
at 159 kHz, as shown in Fig. 8.39. It should be noted that, for simplicity, the asymptotes in Fig. 8.39
have been labele® and 1¢C. But to draw the Bode plot, we must actually plotjBor example,
20 log, (R/1 Q) and 20 log, ((1/wC)/1 Q).

Let us now construct the magnitudeZg$), given by Eq. (8.135). The magnitudestan be
approximated as follows:

f R forR> 1/uC

) (8.139)

: _ 1 |-
||z<1w>||—“R+m“~

The asymptotes of the series combination are simply the larger of the individual resistor and capacitor
asymptotes, as illustrated by the heavy lines in Fig. 8.40. For this example, these are in fact the exact
asymptotes off Z ||. In the limiting case of zero frequency (dc), then the capacitor tends to an open cir-
cuit. The series combination is then dominated by the capacitor, and the exact function tends asymptoti-
cally to the capacitor impedance magnitude. In the limiting case of infinite frequency, then the capacitor
tends to a short circuit, and the total impedance becomes dRnplyther and 1&C lines are the exact
asymptotes for this example.

The corner frequendy, where the asymptotes intersect, can now be easily deduced. At angular
frequencyw, = 2, the two asymptotes are equal in value:

1 -Rr (8.140)

Solution forw, andf, leads to:
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-1 _ 1 — 105

=g~=— =~ =10rad/sec

7 RCT (100)(10°F) (8.141)
_Wo_ 1 _

o= 90 = 5 s = 16 kHZ

So if we can write analytical expressions for the asymptotes, then we can equate the expressions to find
analytical expressions for the corner frequencies where the asymptotes intersect.

The deviation of the exact curve from the asymptotes follows all of the usual rules. The slope of
the asymptotes changes by +20 dB/decade at the corner fredyégney, from —20 dB/decade to
0 dBQ/decade), and hence there is a zerb=af,. So the exact curve deviates from the asymptotes by
+3 dBQ atf =f,, and by +1 d® atf = 2f; and aff =fy/2.

8.3.2  Series Resonant Circuit Example

As a second example, let us construct the magnitude asymptote~
for the serieR—L—Ccircuit of Fig. 8.41. The series impedarx{s) is
29=Resd+ L 8.142) R 2
sC

The magnitudes of the individual resistor, inductor, and capacitor asymp- Z(9)

totes are plotted in Fig. 8.42, for the values - L
R=1kQ
L=1mH (8.143) C =—
C=0.1uF

The series impedan@s) is dominated by the capacitor at low frequency,
by the resistor at mid frequencies, and by the inductor at high frequencie
as illustrated by the bold line in Fig. 8.42. The imped&t{spcontains a
zero at angular frequenay,, where the capacitor and resistor asymptotes intersect. By equating the
expressions for the resistor and capacitor asymptotes, we can find

Fig. 8.41 SeriesR-L-C
Retwork example.

=1 =1 8.144
R=pc U @=ge ( )
100 d&2 4 1zl - 100 KQ
80 dEX L 10K
Fig. 8.42 Graphical con-
struction of|| Z || of the series 5o qro 1o = 1o
R-L-C network of Fig. 8.41, R f, f,
for the element values spec
fied by Eq. (8.143). 40 dBQ ¢ 1 1000
20 dBQ | wl . ~.oC {100

100 H 1 kHz 10 kHz 100 kHz 1 MHz
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100 dBEQ r 100 kK2
80 dBQ - 10 kQ
60 dEQ - 1kQ
40 dBQ + + 100Q
20dBQ 1. R ,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,, 100

oasa | : _wC g
100 H 1 kHz 10 kHz 100 kHz 1 MHz

Fig. 8.43 Graphical construction of impedance asymptotes for the series R—L-C network exampl&, with
decreased to 1Q.

A second zero occurs at angular frequeagy where the inductor and resistor asymptotes intersect.
Upon equating the expressions for the resistor and inductor asymptamtgsvatobtain the following:

R=wl O w,=R (8.145)
So simple expressions for all important features of the magnitude Bode pi(d) @an be obtained
directly. It should be noted that Eqgs. (8.144) and (8.145) are approximate, rather than exact, expressions
for the corner frequencias, andw,. Equations (8.144) and (8.145) coincide with the results obtained
via the lowQ approximation of Section 8.1.7.

Next, suppose that the value ®fs decreased to 10Q. As R is reduced in value, the approxi-
mate corner frequencies, andw, move closer together until, Rt= 100, they are both 100 krad/sec.
Reducingr further in value causes the asymptotes to become independent of the Ralas idfistrated
in Fig. 8.43 forR=10Q. The||Z || asymptotes now switch directly fromL to 14oC.

So now there are two zeroesdwat= wy, At corner frequencyy,, the inductor and capacitor
asymptotes are equal in value. Hence,

=1 _ .14
wol o C Ry (8.146)

Solution for the angular corner frequenayleads to

Wy = 1 (8.147)

At w = wy, the inductor and capacitor impedances both have magriRydealled the characteristic
impedance.

Since there are two zeroesuat wy, there is a possibility that the two poles could be complex
conjugates, and that peaking could occur in the vicinity efw,. So let us investigate what the actual
curve does ab = w),. The actual value of the series impedangey,) is

Z(joy) = R+ jooL + jooloc (8.148)
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100 dEQ + - 100 kKQ
80 dBEQ - 10 kQ
60 dBQ - 1 kQ
40 dBEQ + Actual curve \ / + 100Q

R I Q=Ry)/R
p0Jo]= T ISR S— S S V— - e 100
0 dBQ } ; } wC 1Q
100 H 1 kHz 10 kHz 100 kHz 1 MHz

Fig. 8.44 Actual impedance magnitude (solid line) for the series resdRabtC example. The inductor an
capacitor impedances cancel out aff;, and henc&(jw,) =R.

Substitution of Eq. (8.146) into Eq. (8.147) leads to

2y =R+ Ry + 2 = R+ Ry~ Ry =R (8.149)
At w = wy, the inductor and capacitor impedances are equal in magnitude but opposite in phase. Hence,
they exactly cancel out in the series impedance, and we are lefZ{jith) = R, as illustrated in
Fig. 8.44. The actual curve in the vicinity of the resonance =aty, can deviate significantly from the
asymptotes, because its value is determined tather tharlL or 14oC.
We know from Section 8.1.6 that the deviation of the actual curve from the asymptotes at
wy is equal taQ. From Fig. 8.44, one can see that

|Q|dB=|R0|dBQ_|R|dBQ (8.150)
or,
Q=% (8.151)

Equations (8.146) to (8.151) are exact results for the series resonant circuit.

The practice of adding asymptotes by simply selecting the larger asymptote can be applied to
transfer functions as well as impedances. For example, suppose that we have already constructed the
magnitude asymptotes of two transfer functidBsandG,, and we wish to find the asymptotesGf
G, + G,. At each frequency, the asymptote @ican be approximated by simply selecting the larger of
the asymptotes fdg, andG,:

PR LN N B Y ©.152)
SR O RSN

Corner frequencies can be found by equating expressions for asymptotes as illustrated in the preceding
examples. In the next chapter, we will see that this approach yields a simple and powerful method for
determining the closed-loop transfer functions of feedback systems.
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8.3.3 Parallel Impedances: Inverse Addition of Asymptotes

A parallel combination represents inverse addition of impedances:

Lo =

i+i+... (8.153)
zl ZZ
If the asymptotes of the individual impedanZgsZ,, ..., are known, then the asymptotes of the parallel
combinationZpar can be found by simply selecting the smallest individual impedance asymptote. This is
true because the smallest impedance will have the largest inverse, and will dominate the inverse sum. As
in the case of the series impedances, this procedure will often yield the exact asymg@@gtes of

Let us construct the magnitude asymptotes for the paral!lal
R-L—Cnetwork of Fig. 8.45, using the following element values:

R=10Q Z(s) RS LE C—=
L=1mH (8.154) —>»
C=0.1pF

Impedance magnitudes of the individual elements are illustratgiging.45 Parallel R—-L-C network

Fig. 8.46. The asymptotes for the total parallel impedahege example.

approximated by simply selecting the smallest individual element

impedance, as shown by the heavy line in Fig. 8.46. So the parallel impedance is dominated by the
inductor at low frequency, by the resistor at mid frequencies, and by the capacitor at high frequency.
Approximate expressions for the angular corner frequencies are again found by equating asymptotes:

- - -R
aw=w, R=wl O W=7
dw=w, R= 14 wzzi (8.155)
w,C RC

These expressions could have been obtained by conventional analysis, combined witlQtlag powox-
imation of Section 8.1.7.

80dEQ T . T 10 kQ

Fig. 8.46 Construction of I L
the composite asymptotes of 60 dE2 7 wC el 1k
[|Z]}, for the paralleR—L-C
example. The asymptotes of 40 dBQ + 1 1000
the parallel combination can
be approximated by simply 20 dBQ +--- R L e ] L 100
selecting the smallest of the f, f,
individual resistor, inductor, 0 dBQ | 110
and capacitor asymptotes. 1zl

-20 dE2 0.1Q

100 Hz 1 kHz 10 kHz 100 kHz 1 MHz
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80dEQ T 7 10 kKQ

60 dBQ """"""""""""""""""""""" ” "'_'_::—""’;:;jii """""" 1kQ
Fig. 8.47 Graphical construc-
tion of impedance asymptotes,q qpn | _7_7.7.7-;;jj'7R0 1 1000

for the paralleR—L—Cexample,
with Rincreased to 1Q@.

20dBQ + + 10Q
0 dBQ - 1Z] 11Q
—-20 dE2 } } } 0.1Q
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

8.3.4  Parallel Resonant Circuit Example

Figure 8.47 illustrates what happens when the vallRiofthe paralleR-L-Cnetwork is increased to

1 kQ. The asymptotes fdfZ || then become independentRfand change directly fromlL to 140C at
angular frequency, The corner frequenay, is now the frequency where the inductor and capacitor
asymptotes have equal value:

wl=-1 =R 1
L w,C (8.156)
which implies that
__1
ooo—E (8.157)

At w = w,, the slope of the asymptotes |pZ || changes from +20 dB/decade to —20 dB/decade, and
hence there are two poles. We should investigate whether peaking occurs, by determining the exact value
of [|Z || atw = wy, as follows:

(8.158)
2o =Rk I e 11—
R™ jeal J G
Substitution of Eq. (8.156) into (8.158) yields
) = 1 - 1 -
Z(J%)_l+_i+i_;_i+i_R (8.159)
RjRR RR R R R

So atw = wy, the impedances of the inductor and capacitor again cancel out, and we are left with
Z(jwy,) =R. The values of andC determine the values of the asymptotes Rodétermines the value of
the actual curve ab = w,

The actual curve is illustrated in 8.48. The deviation of the actual curve from the asymptotes at

w=wyis
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80dR2 1 .. T 10k

60 dBQ

& - 1kQ

Fig. 8.48 Actual impedance

magnitude (solid line) for the 40 dBEQ | Actual curve—S /" 4\ Yoo 1 100Q
parallel R—L—-C example. The
inductor and capacitor imped- 20 dBQ +
ances cancel out dt= f,, and

henceZ(jw,) =R 0 dBQ |

1+ 10Q

1zl 110

Bl

wL
—20 dB& : : . 0.1Q
100 Hz 1 kHz 10 kHz 100 kHz 1 MHz
|Qls = Rliga ~| Rolasa (8.160)
or,
Q=R (8.161)

Ro

Equations (8.156) to (8.161) are exact results for the parallel resonant circuit.

The graphical construction method for impedance magnitudes is well knowneatdnce
papercan be purchased commercially. As illustrated in Fig. 8.49, the magnitudes of the impedances of
various inductances, capacitances, and resistances are plotted on semilogarithmic axes. Asymptotes for
the impedances ®—-L—Cnetworks can be sketched directly on these axes, and numerical values of cor-
ner frequencies can then be graphically determined.

80 dBQ ><><></>< JOO 10 kQ
o
60 dER )>< 701 1@
) /><><><
40 d D% 100Q
/></><><>< 20,
Q™
'\'0
20 dBQ ><></></>< 200 100
o
0de0 2 75t 10
G > > >
20 dm DX > > 100 M
:><:><>< “u
Q
_ oS
40 dED w5 10 mQ
60 dm X2 PSLE B Qe s ey g Ly 1mo
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

Fig. 8.49 “Reactance paper”. an aid for graphical construction of impedances, with the magnitudes of various
inductive, capacitive, and resistive impedances preplotted.
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@) H(s)

Zl ZZ
(b) (©) 555
L
Z Z
L % C—= RS out -, C = SR
— Q= - — —F Q= ——7
4 2 Z 2

Fig. 8.50 Two-pole low-pass filter based on voltage divider circuit: (a) transfer funigiigin (b) determination

of Z,,» by setting independent sources to zero, (c) determinatibpgf

8.3.5 \oltage Divider Transfer Functions: Division of Asymptotes

Usually, we can express transfer functions in terms of impedances—for example, as the ratio of two
impedances. If we can construct these impedances as described in the previous sections, then we can
divide to construct the transfer function. In this section, construction of the transfer futdiai the
two-pole R—L-Clow-pass filter (Fig. 8.50) is discussed in detail. A filter of this form appears in the
canonical model for two-pole converters, and the results of this section are applied in the converter exam-
ples of the next section.

The familiar voltage divider formula shows that the transfer function of this circuit can be
expressed as the ratio of impedanggsg, , whereZ, = Z, + Z, is the network input impedance:

S _ 2, _Zy (8.162)
b Z,+Z, Z;,

For this exampleZ,(s) = sL, andZ,(s) is the parallel combination & and 14C. Hence, we can find the
transfer function asymptotes by constructing the asymptot&s arid of the series combination repre-
sented by, and then dividing. Another approach, which is easier to apply in this example, is to multi-
ply the numerator and denominator of Eq. (8.162% by
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@
out
the voltage divider circuit: (a) output impedance

Z, (b) transfer functio.

& ”Zl || =cl .- Fig. 8.51 Graphical construction ¢f andz,,,, of

(b)

08 _ 22y 1

PalS) _ 1 _Zo (8.163)
e ZitZ,z, 7y

whereZ, ;= Z, || Z, is the output impedance of the voltage divider. So another way to construct the volt-
age divider transfer function is to first construct the asymptotes, fand for the parallel combination
represented by, and then divide. This method is useful when the parallel combiriatipd, is eas-
ier to construct than the series combina@@r- Z,. It often gives a different approximate result, which
may be more (or sometimes less) accurate than the result obtained, using

The output impedancg, , in Fig. 8.50(b) is

Zo(® = Rl g llsL (8.164)

The impedance of the parallB-L—C network is constructed in Section 8.3.3, and is illustrated in
Fig. 8.51(a) for the higl® case.

According to Eqg. (8.163), the voltage divider transfer function magnituglélig = || Z,, I/
[1Z, |l This quantity is constructed in Fig. 8.51(b). oK w,, the asymptote dfZ,, || coincides with
[|Z, ||: both are equal t@L. Hence, the ratio i$Z,, |l/|| Z, || = 1. Forw > w,, the asymptote dfZ,,, || is

1/wC, while || Z, || is equal tawL. The ratio then becomdiZ . /1| Z, || = 1?LC, and hence the high-

wC ‘QreLasﬂ'?g--" Wl Fig. 8.52 Effect of increasind. on the output
— e T impedance asymptotes, corner frequency, and
Q-factor.

12

out
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L

1:D
W -
(1)

1

. . \d®)
5(0) r | d(t) %\E C—— RS 4_‘ Q)

Z,(9) 2,09

Fig. 8.53 Small-signal model of the buck converter, with input impedafjge) and output impedancg (s)
explicitly defined.

frequency asymptote has a —40 dB/decade slop@.At,, || Z,, || has exact valuR, while || Z, || has
exact valueR,. The ratio is thef| H(juwy) || = || Z, {iwy) /11 Z,(juy) Il = R'R, = Q. So the filter transfer
functionH has the same, andQ as the impedancg, .

It now becomes obvious how variations in element values affect the salient features of the trans-
fer function and output impedance. For example, the effect of incrda@nljustrated in Fig. 8.52. This
causes the angular resonant frequengto be reduced, and also reducesQ@Hactor.

8.4 GRAPHICAL CONSTRUCTION OF CONVERTER TRANSFER FUNCTIONS

The small-signal equivalent circuit model of the buck converter, derived in Chapter 7, is reproduced in
Fig. 8.53. Let us construct the transfer functions and terminal impedances of this converter, using the
graphical approach of the previous section.

The output impedancg, (s) is found with thei(s) andﬁg(s) sources set to zero; the circuit of
Fig. 8.54(a) is then obtained. This model coincides with the paRaHetCcircuit analyzed in Sections
8.3.3 and 8.3.4. As illustrated in Fig. 8.54(b), the output impedance is dominated by the inductor at low
frequency, and by the capacitor at high frequency. At the resonant fredyegiegn by

=_1 8.165
"= onic (6.169)
the output impedance is equal to the load resistBntbeQ-factor of the circuit is equal to
a b 1
@ L (b) = wl

I Zow

| Z0u(®

Fig. 8.54 Construction of buck converter output impedadgg(s): (a) circuit model; (b) impedance asymptotes.
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@ L
ST Fig. 8.55 Construction of the input impedance

Z,(s) for the buck converter: (a) circuit model;
. . (b) the individual resistor, inductor, and capacitor
Zn(9) -
RN %\é C =
— e

impedance magnitudes; (c) construction of the
Z,(s) Z)(s)

R 5 impedance magnituddsZ, || and|| Z, [, (d) con-
struction of{| Z, . I|; (e) final resulf| Z, ||.

® & whb G

S

Q= % (8.166)
where
0

Thus, the circuit is lightly damped (hig)) at light load, where the value Bfis large.

The converter input impedanzg(s) is also found with thé(s) andp,(s) sources set to zero, as
illustrated in Fig. 8.55(a). The input impedance is referred to the primary side dbttrarisformer, and
is equal to

Z(9) = é 2,9 + 29 (8.168)

where
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Z(9)=sL (8.169)

and
(9 =Rl & (8.170)

We begin construction of the impedance asymptotes corresponding to Egs. (8.168) to (8.170) by con-
structing the individual resistor, capacitor, and inductor impedances as in Fig. 8.55(b). The impedances
in Fig. 8.55 are constructed for the c&Se R,. As illustrated in Fig. 8.55(c)| Z, || coincides with the
inductor reactancel. The impedancfl Z, || is asymptotic to resistanéeat low frequencies, and to the
capacitor reactanceddC at high frequency. The resistor and capacitor asymptotes intersect at corner fre-
quencyf,, given by
f= ke (8.171)

According to Eq. (8.168), the input impedaiZggs) is equal to the series combinatiorZgfs) andZ,(s),
divided by the square of the turns ralloThe asymptotes for the series combinatiyts) + Z,(s)] are
found by selecting the larger of tHe&, || and|| Z, || asymptotes. ThiZ, || and|| Z, || asymptotes inter-
sect at frequencfy, given by Eq. (8.165). It can be seen from Fig. 8.55(c) that the series combination is
dominated byz, for f <f,, and byz, for f > f,. Upon scaling theZ,(s) + Z,(s)] asymptotes by the factor
1/D?, the input impedance asymptotes of Fig. 8.55(e) are obtained.

The zeroes d, (s), at frequency,, have the sam@-factor as the poles & (s) [Eq. (8.166)].
One way to see that this is true is to note that the output impedance can be expressed as

Zy(ZyS) _ Zo(9Zx(9) (8.172)

Zyu(9) = Z,(5) +Z(9) - Dzzin(s)

Hence, we can relaig (s) to Z, (s) as follows:

(9= 32 721?)?;)(5) (8.173)

The impedancelZ, ||, || Z, ||, and|| Z,, || are illustrated in Fig. 8.55(d). At the resonant frequércf,
impedance&, has magnitud&; and impedancg, has magnitude approximately equaRp The output
impedance&,, . has magnitud®. Hence, Eq. (8.173) predicts that the input impedance has the magnitude

out

|| Zm||=§R'%§° af=t, (8.174)

At f =1, the asymptotes of the input impedance have magrlRym?. The deviation from the asymp-
totes is therefore equal @=R/R,, as illustrated in Fig. 8.55(e).

The control-to-output transfer functidg,(s) is found with theﬁg(s) source set to zero, as in
Fig. 8.56(a). This circuit coincides with the voltage divider analyzed in Section 8.3.5. KEgyfepcan
be expressed as

Gu(®) =V, ZZOIES) (8.175)
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Fig. 8.56 Construction of the control-to-output @)
transfer function G (s) for the buck converter: —/ 530 +
(a) circuit model; (b) relevant impedance asymptotes;
(c) transfer function|| G,(s) ||

W@ o= R3O

(b) ©
o Iz l=cl Al IQ: .
R \ Vg R =V, .
T
______________ I Gy l ° Vq W = szC

KIIZ

outl

The quantitieg| Z,, || and|| Z, || are constructed in Fig. 8.56(b). According to Eqg. (8.175), we can con-
struct|| G, (s) || by finding the ratio of| Z,, || and|| Z, ||, and then scaling the result ldg Forf <f,,
[1Z,.,: |l and]| Z, || are both equal toL and hencd| Z . ||/ || Z, || is equal to 1. As illustrated in Fig.
8.56(c), the Iow -frequency asymptote|jdB, 4(s) || has value/ Forf > fo, || Z,,: || has asymptote QC,
and|| Z, ||is equal tawL. Hence || Z, I/ 1| Z, || has asymptote a¥LC, and the high-frequency asymp-
tote of|| G, ((s) ||is equal tdv, /oL C. TheQ-factor of the two poles at=f, is again equal t&/R,.

The line-to-output transfer functlda, (s) is found with thed(s) sources set to zero, as in Fig.
8.57(a). This circuit contains the same voltage divider as in Fig. 8.56, and additionally contaibs the 1.:

transformer. The transfer functi@,g(s) can be expressed as

@ 1:D
Fig. 8.57 The line-to-output transfer +
function G, (s) for the buck converter:

(a) circuit model; (b) magnitude asymp- == ’ ’ R
totes, @) 3{ c== RS0

O U O :
D A IQ—R/RO

f
1G9 |l wlLC
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Network Analyzer

Injection source Measured inputs Data

v, v, Data bus

Magnitude Frequency vy 173 dB to computer
T o R —
v, vy v,
Output Input Input

- + - \7y )

_@ °o o °o o Zv— -134.7

L[]

A v

Fig. 8.58 Key features and functions of a network analyzer: sinusoidal source of controllable amplitude and fre
guency, two inputs, and determination of relative magnitude and phase of the input components at the injection fre
quency.

Gy(9=D ZZOUES) (8.176)
1

This expression is similar to Eq. (8.175), except for the scaling faciorTfierefore, the line-to-output
transfer function of Fig. 8.57(b) has the same shape as the control-to-output transfer @ion

8.5 MEASUREMENT OF AC TRANSFER FUNCTIONS AND IMPEDANCES

It is good engineering practice to measure the transfer functions of prototype converters and converter
systems. Such an exercise can verify that the system has been correctly modeled and designed. Also, it is
often useful to characterize individual circuit elements through measurement of their terminal imped-
ances.

Small-signal ac magnitude and phase measurements can be made using an instrument known as
a network analyzer, or frequency response analyzer. The key inputs and outputs of a basic network ana-
lyzer are illustrated in Fig. 8.58. The network analyzer provides a sinusoidal output voltdgmn-
trollable amplitude and frequency. This signal can be injected into the system to be measured, at any
desired location. The network analyzer also has two (or more) ir@pms;dﬁy. The return electrodes of
v, ¥, and?, are internally connected to earth ground. The network analyzer performs the function of a
narrowband tracking voltmeter: it measures the componerﬂ§am‘d9y at the injection frequency, and
displays the magnitude and phase of the quaﬁgﬂtx. The narrowband tracking voltmeter feature is
essential for switching converter measurements; otherwise, switching ripple and noise corrupt the
desired sinusoidal signals and make accurate measurements impossible [3]. Modern network analyzers
can automatically sweep the frequency of the injection sdytoegenerate magnitude and phase Bode
plots of the transfer functiof)/?,.

A typical test setup for measuring the transfer function of an amplifier is illustrated in
Fig. 8.59. A potentiometer, connected between a dc supply valtagand ground, is used to bias the
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Network Analyzer
Injection source Measured inputs Data
Mag\ﬁitude Fregzuency Y, - Data bus
el _4.7dB to computer
e rete (o] || S5
© O ' —
v, 9, 9,
Output Input Input 0
+ - + — Yy S
_@_1 1 1 KVX
DC
blocking ==
capacitor
Vcc
[}
DC é
bias < N L L
. ) 4 "4 7
adjust = o
c
g2 GO 3
- =1
Device
under test

Fig. 8.59 Measurement of a transfer function.

amplifier input to attain the correct quiescent operating point. The injection source voitgeupled

to the amplifier input terminals via a dc blocking capacitor. This blocking capacitor prevents the injection
voltage source from upsetting the dc bias. The network analyzer ifyoartsi 9, are connected to the
input and output terminals of the amplifier. Hence, the measured transfer function is

R 8.177
OERA e

Note that the blocking capacitance, bias potentiometery amplitude have no effect on the measured
transfer function
An impedance

2(9 = fg (8.178)

can be measured by treating the impedance as a transfer function from current to voltage. For example,
measurement of the output impedance of an amplifier is illustrated in Fig. 8.60. The quiescent operating
condition is again established by a potentiometer which biases the amplifier input. The injection source
¥, is coupled to the amplifier output through a dc blocking capacitor. The injection source vopltage
excites a current,, in impedanceZ,. This current flows into the output of the amplifier, and excites a
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Vee Z

o Device
under test

DC blocking
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7 [ | Current
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Fig. 8.60 Measurement of the output impedance of a circuit.

voltage across the amplifier output impedance:

()

¥ oue(S) |amplifier _
acinput ~

OE: (8.179)

A current probe is used to measijg The current probe produces a voltage proportiond] tothis
voltage is connected to the network analyzer irfpud voltage probe is used to measure the amplifier
output voltage, . The network analyzer displays the transfer functjéi, which is proportional t@,,,.
Note that the value &, and the amplitude df, do not affect the measurementzgf..

In power applications, it is sometimes necessary to measure impedances that are very small in
magnitude. Grounding problems[4] cause the test setup of Fig. 8.60 to fail in such cases. The reason is
illustrated in Fig. 8.61(a). Since the return connections of the injection sguce the analyzer inpag
are both connected to earth ground, the injected cuijgien return to the source through the return
connections of either the injection source or the voltage probe. In pragficivides between the two
paths according to their relative impedances. Hence, a significant currek} {},,-flows through the
return connection of the voltage probe. If the voltage probe return connection has some total contact and
wiring impedance, ., then the current induces a voltage drop Kliz;,Z, b in the voltage probe wir-
ing, as illustrated in Fig. 8.61(a). Hence, the network analyzer does not correctly measure the voltage
drop across the impedangelf the internal ground connections of the network analyzer have negligible
impedance, then the network analyzer will display the following impedance:

Z+ (1 - I()Zprobez Z+ Zprobe”Zrz (8180)

Here,Z, is the impedance of the injection source return connection. So to obtain an accurate measure-
ment, the following condition must be satisfied:

|z]= || (ZpronellZc (8.181)
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Fig. 8.61 Measurement of a small impedang): (a) current flowing in the return connection of the valtag
probe induces a voltage drop that corrupts the measurement; (b) an improved experiment, incorporatingfisolation o
the injection source.
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A typical lower limit on|| Z || is a few tens or hundreds of milliohms.

An improved test setup for measurement of small impedances is illustrated in Fig. 8.61(b). An
isolation transformer is inserted between the injection source and the dc blocking capacitor. The return
connections of the voltage probe and injection source are no longer in parallel, and the injected current
Io,s MUSt now return entirely through the injection source return connection. An added benefit is that the
transformer turns ratin can be increased, to better match the injection source impedance to the imped-
ance under test. Note that the impedances of the transformer, of the blocking capacitor, and of the probe
and injection source return connections, do not affect the measurement. Much smaller impedances can

therefore be measured using this improved approach.

8.6 SUMMARY OF KEY POINTS

1.  The magnitude Bode diagrams of functions which vary/g§"(have slopes equal to 2dB per decade,
and pass through 0 dBfat f,

2. ltis good practice to express transfer functions in normalized pole-zero form; this form directly exposes
expressions for the salient features of the response, that is, the corner frequencies, reference gain, etc.

3.  The right half-plane zero exhibits the magnitude response of the left half-plane zero, but the phase
response of the pole.

4.  Poles and zeroes can be expressed in frequency-inverted form, when it is desirable to refer the gain to a
high-frequency asymptote.

5.  Atwo-pole response can be written in the standard normalized form of Eq. (8.58)QW/I@e5, the poles
are complex conjugates. The magnitude response then exhibits peaking in the vicinity of the corner fre-
guency, with an exact value Qfatf =f,. High Q also causes the phase to change sharply near the corner
frequency.

6. WhenQ is less than 0.5, the two pole response can be plotted as two real poles. Thagpmximation
predicts that the two poles occur at frequentjé® and Qf,. These frequencies are within 10% of the
exact values fo® < 0.3.

7. The lowQ approximation can be extended to find approximate roots of an arbitrary degree polynomial.
Approximate analytical expressions for the salient features can be derived. Numerical values are used to
justify the approximations.

8. Salient features of the transfer functions of the buck, boost, and buck-boost converters are tabulated in
Section 8.2.2. The line-to-output transfer functions of these converters contain two poles. Their control-to-
output transfer functions contain two poles, and may additionally contain a right half-plane zero.

9.  Approximate magnitude asymptotes of impedances and transfer functions can be easily derived by graphi-
cal construction. This approach is a useful supplement to conventional analysis, because it yields physical
insight into the circuit behavior, and because it exposes suitable approximations. Several examples, includ-
ing the impedances of basic series and parallel resonant circuits and the transfer fl(gctbthe volt-
age divider circuit, are worked in Section 8.3. The input impedance, output impedance, and transfer
functions of the buck converter are constructed in Section 8.4, and physical origins of the asymptotes, cor-
ner frequencies, ar@-factor are found.

10. Measurement of transfer functions and impedances using a network analyzer is discussed in Section 8.5.
Careful attention to ground connections is important when measuring small impedances.



322 Converter Transfer Functions
REFERENCES
[1] R.D. MIDDLEBROOK, “Low Entropy Expressions: The Key to Design-Oriented Analyi&£E Frontiers
in Education Conferen¢d 991 Proceedings, pp. 399-403, Sept. 1991.
[2] R. D. MIDDLEBROOK, “Methods of Design-Oriented Analysis: The Quadratic Equation RevisltedE
Frontiers in Education Conferenc&992 Proceedings, pp. 95-102, Nov. 1991.
[3] F. BARZEGAR, S.CUK, and R. D. NDDLEBROOK, “Using Small Computers to Model and Measure Magni-
tude and Phase of Regulator Transfer Functions and Loop Gadcgedings of Powercon &pril 1981.
Also in Advances in Switched-Mode Power Conversinmine: Teslaco, Vol. 1, pp. 251-278, 1981.
[4] H. W. OrT, Noise Reduction Techniques in Electronic Syst@md edit., New York: John Wiley & Sons,
1988, Chapter 3.
PROBLEMS
8.1 Express the gains represented by the asymptotes of Figs. 8.62(a) to (c) in factored pole-zero form. You
may assume that all poles and zeroes have negative real parts.
() G
+20 dB/decade —20 dB/deca
Fig. 8.62 Gain asymptotes for Problem 8.1.
8.2 Express the gains represented by the asymptotes of Figs. 8.63(a) to (c) in factored pole-zero form. You
may assume that all poles and zeroes have negative real parts.
8.3 Derive analytical expressions for the low-frequency asymptotes of the magnitude Bode plots shown in
Fig. 8.63(a) to (c).
8.4 Derive analytical expressions for the three magnitude asymptotes of Fig. 8.16.
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@ G (®) )

+20 dB/decade 2 G,

©) —20 dB/decade

Fig. 8.63 Gain asymptotes for Problems 8.2 and 8.3.

8.5 An experimentally measured transfer function. Figure 8.64 contains experimentally measured magni-
tude and phase data for the gain funcAgs) of a certain amplifier. The object of this problem is to find
an expression fol(s). Overlay asymptotes as appropriate on the magnitude and phase data, and hence
deduce numerical values for the gain asymptotes and corner frequengi{gs ¥bur magnitude and

40 dB
3
30dB S
rrrrr LAl N
20 dB 90°
10 dB = s 45°
'/D A =
0dB S o
45
™N
-o0
§
g
-135
o
-180°
10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz

Fig. 8.64 Experimentally-measured magnitude and phase data, Problem 8.5.
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8.7

8.8
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phase asymptotes must, of course, follow all of the rules: magnitude slopes must be multiples of £20 dB
per decade, phase slopes for real poles must be multiples of +45° per decade, etc. The phase and magni-
tude asymptotes must be consistent with each other.

It is suggested that you start by gues#Mg) based on the magnitude data. Then construct the
phase asymptotes for your guess, and compare them with the given data. If there are discrepancies, then
modify your guess accordingly and redo your magnitude and phase asymptotes. You should turn in: (1)
your analytical expression féy(s), with numerical values given, and (2) a copy of Fig. 8.64, with your
magnitude and phase asymptotes superimposed and with all break frequencies and slopes clearly
labeled.

An experimentally-measured impedance. Figure 8.65 contains experimentally measured magnitude and
phase data for the driving-point impedaiZgs) of a passive network. The object of this problem is the

find an expression faf(s). Overlay asymptotes as appropriate on the magnitude and phase data, and
hence deduce numerical values for the salient features of the impedance function. You should turn in: (1)
your analytical expression f@(s), with numerical values given, and (2) a copy of Fig. 8.65, with your
magnitude and phase asymptotes superimposed and with all salient features and asymptote slopes
clearly labeled.

30 dBEQ
20 dEQ ]
Azl /
./
RS /
10 dBQ ~ Vé
//
0dBQ /
Fig. 8.65 Impedance magni-
tude and phase data, Problem-10 dEQ 90°
8.6. /-
45
= | 0°
-0 Z AN
45
-9
10 Hz 100 Hz 1 kHz 10 kHz

In Section 7.2.9, the small-signal ac model of a nonideal flyback converter is derived, with the result
illustrated in Fig. 7.27. Construct a Bode plot of the magnitude and phase of the converter output
impedanceZ, (s). Give both analytical expressions and numerical values for all important features in
your plot. NoteZ_ (s) includes the load resistanBeThe element values afg:= 0.4,n=0.2,R=6Q,

L =600 pH,C =100 uFR,,=5Q.

For the nonideal flyback converter modeled in Section 7.2.9:

@) Derive analytical expressions for the control-to-output and line-to-output transfer functions
G, (9 andGVg(s). Express your results in standard normalized form.

(b) Derive analytical expressions for the salient features of these transfer functions.
(c) Construct the magnitude and phase Bode plots of the control-to-output transfer function, using
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8.11

8.12
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the following valuesn =2,V, =48 V,D = 0.3,R=5Q, L = 250 uyH,C =100 uFR,, = 1.2Q.
Label the numerical values of the constant asymptotes, all corner frequenci@gather, and
asymptote slopes.

Magnitude Bode diagram of &L—Cfilter circuit. For the filter circuit of Fig. 8.66, construct the Bode
plots for the magnitudes of the Thevenin-equivalent output impedgpand the transfer functidt(s)

= v,/v,. Plot your results on semilog graph paper. Give approximate analytical expressions and numeri-
cal values for the important corner frequencies and asymptotes. Do all of the elements significantly

affectZ_ andH?

out

R, L,
10Q  10mH
A—TEE .
C,
220pF z
v, C, — R, out v,
R, 47 nF 1kQ
100Q

Fig. 8.66 Filter circuit of Problem 8.9.

Operational amplifier filter circuit. The op amp circuit shown in Fig. 8.67 is a practical realization of
what is known as RID controller, and is sometimes used to modify the loop gain of feedback circuits to
improve their performance. Using semilog graph paper, sketch the Bode diagram of the magnitude of the
transfer functionv,(s)/v,(s) of the circuit shown. Label all corner frequencies, flat asymptote gains, and
asymptote slopes, as appropriate, giving both analytical expressions and numerical values. You may

assume that the op amp is ideal.

R, c,
2k 1pF
R, 20 kQ
AN
R,
1kQ C, EI‘OIO pF
AN 1
]| ~
| +
C +
V. Rl 1
. 100Q 24 nF V2

Fig. 8.67 Op-amp PID controller circuit, Problem 8.10.

Phase asymptotes. Construct the phase asymptotes for the transfer fu(eigis) of Problem 8.10.
Label all break frequencies, flat asymptotes, and asymptote slopes.
Construct the Bode diagram for the magnitude of the output impedgpoéthe network shown in Fig.
8.68. Give suitable analytical expressions for each asymptote, corner frequer@yfaatat, as appro-
priate. Justify any approximations that you use.
The component values are:

L, =100 pH L,=16 mH

C, =1000 pF C,=10 pF

R, =5Q R,=50Q
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Ll RZ L2
AN—TEE—
ZOUI
v, G== RS C, =— —
Fig. 8.68 Filter network of Problem 8.12.
8.13 The two section input filter in the circuit of Fig. 8.69 should be designed such that its output impedance

Out\v -, Meets certain input filter design criteria, and hence it is desirable to construct the Bode plot
for thé magnitude af. Although this filter contains six reactive elemef@, || can nonetheless be con-
structed in a relatively straightforward manner using graphical construction techniques. The element val-

ues are:
L, =32 mH C,=32F
L, = 400 pH C,=6.8 uF
L, =800 pH R, = 10Q
L,=1pH R,=1Q

(@ Construct|| Z, || using the “algebra on the graph” method. Give simple approximate analytical
expressions for all asymptotes and corner frequencies.

(b) It is desired thalj Z, || be approximately equal to® at 500 Hz and 2.8 at 1 kHz. Suggest a
simple way to accomplish this by changing the value of one component.

T

@) c, == c, = :

Fig. 8.69 Input filter circuit of Problem 8.13.

8.14 Construct the Bode plot of the magnitude of the output impedance of the filter illustrated in Fig.
Fig. 8.70. Give approximate analytical expressions for each corner frequency. No credit will be given
for computer-generated plots.

8.15 A certain open-loop buck-boost converter contains an input filter. Its small-signal ac model is shown in
Fig. 8.71, and the element values are specified below. Construct the Bode plot for the magnitude of the
converter output impedandieZ, () [ Label the values of all important corner frequencies and asymp-

totes.
D=06 L= 150 uH
R=6Q C =16 uF
C=033pF C, = 2200 uF

L=25puH R=1Q



Problems 327

I‘2 L5
5 mH 10puH
/TH0 /TH0 ™
| 2% I vy T 1R
L, R1Q L,100pH R,10Q  LglmH
100pH
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Fig. 8.70 Input filter circuit of Problem 8.14.

Lf
%“: f |
9y(9) C == ld(s
Cb
=

Fig. 8.71 Small-signal model of a buck converter with input filter, Problem 8.15.

(vg—v)d(s)
D':1

lds) == Cc RS ol

8.16 The small-signal equations of the Watkins-Johnson converter operating in continuous conduction mode
are:
L di(t) _ D$ 5 N
at -~ (1) + (2Vg—V)d(t) + (D - D)ig(t)

¢ P = iy - 'O
I4(t) = (D-D)i(t) +21d(t)

(@ Derive analytical expressions for the line-to-output transfer funG(g(s) and the control-to-
output transfer functiofs, 4(S).

(b) Derive analytical expressions for the salient features (dc gains, corner frequenci@saand
tors) of the transfer functioﬁvg(s) andG,(s). Express your results as functionslg,fD, R L,
andC.

(c) The converter operates\df = 28 V,D = 0.25,R = 28Q, C = 100 pF,L = 400 pF. Sketch the
Bode diagram of the magnitude and phasé gfs). Label salient features.

8.17 The element values in the buck converter of Fig. 7.68 are:
Vg=120V D=0.6
R=10Q R,=2Q
L =550 pH C =100 pF
(@ Determine an analytical expression for the control-to-output transfer fuv@;}é(s) of this con-
verter.

(b) Find analytical expressions for the salient featurésvg(fs).
(c) Construct magnitude and phase asymptote@J@rLabel the numerical values of all slopes and
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other important features.

Loss mechanisms in capacitors, such as dielectric loss and contact and foil resistance, can be modeled
electrically using arequivalent series resistangesr). Capacitors whose dielectric materials exhibit a
high dielectric constant, such as electrolytic capacitors, tantalum capacitors, and some types of multi-
layer ceramic capacitors, typically exhibit relatively high esr.

A buck converter contains a 1.6 mH inductor, and operates with a quiescent duty cycle of 0.5. Its
output capacitor can be modeled as a 16 pF capacitor in series witl2a8r2The load resistance is
10Q. The converter operates in continuous conduction mode. The quiescent input vG!Bag&m V.

(@ Determine an analytical expression for the control-to-output transfer fu@;&(s) of this con-
verter.

(b) Find analytical expressions for the salient featurésvg(’s).
(c) Construct magnitude and phase asymptotesjé)n_abel the numerical values of all slopes and
other important features.

TheLCCresonant inverter circuit contains the following transfer function:

H =
(9= 1 R(C, +Cy) + LC, + SLC,C,R

€) WhenC, is sufficiently large, this transfer function can be expressed as an inverted pole and a
guadratic pole pair. Derive analytical expressions for the corner frequenci€sfacir in this
case, and sketch typical magnitude asymptotes. Determine analytical conditions for validity of
your approximation.

(b) WhenC, is sufficiently large, the transfer function can be also expressed as an inverted pole and
a quadratic pole pair. Derive analytical expressions for the corner frequenci€sfactdr in
this case, and sketch typical magnitude asymptotes. Determine analytical conditions for validity
of your approximation in this case.

(c) WhenC, = C, and when the quadratic poles have sufficiently kgthen the transfer function
can again be expressed as an inverted pole and a quadratic pole pair. Derive analytical expres-
sions for the corner frequencies a@dactor in this case, and sketch typical magnitude asymp-
totes. Determine analytical conditions for validity of your approximation in this case.

A two-sectionL—C filter has the following transfer function:

G(9 = 1

1+s 7"1;"2) +52(L1(C1+ C,) + chz) +33(7"1"R2C1) +54(L4L,C1Cy)

The element values are:

R =50
C, =680 uF C,=4.7 uF
L, = 500 pH L, =50 uH

(a) FactorG(s) into approximate real and quadratic poles, as appropriate. Give analytical expres-
sions for the salient features. Justify your approximation using the numerical element values.

(b) Construct the magnitude and phase asymptot€gspf

(c) It is desired to reduce th@ to 2, without significantly changing the corner frequencies or other
features of the response. It is possible to do this by changing only two element values. Specify
how to accomplish this.

The boost converter of Fig. 8.72 operates in the continuous conduction mode, with quiescent duty cycle
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D = 0.6. On semi-log axes, construct the magnitude and phase Bode plots of
@) the control-to-output transfer functi@),(s),
(b) the line-to-output transfer functicIB\,g(s),
(c) the output impedancg, (s), and
(d) the input impedancg,(s).
On each plot, label the corner frequencies and asymptotes.
Boost converter
L

Fig. 8.72 Boost converter of 7050 bl -
Problem 8.21. 100uH l

Vg E C v R 5
48V s30F 12Q

r

[d

f, = 200 kHz

Controller

8.22 The forward converter of Fig. 8.73 operates in the continuous conduction mode, with the quiescent val-
uesV, = 380 V and/ = 28 V. The transformer turns ratiorign, = 4.5. On semi-log axes, construct the
magnitude and phase Bode plots of

@) the control-to-output transfer functid@,(s), and
(b) the line-to-output transfer functida,g(s).

On each plot, label the corner frequencies and asympktités.other than introduction of the turns
ratio n,/n,, the transformer does not significantly affect the small-signal behavior of the forward con-

verter.
: L
n,:n :n
1 1 3 N .
500uH
C== RgW
. . 10pF 7Q
00 _
f,= 150 kHz
f_' E x
fd Fig. 8.73 Forward converter of Problem 8.22.
Controller
8.23 The boost converter of Fig. 8.74 operates in the continuous conduction mode, with the following quies-

cent valuesV, = 120 V,V = 300 V. It is desired to control the converter input current waveform, and
hence it is necessary to determine the small-signal transfer function
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Gig(9) = fg ©

() lsy9=0

(@ Derive an analytical expression fGi(s). Express all poles and zeroes in normalized standard
form, and give analytical expressions for the corner frequeri@itsstor, and dc gain.

(b) On semi-log axes, construct the Bode plot for the magnitude and pragésif

i L
9
. »—/J00 \
Fig. 8.74 Boost converter of 400pH » +
Problem 8.23.
Vg E C v R 5
10 HFT 120Q
r d f,= 100 kHz
Controller
8.24 The buck-boost converter of Fig. 8.75 operates in the continuous conduction mode, with the following
quiescent valueivg =48V,V =-24V. On semi-log axes, construct the magnitude and phase Bode plots

of:

@) the control-to-output transfer functid@,(s), and

(b) the output impedancg (s).

On each plot, label the corner frequencies and asymptotes as appropriate.

i H i .\
Fig. 8.75 Buck-boost converter
of Problem 8.24. I L E C R
Y 5 v
9 50 uH 220pFT 5Q
L [d L

f, = 200 kHz

Controller




