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8

 

Converter Transfer Functions

 

The engineering design process is comprised of several major steps:

 

1.

 

Specifications and other design goals

 

 are defined.

2.

 

A circuit is proposed

 

. This is a creative process that draws on the physical insight and experience of the
engineer.

3.

 

The circuit is modeled

 

. The converter power stage is modeled as described in Chapter 7. Components and
other portions of the system are modeled as appropriate, often with vendor-supplied data.

4.

 

Design-oriented analysis 

 

of the circuit is performed. This involves development of equations that allow
element values to be chosen such that specifications and design goals are met. In addition, it may be neces-
sary for the engineer to gain additional understanding and physical insight into the circuit behavior, so that
the design can be improved by adding elements to the circuit or by changing circuit connections.

5.

 

Model verification

 

. Predictions of the model are compared to a laboratory prototype, under nominal oper-
ating conditions. The model is refined as necessary, so that the model predictions agree with laboratory
measurements.

6.

 

Worst-case analysis

 

 (or other reliability and production yield analysis) of the circuit is performed. This
involves quantitative evaluation of the model performance, to judge whether specifications are met under
all conditions. Computer simulation is well-suited to this task.

7.

 

Iteration

 

. The above steps are repeated to improve the design until the worst-case behavior meets specifi-
cations, or until the reliability and production yield are acceptably high.

 

This chapter covers techniques of design-oriented analysis, measurement of experimental transfer func-
tions, and computer simulation, as needed in steps 4, 5, and 6.

Sections 8.1 to 8.3 discuss techniques for analysis and construction of the Bode plots of the con-
verter transfer functions, input impedance, and output impedance predicted by the equivalent circuit
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models of Chapter 7. For example, the small-signal equivalent circuit model of the buck-boost converter
is illustrated in Fig. 7.17(c). This model is reproduced in Fig. 8.1, with the important inputs and terminal
impedances identified. The line-to-output transfer function 

 

G

 

vg

 

(

 

s

 

) is found by setting duty cycle varia-
tions 

 

d

 

(

 

s

 

) to zero, and then solving for the transfer function from 

 

v

 

g

 

(

 

s

 

) to 

 

v

 

(

 

s

 

):

 

(8.1)

 

This transfer function describes how variations or disturbances in the applied input voltage 

 

v

 

g

 

(

 

t

 

) lead to
disturbances in the output voltage 

 

v

 

(

 

t

 

). It is important in design of an output voltage regulator. For exam-
ple, in an off-line power supply, the converter input voltage 

 

v

 

g

 

(

 

t

 

) contains undesired even harmonics of
the ac power line voltage. The transfer function 

 

G

 

vg

 

(

 

s

 

) is used to determine the effect of these harmonics
on the converter output voltage 

 

v

 

(

 

t

 

).
The control-to-output transfer function 

 

G

 

vd

 

(

 

s

 

) is found by setting the input voltage variations

 

v

 

g

 

(

 

s

 

) to zero, and then solving the equivalent circuit model for 

 

v

 

(

 

s

 

) as a function of 

 

d

 

(

 

s

 

):

 

(8.2)

 

This transfer function describes how control input variations 

 

d

 

(

 

s

 

) influence the output voltage 

 

v

 

(

 

s

 

). In an
output voltage regulator system, 

 

G

 

vd

 

(

 

s

 

) is a key component of the loop gain and has a significant effect on
regulator performance.

The output impedance 

 

Z

 

out

 

(

 

s

 

) is found under the conditions that 

 

v

 

g

 

(

 

s

 

) and 

 

d

 

(

 

s

 

) variations are set
to zero. 

 

Z

 

out

 

(

 

s

 

) describes how variations in the load current affect the output voltage. This quantity is also
important in voltage regulator design. It may be appropriate to define 

 

Z

 

out

 

(

 

s

 

) either including or not
including the load resistance 

 

R

 

.
The converter input impedance 

 

Z

 

in

 

(

 

s

 

) plays a significant role when an electromagnetic interfer-
ence (EMI) filter is added at the converter power input. The relative magnitudes of 

 

Z

 

in

 

 and the EMI filter
output impedance influence whether the EMI filter disrupts the transfer function 

 

G

 

vd

 

(

 

s

 

). Design of input
EMI filters is the subject of Chapter 10.

An objective of this chapter is the construction of Bode plots of the important transfer functions
and terminal impedances of switching converters. For example, Fig. 8.2 illustrates the magnitude and
phase plots of 

 

G

 

vd

 

(

 

s

 

) for the buck-boost converter model of Fig. 8.1. Rules for construction of magnitude
and phase asymptotes are reviewed in Section 8.1, including two types of features that often appear in

Gvg(s) =
v(s)
vg(s)

d(s) = 0

Gvd(s) =
v(s)
d (s)

vg(s) = 0

+
–

+–

L

RC

1 : D D' : 1

vg(s) I d(s) I d(s)

i(s)
+

v(s)

–

(Vg – V) d(s)
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d(s) Control input

Line
input

Output

Fig. 8.1 Small-signal equivalent circuit model of the buck-boost converter, as derived in Chapter 7.
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converter transfer functions: resonances and right half-plane zeroes. Bode diagrams of the small-signal
transfer functions of the buck-boost converter are derived in detail in Section 8.2, and the transfer func-
tions of the basic buck, boost, and buck-boost converters are tabulated. The physical origins of the right
half-plane zero are also described.

 A difficulty usually encountered in circuit analysis (step 5 of the above list) is the complexity of
the circuit model: practical circuits may contains hundreds of elements, and hence their analysis may
leads to complicated derivations, intractable equations, and lots of algebra mistakes. 

 

Design-oriented
analysis

 

[1] is a collection of tools and techniques that can alleviate these problems. Some tools for
approaching the design of a complicated converter system are described in this chapter. Writing the
transfer functions in normalized form directly exposes the important features of the response. Analytical
expressions for these features, as well as for the asymptotes, lead to simple equations that are useful in
design. Well-separated roots of transfer function polynomials can be approximated in a simple way. Sec-
tion 8.3 describes a graphical method for constructing Bode plots of transfer functions and impedances,
essentially by inspection. This method can: (1) reduce the amount of algebra and associated algebra mis-
takes; (2) lead to greater insight into circuit behavior, which can be applied to design the circuit; and
(3) lead to the insight necessary to make suitable approximations that render the equations tractable. 

Experimental measurement of transfer functions and impedances (needed in step 4, model veri-
fication) is discussed in Section 8.5. Use of computer simulation to plot converter transfer functions (as
needed in step 6, worst-case analysis) is covered in Appendix B.

 

8.1 REVIEW OF BODE PLOTS

 

A Bode plot is a plot of the magnitude and phase of a transfer function or other complex-valued quantity,
vs. frequency. Magnitude in decibels, and phase in degrees, are plotted vs. frequency, using semilogarith-
mic axes. The magnitude plot is effectively a log-log plot, since the magnitude is expressed in decibels
and the frequency axis is logarithmic.

The magnitude of a dimensionless quantity 

 

G

 

 can be expressed in decibels as follows:

f
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Fig. 8.2 Bode plot of control-to-output transfer function predicted by the model of Fig. 8.1, with analytical
expressions for the important features.
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(8.3)

 

Decibel values of some simple magnitudes are
listed in Table 8.1. Care must be used when the
magnitude is not dimensionless. Since it is not
proper to take the logarithm of a quantity having
dimensions, the magnitude must first be normal-
ized. For example, to express the magnitude of
an impedance 

 

Z

 

 in decibels, we should normal-
ize by dividing by a base impedance 

 

R

 

base

 

:

 

(8.4)

 

The value of 

 

R

 

base

 

 is arbitrary, but we need to tell others what value we have used. So if 

 

||

 

 

 

Z

 

 

 

||

 

 is 5 

 

Ω

 

, and
we choose 

 

R

 

base

 

 = 10 

 

Ω

 

, then we can say that 

 

||

 

 

 

Z

 

 

 

||

 

dB

 

 = 20 log

 

10

 

(5 

 

Ω

 

/10

 

Ω

 

) = – 6dB with respect to 10 

 

Ω

 

.
A common choice is 

 

R

 

base

 

 = 1

 

Ω

 

; decibel impedances expressed with 

 

R

 

base

 

 = 1 

 

Ω

 

 are said to be expressed
in dB

 

Ω

 

. So 5 

 

Ω

 

 is equivalent to 14 dB

 

Ω

 

. Current switching harmonics at the input port of a converter are
often expressed in dBµA, or dB using a base current of 1 µA: 60 dBµA is equivalent to 1000 µA, or
1 mA.

The magnitude Bode plots of functions equal to powers of 

 

f

 

 are linear. For example, suppose
that the magnitude of a dimensionless quantity 

 

G

 

(

 

f

 

) is 

 

(8.5)

 

where 

 

f

 

0

 

 and 

 

n are constants. The magnitude in decibels is

(8.6)

This equation is plotted in Fig. 8.3, for several values of n. The magnitudes have value 1 ⇒  0 dB at fre-
quency f = f0. They are linear functions of log10(f). The slope is the change in || G ||dB arising from a unit
change in log10(f); a unit increase in log10(f) corresponds to a factor of 10, or decade, increase in f. From
Eq. (8.6), a decade increase in f leads to an increase in || G ||dB of 20n dB. Hence, the slope is 20n dB per
decade. Equivalently, we can say that the slope is 20n log10(2) ≈ 6n dB per octave, where an octave is a
factor of 2 change in frequency. In practice, the magnitudes of most frequency-dependent functions can
usually be approximated over a limited range of frequencies by functions of the form (8.5); over this
range of frequencies, the magnitude Bode plot is approximately linear with slope 20n dB/decade.

A simple transfer function whose magnitude is of the form (8.5) is the pole at the origin:

(8.7)

The magnitude is

Table 8.1 Expressing magnitudes in decibels

Actual magnitude Magnitude in dB

1/2 – 6 dB

1 0 dB

2 6 dB

5 = 10/2 20 dB – 6 dB = 14 dB

10 20 dB

1000 = 103 3·20 dB = 60 dB

G
dB

= 20 log10 G

Z
dB

= 20 log10

Z
Rbase

G =
f
f0

n

G
dB

= 20 log10
f
f0

n

= 20n log10
f
f0

G(s) = 1
s

ω0
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(8.8)

If we define f = ω/2π and f0 = ω0/2π, then Eq. (8.8) becomes

(8.9)

which is of the form of Eq. (8.5) with n = –1. As illustrated in Fig. 8.3, the magnitude Bode plot of the
pole at the origin (8.7) has a –20 dB per decade slope, and passes through 0 dB at frequency f = f0.

8.1.1 Single Pole Response

Consider the simple R-C low-pass filter illustrated in Fig. 8.4.
The transfer function is given by the voltage divider ratio

(8.10)

This transfer function is a ratio of voltages, and hence is
dimensionless. By multiplying the numerator and denomina-
tor by sC, we can express the transfer function as a rational
fraction:

(8.11)

f
f0

– 2

f
f0

2

0 dB

–20 dB

–40 dB
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20 dB

40 dB

60 dB

f
log scale

f00.1f0 10f0

f
f0

f
f0

– 1

n = 1
n =

 2

n = –2

n = –120 dB/decade

40 dB/decade

–20 dB/decade

–40 dB/decade

Fig. 8.3 Magnitude Bode plots of functions which vary as f n are linear, with slope n dB per decade.
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–

Fig. 8.4 Simple R–C low-pass filter
example.

G(s) =
v2(s)
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=
1

sC
1

sC + R
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1 + sRC
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The transfer function now coincides with the following standard normalized form for a single pole:

(8.12)

The parameter ω0 = 2πf0 is found by equating the coefficients of s in the denominators of Eqs. (8.11) and
(8.12). The result is

(8.13)

Since R and C are real positive quantities, ω0 is also real and positive. The denominator of Eq. (8.12)
contains a root at s = –ω0, and hence G(s) contains a real pole in the left half of the complex plane.

To find the magnitude and phase of the transfer function,
we let s = jω, where j is the square root of –1. We then find the mag-
nitude and phase of the resulting complex-valued function. With s =
jω, Eq. (8.12) becomes

(8.14)

The complex-valued G(jω) is illustrated in Fig. 8.5, for one value of
ω. The magnitude is

(8.15)

Here, we have assumed that ω0 is real. In decibels, the magnitude is

(8.16)

The easy way to sketch the magnitude Bode plot of G is to investigate the asymptotic behavior for large
and small frequency.

For small frequency, ω < ω0 and f < f0, it is true that

(8.17)

The (ω/ω0)
2 term of Eq. (8.15) is therefore much smaller than 1, and hence Eq. (8.15) becomes

(8.18)

In decibels, the magnitude is approximately

G(s) = 1
1 + s

ω0

ω0 = 1
RC

Im(G(jω))

Re(G(jω))

G(jω)

|| G
(jω

) ||

∠G(jω)

Fig. 8.5 Magnitude and phase of
the complex-valued function G(jω).

G( jω) = 1
1 + j ω

ω0

=
1 – j ω

ω0

1 + ω
ω0

2

G( jω) = Re (G( jω))
2

+ Im (G( jω))
2

= 1

1 + ω
ω0

2

G( jω)
dB

= – 20 log10 1 + ω
ω0

2
dB

ω
ω0

< 1

G( jω) ≈ 1
1
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(8.19)

Thus, as illustrated in Fig. 8.6, at low frequency || G(jω) ||dB is asymptotic to 0 dB.
At high frequency, ω > ω0 and f > f0. In this case, it is true that

(8.20)

We can then say that

(8.21)

Hence, Eq. (8.15) now becomes

(8.22)

This expression coincides with Eq. (8.5), with n = –1. So at high frequency, || G(jω) ||dB has slope –20 dB
per decade, as illustrated in Fig. 8.6. Thus, the asymptotes of || G(jω) || are equal to 1 at low frequency,
and (f/ f0)

–1 at high frequency. The asymptotes intersect at f0. The actual magnitude tends toward these
asymptotes at very low frequency and very high frequency. In the vicinity of the corner frequency f0, the
actual curve deviates somewhat from the asymptotes.

The deviation of the exact curve from the asymptotes can be found by simply evaluating
Eq. (8.15). At the corner frequency f = f0, Eq. (8.15) becomes

(8.23)

In decibels, the magnitude is

(8.24)

So the actual curve deviates from the asymptotes by –3 dB at the corner frequency, as illustrated in
Fig. 8.7. Similar arguments show that the actual curve deviates from the asymptotes by –1 dB at f = f0/2

G( jω)
dB

≈ 0dB

Fig. 8.6 Magnitude asymptotes
for the single real pole transfer
function.
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=
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and at f = 2f0.
The phase of G(jω) is

(8.25)

Insertion of the real and imaginary parts of Eq. (8.14) into Eq. (8.25) leads to

(8.26)

This function is plotted in Fig. 8.8. It tends to 0˚ at low frequency, and to –90˚ at high frequency. At the
corner frequency f = f0, the phase is –45˚.

Since the high-frequency and low-frequency phase asymptotes do not intersect, we need a third
asymptote to approximate the phase in the vicinity of the corner frequency f0. One way to do this is illus-

Fig. 8.7 Deviation of the actual curve from
the asymptotes, real pole.
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trated in Fig. 8.9, where the slope of the asymptote is chosen to be identical to the slope of the actual
curve at f = f0. It can be shown that, with this choice, the asymptote intersection frequencies fa and fb are
given by

(8.27)

A simpler choice, which better approximates the actual curve, is

(8.28)

This asymptote is compared to the actual curve in Fig. 8.10. The pole causes the phase to change over a
frequency span of approximately two decades, centered at the corner frequency. The slope of the asymp-
tote in this frequency span is –45˚ per decade. At the break frequencies fa and fb, the actual phase devi-
ates from the asymptotes by tan–1(0.1) = 5.7˚. 

The magnitude and phase asymptotes for the single-pole response are summarized in Fig. 8.11.
It is good practice to consistently express single-pole transfer functions in the normalized form

of Eq. (8.12). Both terms in the denominator of Eq. (8.12) are dimensionless, and the coefficient of s0 is
unity. Equation (8.12) is easy to interpret, because of its normalized form. At low frequencies, where the
(s/ω0) term is small in magnitude, the transfer function is approximately equal to 1. At high frequencies,
where the (s/ω0) term has magnitude much greater than 1, the transfer function is approximately (s/ω0)

-1.
This leads to a magnitude of (f/f0)

-1. The corner frequency is f0 = ω0/2π. So the transfer function is writ-
ten directly in terms of its salient features, that is, its asymptotes and its corner frequency.

fa = f0e– π / 2 ≈ f0
4.81

fb = f0eπ / 2 ≈ 4.81 f0

fa =
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fb = 10 f0

–90˚

–75˚

–60˚

–45˚

–30˚

–15˚

0˚

f
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Fig. 8.9 One choice for
the midfrequency phase
asymptote, which cor-
rectly predicts the actual
slope at f = f0.
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Fig. 8.10 A simpler choice for the midfrequency phase asymptote, which better approximates the curve over the
entire frequency range.
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Fig. 8.11 Summary of the magnitude and phase Bode plot for the single real pole.
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8.1.2 Single Zero Response

A single zero response contains a root in the numerator of the transfer function, and can be written in the
following normalized form:

(8.29)

This transfer function has magnitude

(8.30)

At low frequency, f < f0 = ω0/2π, the transfer function magnitude tends to 1 ⇒  0 dB. At high frequency,
f > f0, the transfer function magnitude tends to (f/f0). As illustrated in Fig. 8.12, the high-frequency
asymptote has slope +20 dB/decade.

The phase is given by

(8.31)

With the exception of a minus sign, the phase is identical to Eq. (8.26). Hence, suitable asymptotes are as
illustrated in Fig. 8.12. The phase tends to 0˚ at low frequency, and to +90˚ at high frequency. Over the
interval f0/10 < f < 10f0, the phase asymptote has a slope of +45˚/decade.
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2
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0 dB

Fig. 8.12 Summary of the
magnitude and phase Bode plot
for the single real zero.
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8.1.3 Right Half-Plane Zero

Right half-plane zeroes are often encountered in the small-signal transfer functions of switching convert-
ers. These terms have the following normalized form:

(8.32)

The root of Eq. (8.32) is positive, and hence lies in the right half of the complex s-plane. The right half-
plane zero is also sometimes called a nonminimum phase zero. Its normalized form, Eq. (8.32), resem-
bles the normalized form of the (left half-plane) zero of Eq. (8.29), with the exception of a minus sign in
the coefficient of s. The minus sign causes a phase reversal at high frequency.

The transfer function has magnitude

(8.33)

This expression is identical to Eq. (8.30). Hence, it is impossible to distinguish a right half-plane zero
from a left half-plane zero by the magnitude alone. The phase is given by

(8.34)

This coincides with the expression for the phase of the single pole, Eq. (8.26). So the right half-plane
zero exhibits the magnitude response of the left half-plane zero, but the phase response of the pole. Mag-
nitude and phase asymptotes are summarized in Fig. 8.13.

Fig. 8.13 Summary of the
magnitude and phase Bode
plot for the real RHP zero.
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8.1.4 Frequency Inversion

Two other forms arise, from inversion of the frequency axis. The inverted pole has the transfer function

(8.35)

As illustrated in Fig. 8.14, the inverted pole has a high-frequency gain of 1, and a low frequency asymp-
tote having a +20 dB/decade slope. This form is useful for describing the gain of high-pass filters, and of
other transfer functions where it is desired to emphasize the high frequency gain, with attenuation of low
frequencies. Equation (8.35) is equivalent to

(8.36)

However, Eq. (8.35) more directly emphasizes that the high frequency gain is 1.
The inverted zero has the form

(8.37)

As illustrated in Fig. 8.15, the inverted zero has a high-frequency gain asymptote equal to 1, and a low-
frequency asymptote having a slope equal to –20 dB/decade. An example of the use of this type of trans-

G(s) = 1

1 +
ω0
s

0˚

∠G(jω)

f0

+45˚

f0 /10

10f0

+90˚
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Fig. 8.14 Inversion of the fre-
quency axis: summary of the
magnitude and phase Bode plots
for the inverted real pole.
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fer function is the proportional-plus-integral controller, discussed in connection with feedback loop
design in the next chapter. Equation (8.37) is equivalent to

(8.38)

However, Eq. (8.37) is the preferred form when it is desired to emphasize the value of the high-frequency
gain asymptote.

The use of frequency inversion is illustrated by example in the next section.

8.1.5 Combinations

The Bode diagram of a transfer function containing several pole, zero, and gain terms, can be constructed
by simple addition. At any given frequency, the magnitude (in decibels) of the composite transfer func-
tion is equal to the sum of the decibel magnitudes of the individual terms. Likewise, at a given frequency
the phase of the composite transfer function is equal to the sum of the phases of the individual terms.

For example, suppose that we have already constructed the Bode diagrams of two complex-val-
ued functions of ω, G1(ω) and G2(ω). These functions have magnitudes R1(ω) and R2(ω), and phases
θ1(ω) and θ2(ω), respectively. It is desired to construct the Bode diagram of the product G3(ω) =
G1(ω)G2(ω). Let G3(ω) have magnitude R3(ω), and phase θ3(ω). To find this magnitude and phase, we
can express G1(ω), G2(ω), and G3(ω) in polar form:

G(s) =
1 + s

ω0

s
ω0

0˚

∠G(jω)

f0

–45˚

f0 /10

10f0

–90˚

5.7˚

5.7˚

+45˚/decade

–20 dB/decade

f0

|| G(jω) ||dB

3 dB

1 dB

0.5f0

1 dB

2f0

0 dB
Fig. 8.15 Inversion of the fre-
quency axis: summary of the
magnitude and phase Bode plot
for the inverted real zero.
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(8.39)

The product G3(ω) can then be expressed as

(8.40)

Simplification leads to

(8.41)

Hence, the composite phase is

(8.42)

The total magnitude is

(8.43)

When expressed in decibels, Eq. (8.43) becomes

(8.44)

So the composite phase is the sum of the individual phases, and when expressed in decibels, the compos-
ite magnitude is the sum of the individual magnitudes. The composite magnitude slope, in dB per
decade, is therefore also the sum of the individual slopes in dB per decade.

G1(ω) = R1(ω) e jθ1(ω)

G2(ω) = R2(ω) e jθ2(ω)

G3(ω) = R3(ω) e jθ3(ω)

G3(ω) = G1(ω)G2(ω) = R1(ω)e jθ1(ω) R2(ω)e jθ2(ω)

G3(ω) = R1(ω)R2(ω) e j(θ1(ω) + θ2(ω))

θ3(ω) = θ1(ω) + θ2(ω)

R3(ω) = R1(ω)R2(ω)

R3(ω)
dB

= R1(ω)
dB

+ R2(ω)
dB

Fig. 8.16 Construction of magnitude and phase asymptotes for the transfer function of Eq.(8.45). Dashed lines
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For example, consider construction of the Bode plot of the following transfer function:

(8.45)

where G0 = 40 ⇒  32 dB, f1 = ω1/2π = 100 Hz, f2 = ω2/2π = 2 kHz. This transfer function contains three
terms: the gain G0, and the poles at frequencies f1 and f2. The asymptotes for each of these terms are illus-
trated in Fig. 8.16. The gain G0 is a positive real number, and therefore contributes zero phase shift with
the gain 32 dB. The poles at 100 Hz and 2 kHz each contribute asymptotes as in Fig. 8.11.

At frequencies less than 100 Hz, the G0 term contributes a gain magnitude of 32 dB, while the
two poles each contribute magnitude asymptotes of 0 dB. So the low-frequency composite magnitude
asymptote is 32 dB + 0 dB + 0 dB = 32 dB. For frequencies between 100 Hz and 2 kHz, the G0 gain
again contributes 32 dB, and the pole at 2 kHz continues to contribute a 0 dB magnitude asymptote.
However, the pole at 100 Hz now contributes a magnitude asymptote that decreases with a –20 dB per
decade slope. The composite magnitude asymptote therefore also decreases with a –20 dB per decade
slope, as illustrated in Fig. 8.16. For frequencies greater than 2 kHz, the poles at 100 Hz and 2 kHz each
contribute decreasing asymptotes having slopes of –20 dB/decade. The composite asymptote therefore
decreases with a slope of –20 dB/decade –20 dB/decade = –40 dB/decade, as illustrated.

The composite phase asymptote is also constructed in Fig. 8.16. Below 10 Hz, all terms con-
tribute 0˚ asymptotes. For frequencies between f1/10 = 10 Hz, and f2/10 = 200 Hz, the pole at f1 contrib-
utes a decreasing phase asymptote having a slope of –45˚/decade. Between 200 Hz and 10f1 = 1 kHz,
both poles contribute decreasing asymptotes with –45˚/decade slopes; the composite slope is therefore
–90˚/decade. Between 1 kHz and 10f2 = 20 kHz, the pole at f1 contributes a constant –90˚ phase asymp-
tote, while the pole at f2 contributes a decreasing asymptote with –45˚/decade slope. The composite slope
is then –45˚/decade. For frequencies greater than 20 kHz, both poles contribute constant –90˚ asymp-
totes, leading to a composite phase asymptote of –180˚.

As a second example, con-
sider the transfer function A(s) rep-
resented by the magnitude and
phase asymptotes of Fig. 8.17. Let
us write the transfer function that
corresponds to these asymptotes.
The dc asymptote is A0. At corner
frequency f1, the asymptote slope
increases from 0 dB/decade to +20
dB/decade. Hence, there must be a
zero at frequency f1. At frequency
f2, the asymptote slope decreases
from +20 dB/decade to 0 dB/
decade. Therefore the transfer func-
tion contains a pole at frequency f2.
So we can express the transfer function as

(8.46)

G(s) =
G0

1 + s
ω1

1 + s
ω2

Fig. 8.17 Magnitude and phase asymptotes of example transfer
function A(s).
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where ω1 and ω2 are equal to 2πf1 and 2πf2, respectively.
We can use Eq. (8.46) to derive analytical expressions for the asymptotes. For f < f1, and letting

s = jω, we can see that the (s/ω1) and (s/ω2) terms each have magnitude less than 1. The asymptote is
derived by neglecting these terms. Hence, the low-frequency magnitude asymptote is

(8.47)

For f1 < f < f2, the numerator term (s/ω1) has magnitude greater than 1, while the denominator term (s/ω2)
has magnitude less than 1. The asymptote is derived by neglecting the smaller terms:

(8.48)

This is the expression for the midfrequency magnitude asymptote of A(s). For f > f2, the (s/ω1) and (s/ω2)
terms each have magnitude greater than 1. The expression for the high-frequency asymptote is therefore:

(8.49)

We can conclude that the high-frequency gain is

(8.50)

Thus, we can derive analytical expressions for the asymptotes.
The transfer function A(s) can also be written in a second form, using inverted poles and zeroes.

Suppose that A(s) represents the transfer function of a high-frequency amplifier, whose dc gain is not
important. We are then interested in expressing A(s) directly in terms of the high-frequency gain A∞. We
can view the transfer function as having an inverted pole at frequency f2, which introduces attenuation at
frequencies less than f2. In addition, there is an inverted zero at f = f1. So A(s) could also be written

(8.51)

It can be verified that Eqs. (8.51) and (8.46) are equivalent.
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8.1.6 Quadratic Pole Response: Resonance

Consider next the transfer function G(s) of the two-pole
low-pass filter of Fig. 8.18. The buck converter contains
a filter of this type. When manipulated into canonical
form, the models of the boost and buck-boost also con-
tain similar filters. One can show that the transfer func-
tion of this network is

(8.52)

This transfer function contains a second-order denominator polynomial, and is of the form

(8.53)

with a1 = L/R and a2 = LC.
To construct the Bode plot of this transfer function, we might try to factor the denominator into

its two roots:

(8.54)

Use of the quadratic formula leads to the following expressions for the roots:

(8.55)

(8.56)

If 4a2 ≤ a1
2, then the roots are real. Each real pole then exhibits a Bode diagram as derived in

Section 8.1.1, and the composite Bode diagram can be constructed as described in Section 8.1.5 (but a
better approach is described in Section 8.1.7).

If 4a2 > a1
2, then the roots (8.55) and (8.56) are complex. In Section 8.1.1, the assumption was

made that ω0 is real; hence, the results of that section cannot be applied to this case. We need to do some
additional work, to determine the magnitude and phase for the case when the roots are complex.

The transfer functions of Eqs. (8.52) and (8.53) can be written in the following standard nor-
malized form:

(8.57)

If the coefficients a1 and a2 are real and positive, then the parameters ζ and ω0 are also real and positive.
The parameter ω0 is again the angular corner frequency, and we can define f0 = ω0/2π. The parameter ζ is

Fig. 8.18 Two-pole low-pass filter example.
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called the damping factor: ζ controls the shape of the transfer function in the vicinity of f = f0. An alter-
native standard normalized form is

(8.58)

where

(8.59)

The parameter Q is called the quality factor of the circuit, and is a measure of the dissipation in the sys-
tem. A more general definition of Q, for sinusoidal excitation of a passive element or network, is

(8.60)

For a second-order passive system, Eqs. (8.59) and (8.60) are equivalent. We will see that the Q-factor
has a very simple interpretation in the magnitude Bode diagrams of second-order transfer functions.

Analytical expressions for the parameters Q and ω0 can be found by equating like powers of s in
the original transfer function, Eq. (8.52), and in the normalized form, Eq. (8.58). The result is

(8.61)

The roots s1 and s2 of Eqs. (8.55) and (8.56) are real when Q ≤ 0.5, and are complex when Q > 0.5. 
The magnitude of G is

(8.62)

Asymptotes of || G || are illustrated in Fig. 8.19. At low frequencies, (ω/ω0) < 1, and hence

(8.63)

G(s) = 1
1 + s

Qω0
+ s

ω0

2

Q = 1
2ζ

Q = 2π (peak stored energy)
(energy dissipated per cycle)

f0 =
ω0

2π = 1
2π LC

Q = R C
L

G( jω) = 1

1 – ω
ω0

2 2

+ 1
Q2

ω
ω0

2

Fig. 8.19 Magnitude asymptotes for the two-pole transfer function.
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At high frequencies where (ω/ω0) > 1, the (ω/ω0)
4 term

dominates the expression inside the radical of Eq. (8.62).
Hence, the high-frequency asymptote is

(8.64)

This expression coincides with Eq. (8.5), with n = – 2.
Therefore, the high-frequency asymptote has slope –40 dB/
decade. The asymptotes intersect at f = f0, and are indepen-
dent of Q.

The parameter Q affects the deviation of the actual
curve from the asymptotes, in the neighborhood of the cor-
ner frequency f0. The exact magnitude at f = f0 is found by substitution of ω = ω0 into Eq. (8.62):

(8.65)

So the exact transfer function has magnitude Q at the corner frequency f0. In decibels, Eq. (8.65) is

(8.66)

So if, for example, Q = 2 ⇒  6 dB, then the actual curve deviates from the asymptotes by 6 dB at the cor-
ner frequency f = f0. Salient features of the magnitude Bode plot of the second-order transfer function are
summarized in Fig. 8.20.

The phase of G is

(8.67)

The phase tends to 0˚ at low frequency, and to –180˚ at high frequency. At f = f0, the phase is –90˚. As
illustrated in Fig. 8.21, increasing the value of Q causes a sharper phase change between the 0˚ and
–180˚ asymptotes. We again need a midfrequency asymptote, to approximate the phase transition in the

|| G ||

f0

| Q |dB0 dB

–40 dB/decade

Fig. 8.20 Important features of the magni-
tude Bode plot, for the two-pole transfer
function.

G → f
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G( jω0) = Q
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dB
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Fig. 8.21 Phase plot, second-order poles.
Increasing Q causes a sharper phase change.
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vicinity of the corner frequency f0, as illustrated in Fig. 8.22. As in the case of the real single pole, we
could choose the slope of this asymptote to be identical to the slope of the actual curve at f = f0. It can be
shown that this choice leads to the following asymptote break frequencies:

(8.68)

A better choice, which is consistent with the approximation (8.28) used for the real single pole, is

(8.69)

With this choice, the midfrequency asymptote has slope –180Q degrees per decade. The phase asymp-
totes are summarized in Fig. 8.23. With Q = 0.5, the phase changes from 0˚ to –180˚ over a frequency
span of approximately two decades, centered at the corner frequency f0. Increasing the Q causes this fre-
quency span to decrease rapidly. 

Second-order response magnitude and phase curves are plotted in Figs. 8.24 and 8.25.

fa = eπ/ 2 – 1
2Q f0

fb = eπ/ 2
1

2Q f0

fa = 10– 1/2Q f0
fb = 101/2Q f0

Fig. 8.22 One choice for the midfrequency
phase asymptote of the two-pole response,
which correctly predicts the actual slope at
f = f0.
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Fig. 8.23 A simpler choice for the
midfrequency phase asymptote, which
better approximates the curve over the
entire frequency range and is consistent
with the asymptote used for real poles.
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Fig. 8.24 Exact magnitude curves, two-
pole response, for several values of Q.
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Fig. 8.25 Exact phase curves, two-pole
response, for several values of Q.
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8.1.7 The Low-Q Approximation

As mentioned in Section 8.1.6, when the roots of second-order denominator polynomial of Eq. (8.53) are
real, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real
poles. We would then use the following normalized form:

(8.70)

This is a particularly desirable approach when the corner frequencies ω1 and ω2 are well separated in
value.

The difficulty in this procedure lies in the complexity of the quadratic formula used to find the
corner frequencies. Expressing the corner frequencies ω1 and ω2 in terms of the circuit elements R, L, C,
etc., invariably leads to complicated and unilluminating expressions, especially when the circuit contains
many elements. Even in the case of the simple circuit of Fig. 8.18, whose transfer function is given by
Eq. (8.52), the conventional quadratic formula leads to the following complicated formula for the corner
frequencies:

(8.71)

This equation yields essentially no insight regarding how the corner frequencies depend on the element
values. For example, it can be shown that when the corner frequencies are well separated in value, they
can be expressed with high accuracy by the much simpler relations

(8.72)

In this case, ω1 is essentially independent of the value of C, and ω2 is essentially independent of L, yet
Eq. (8.71) apparently predicts that both corner frequencies are dependent on all element values. The sim-
ple expressions of Eq. (8.72) are far preferable to Eq. (8.71), and can be easily derived using the low-Q
approximation [2].

Let us assume that the transfer function has been expressed in the standard normalized form of
Eq. (8.58), reproduced below:

(8.73)

For Q ≤ 0.5, let us use the quadratic formula to write the real roots of the denominator polynomial of
Eq. (8.73) as

(8.74)

(8.75)
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The corner frequency ω2 can be expressed

(8.76)

where F(Q) is defined as [2]:

(8.77)

Note that, when Q < 0.5, then 4Q2 < 1 and F(Q) is approximately equal to 1. We then obtain

(8.78)

The function F(Q) is plotted in Fig. 8.26. It can be seen that F(Q) approaches 1 very rapidly as Q
decreases below 0.5.

To derive a similar approximation for ω1, we can multiply and divide Eq. (8.74) by F(Q),
Eq. (8.77). Upon simplification of the numerator, we obtain

(8.79)

Again, F(Q) tends to 1 for small Q. Hence, ω1 can be approximated as

(8.80)

Magnitude asymptotes for the low-Q case are summarized in Fig. 8.27. For Q < 0.5, the two
poles at ω0 split into real poles. One real pole occurs at corner frequency ω1 < ω0, while the other occurs
at corner frequency ω2 > ω0. The corner frequencies are easily approximated, using Eqs. (8.78) and
(8.80).

For the filter circuit of Fig. 8.18, the parameters Q and ω0 are given by Eq. (8.61). For the case
when Q < 0.5, we can derive the following analytical expressions for the corner frequencies, using
Eqs. (8.78) and (8.80):
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1
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Fig. 8.26 F(Q) vs. Q, as given by
Eq. (8.77). The approximation F(Q) ≈ 1 is
within 10% of the exact value for Q < 3.
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(8.81)

So the low-Q approximation allows us to derive simple design-oriented analytical expressions for the
corner frequencies.

8.1.8 Approximate Roots of an Arbitrary-Degree Polynomial

The low-Q approximation can be generalized, to find approximate analytical expressions for the roots of
the nth-order polynomial

(8.82)

It is desired to factor the polynomial P(s) into the form

(8.83)

In a real circuit, the coefficients a1, ..., an are real, while the time constants τ1, ..., τn may be either real or
complex. Very often, some or all of the time constants are well separated in value, and depend in a very
simple way on the circuit element values. In such cases, simple approximate analytical expressions for
the time constants can be derived.

The time constants τ1, ..., τn can be related to the original coefficients a1, ..., an by multiplying
out Eq. (8.83). The result is

(8.84)

General solution of this system of equations amounts to exact factoring of the arbitrary degree polyno-
mial, a hopeless task. Nonetheless, Eq. (8.84) does suggest a way to approximate the roots.

Suppose that all of the time constants τ1, ..., τn are real and well separated in value. We can fur-
ther assume, without loss of generality, that the time constants are arranged in decreasing order of magni-
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Fig. 8.27 Magnitude asymptotes predicted
by the low-Q approximation. Real poles occur
at frequencies Qf0 and f0/Q.
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tude:

(8.85)

When the inequalities of Eq. (8.85) are satisfied, then the expressions for a1, ..., an of Eq. (8.84) are each
dominated by their first terms:

(8.86)

These expressions can now be solved for the time constants, with the result

(8.87)

Hence, if

(8.88)

then the polynomial P(s) given by Eq. (8.82) has the approximate factorization

(8.89)

Note that if the original coefficients in Eq. (8.82) are simple functions of the circuit elements, then the
approximate roots given by Eq. (8.89) are similar simple functions of the circuit elements. So approxi-
mate analytical expressions for the roots can be obtained. Numerical values are substituted into
Eq. (8.88) to justify the approximation.

In the case where two of the roots are not well separated, then one of the inequalities of
Eq. (8.88) is violated. We can then leave the corresponding terms in quadratic form. For example, sup-
pose that inequality k is not satisfied:

(8.90)

Then an approximate factorization is
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(8.91)

The conditions for accuracy of this approximation are

(8.92)

Complex conjugate roots can be approximated in this manner. 
When the first inequality of Eq. (8.88) is violated, that is,

(8.93)

then the first two roots should be left in quadratic form:

(8.94)

This approximation is justified provided that

(8.95)

If none of the above approximations is justified, then there are three or more roots that are close in mag-
nitude. One must then resort to cubic or higher-order forms.

As an example, consider the damped EMI filter illustrated in Fig. 8.28. Filters such as this are
typically placed at the power input of a converter, to attenuate the switching harmonics present in the
converter input current. By circuit analysis, on can show that this filter exhibits the following transfer
function:

(8.96)

This transfer function contains a third-order denominator, with the following coefficients:
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(8.97)

It is desired to factor the denominator, to obtain analytical expressions for the poles. The correct way to
do this depends on the numerical values of R, L1, L2, and C. When the roots are real and well separated,
then Eq. (8.89) predicts that the denominator can be factored as follows:

(8.98)

According to Eq. (8.88), this approximation is justified provided that

(8.99)

These inequalities cannot be satisfied unless L1 > L2. When L1 > L2, then Eq. (8.99) can be further sim-
plified to

(8.100)

The approximate factorization, Eq. (8.98), can then be further simplified to

(8.101)

Thus, in this case the transfer function contains three well separated real poles. Equations (8.98) and
(8.101) represent approximate analytical factorizations of the denominator of Eq. (8.96). Although
numerical values must be substituted into Eqs. (8.99) or (8.100) to justify the approximation, we can
nonetheless express Eqs. (8.98) and (8.101) as analytical functions of L1, L2, R, and C. Equations (8.98)
and (8.101) are design-oriented, because they yield insight into how the element values can be chosen
such that given specified pole frequencies are obtained.

When the second inequality of Eq. (8.99) is violated,

(8.102)

then the second and third roots should be left in quadratic form:

(8.103)

This expression follows from Eq. (8.91), with k = 2. Equation (8.92) predicts that this approximation is
justified provided that
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L1 + L2

R

a2 = L1C

a3 =
L1L2C

R

1 + s
L1 + L2

R 1 + sRC
L1

L1 + L2
1 + s

L2
R

L1 + L2
R > RC

L1
L1 + L2

>

L2
R

L1
R > RC >

L2
R

1 + s
L1
R 1 + sRC 1 + s
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(8.104)

In application of Eq. (8.92), we take a0 to be equal to 1. The inequalities of Eq. (8.104) can be simplified
to obtain

(8.105)

Note that it is no longer required that RC > L2/R. Equation (8.105) implies that factorization (8.103) can
be further simplified to

(8.106)

Thus, for this case, the transfer function contains a low-frequency pole that is well separated from a high-
frequency quadratic pole pair. Again, the factored result (8.106) is expressed as an analytical function of
the element values, and consequently is design-oriented.

In the case where the first inequality of Eq. (8.99) is violated:

(8.107)

then the first and second roots should be left in quadratic form:

(8.108)

This expression follows directly from Eq. (8.94). Equation (8.95) predicts that this approximation is jus-
tified provided that

(8.109)

that is,

(8.110)

For this case, the transfer function contains a low-frequency quadratic pole pair that is well separated
from a high-frequency real pole. If none of the above approximations are justified, then all three of the
roots are similar in magnitude. We must then find other means of dealing with the original cubic polyno-
mial. Design of input filters, including the filter of Fig. 8.28, is covered in Chapter 10.

8.2 ANALYSIS OF CONVERTER TRANSFER FUNCTIONS

Let us next derive analytical expressions for the poles, zeroes, and asymptote gains in the transfer func-
tions of the basic converters.
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8.2.1 Example: Transfer Functions of the Buck-Boost Converter

The small-signal equivalent circuit model of the buck-boost converter is derived in Section 7.2, with the
result [Fig. 7.16(b)] repeated in Fig. 8.29. Let us derive and plot the control-to-output and line-to-output
transfer functions for this circuit.

The converter contains two independent ac inputs: the control input d(s) and the line input vg(s).
The ac output voltage variations v(s) can be expressed as the superposition of terms arising from these
two inputs:

(8.111)

Hence, the transfer functions Gvd(s) and Gvg(s) can be defined as

(8.112)

To find the line-to-output transfer function Gvg(s), we set the d sources to zero as in Fig. 8.30(a). We can
then push the vg(s) source and the inductor through the transformers, to obtain the circuit of Fig. 8.30(b).
The transfer function Gvg(s) is found using the voltage divider formula:

+
–

+–

L

RC

1 : D D' : 1

vg(s) I d (s) I d (s)

i(s)
(Vg – V) d (s)

+

v(s)

–

Fig. 8.29 Buck-boost converter equivalent circuit derived in Section 7.2.

v(s) = Gvd(s)d (s) + Gvg(s) vg(s)

Gvd(s) =
v(s)
d (s)

vg(s) = 0

and Gvg(s) =
v(s)
vg(s)

d(s) = 0

+
–

L

RC

1 : D D' : 1

vg(s)

+

v(s)

–

+
– RC

+

v(s)

–

L
D'2

vg(s) – D
D'

Fig. 8.30 Manipulation of buck-boost equivalent circuit to find the line-to-output transfer function Gvg(s):
(a) set d sources to zero; (b) push inductor and vg source through transformers.

(a)

(b)
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(8.113)

We next expand the parallel combination, and express as a rational fraction:

(8.114)

We aren’t done yet—the next step is to manipulate the expression into normalized form, such that the
coefficients of s0 in the numerator and denominator polynomials are equal to one. This can be accom-
plished by dividing the numerator and denominator by R:

(8.115)

Thus, the line-to-output transfer function contains a dc gain Gg0 and a quadratic pole pair:

(8.116)

Analytical expressions for the salient features of the line-to-output transfer function are found by equat-
ing like terms in Eqs. (8.115) and (8.116). The dc gain is

(8.117)

By equating the coefficients of s2 in the denominators of Eqs. (8.115) and (8.116), we obtain

(8.118)

Hence, the angular corner frequency is

(8.119)

By equating coefficients of s in the denominators of Eqs. (8.115) and (8.116), we obtain

(8.120)

Elimination of ω0 using Eq. (8.119) and solution for Q leads to
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(8.121)

Equations (8.117), (8.119), and (8.121) are the desired results in the analysis of the line-to-output trans-
fer function. These expressions are useful not only in analysis situations, where it is desired to find
numerical values of the salient features Gg0, ω0, and Q, but also in design situations, where it is desired to
select numerical values for R, L, and C such that given values of the salient features are obtained.

Derivation of the control-to-output transfer function Gvd(s) is complicated by the presence in
Fig. 8.29 of three generators that depend on d(s). One good way to find Gvd(s) is to manipulate the cir-
cuit model as in the derivation of the canonical model, Fig. 7.60. Another approach, used here, employs
the principle of superposition. First, we set the vg source to zero. This shorts the input to the 1:D trans-
former, and we are left with the circuit illustrated in Fig. 8.31(a). Next, we push the inductor and d volt-
age source through the D’:1 transformer, as in Fig. 8.31(b). 

Figure 8.31(b) contains a d-dependent voltage source and a d-dependent current source. The
transfer function Gvd(s) can therefore be expressed as a superposition of terms arising from these two
sources. When the current source is set to zero (i.e., open-circuited), the circuit of Fig. 8.32(a) is
obtained. The output v(s) can then be expressed as

(8.122)

When the voltage source is set to zero (i.e., short-circuited), Fig. 8.31(b) reduces to the circuit illustrated
in Fig. 8.32(b). The output v(s) can then be expressed as

(8.123)

The transfer function Gvd(s) is the sum of Eqs. (8.122) and (8.123):
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+
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Fig. 8.31 Manipulation of buck-boost equivalent circuit to find the control-to-output transfer function Gvd(s):
(a) set vg source to zero; (b) push inductor and voltage source through transformer.
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(8.124)

By algebraic manipulation, one can reduce this expression to

(8.125)

This equation is of the form

(8.126)

The denominators of Eq. (8.125) and (8.115) are identical, and hence Gvd(s) and Gvg(s) share the same ω0
and Q, given by Eqs. (8.119) and (8.121). The dc gain is 

(8.127)

The angular frequency of the zero is found by equating coefficients of s in the numerators of Eqs. (8.125)
and (8.126). One obtains

(8.128)

This zero lies in the right half-plane. Equations (8.127) and (8.128) have been simplified by use of the dc
relationships
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Fig. 8.32 Solution of the model of Fig.
8.32(b) by superposition: (a) current
source set to zero; (b) voltage source set
to zero.
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(8.129)

Equations (8.119), (8.121), (8.127), and (8.128) constitute the results of the analysis of the control-to-
output transfer function: analytical expressions for the salient features ω0, Q, Gd0, and ωz. These expres-
sions can be used to choose the element values such that given desired values of the salient features are
obtained.

Having found analytical expressions for the salient features of the transfer functions, we can
now plug in numerical values and construct the Bode plot. Suppose that we are given the following val-
ues:

(8.130)

We can evaluate Eqs. (8.117), (8.119), (8.121), (8.127), and (8.128), to determine numerical values of the
salient features of the transfer functions. The results are:

(8.131)

The Bode plot of the magnitude and phase of Gvd is constructed in Fig. 8.33. The transfer function con-
tains a dc gain of 45.5 dBV, resonant poles at 400 Hz having a Q of 4 ⇒  12 dB, and a right half-plane
zero at 2.65 kHz. The resonant poles contribute –180˚ to the high-frequency phase asymptote, while the
right half-plane zero contributes –90˚. In addition, the inverting characteristic of the buck-boost con-
verter leads to a 180˚ phase reversal, not included in Fig. 8.33. 

The Bode plot of the magnitude and phase of the line-to-output transfer function Gvg is con-
structed in Fig. 8.34. This transfer function contains the same resonant poles at 400 Hz, but is missing
the right half-plane zero. The dc gain Gg0 is equal to the conversion ratio M(D) of the converter. Again,
the 180˚ phase reversal, caused by the inverting characteristic of the buck-boost converter, is not included
in Fig. 8.34.
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Fig. 8.33 Bode plot of the control-to-output transfer function Gvd, buck-boost converter example. Phase reversal
owing to output voltage inversion is not included.
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Fig. 8.34 Bode plot of the line-to-output transfer function Gvg, buck-boost converter example. Phase reversal
owing to output voltage reversal is not included.
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8.2.2 Transfer Functions of Some Basic CCM Converters

The salient features of the line-to-output and control-to-output transfer functions of the basic buck,
boost, and buck-boost converters are summarized in Table 8.2. In each case, the control-to-output trans-
fer function is of the form

(8.132)

and the line-to-output transfer function is of the form

(8.133)

The boost and buck-boost converters exhibit control-to-output transfer functions containing two poles
and a right half-plane zero. The buck converter Gvg(s) exhibits two poles but no zero. The line-to-output
transfer functions of all three ideal converters contain two poles and no zeroes.

These results can be easily adapted to transformer-isolated versions of the buck, boost, and
buck-boost converters. The transformer has negligible effect on the transfer functions Gvg(s) and Gvd(s),
other than introduction of a turns ratio. For example, when the transformer of the bridge topology is
driven symmetrically, its magnetizing inductance does not contribute dynamics to the converter small-
signal transfer functions. Likewise, when the transformer magnetizing inductance of the forward con-
verter is reset by the input voltage vg, as in Fig. 6.23 or 6.28, then it also contributes negligible dynamics.
In all transformer-isolated converters based on the buck, boost, and buck-boost converters, the line-to-
output transfer function Gvg(s) should be multiplied by the transformer turns ratio; the transfer functions
(8.132) and (8.133) and the parameters listed in Table 8.2 can otherwise be directly applied.

8.2.3 Physical Origins of the Right Half-Plane Zero in Converters

Figure 8.35 contains a block diagram that illustrates the behavior of the right half-plane zero. At low fre-
quencies, the gain (s/ωz) has negligible magnitude, and hence uout ≈ uin. At high frequencies, where the

Table 8.2 Salient features of the small-signal CCM transfer functions of some basic dc–dc converters

Converter Gg0 Gd0 ω0 Q ωz

Buck D ∞

Boost

Buck-boost

V
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1
LC

R C
L

1
D'
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D'

D'
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D'R C
L

D'2R
L
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D'

V
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D'
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D'R C
L

D'2R
DL

Gvd(s) = Gd0

1 – s
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1 + s
Qω0

+ s
ω0

2

Gvg(s) = Gg0
1

1 + s
Qω0

+ s
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2
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magnitude of the gain (s/ωz) is much greater than 1, uout ≈ – (s/ωz)uin. The negative sign causes a phase
reversal at high frequency. The implication for the transient response is that the output initially tends in
the opposite direction of the final value.

We have seen that the control-to-output transfer functions of the boost and buck-boost convert-
ers, Fig. 8.36, exhibit RHP zeroes. Typical transient response waveforms for a step change in duty cycle
are illustrated in Fig. 8.37. For this example, the converter initially operates in equilibrium, at d = 0.4
and d' = 0.6. Equilibrium inductor current iL(t), diode current iD(t), and output voltage v(t) waveforms are
illustrated. The average diode current is

(8.134)

By capacitor charge balance, this average diode current is equal to the dc load current when the converter
operates in equilibrium. At time t = t1, the duty cycle is increased to 0.6. In consequence, d' decreases to
0.4. The average diode current, given by Eq. (8.134), therefore decreases, and the output capacitor begins
to discharge. The output voltage magnitude initially decreases as illustrated.

Fig. 8.35 Block diagram having a right half-plane
zero transfer function, as in Eq. (8.32), with ω0 = ωz.

+
–
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s
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uout(s)uin(s)

Fig. 8.36 Two basic converters whose CCM control-to-output transfer functions exhibit RHP zeroes: (a) boost,
(b) buck-boost.
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The increased duty cycle causes the inductor current to slowly increase, and hence the average
diode current eventually exceeds its original d = 0.4 equilibrium value. The output voltage eventually
increases in magnitude, to the new equilibrium value corresponding to d = 0.6. 

The presence of a right half-plane zero tends to destabilize wide-bandwidth feedback loops,
because during a transient the output initially changes in the wrong direction. The phase margin test for
feedback loop stability is discussed in the next chapter; when a RHP zero is present, it is difficult to
obtain an adequate phase margin in conventional single-loop feedback systems having wide bandwidth.
Prediction of the right half-plane zero, and the consequent explanation of why the feedback loops con-
trolling CCM boost and buck-boost converters tend to oscillate, was one of the early successes of aver-
aged converter modeling.

8.3 GRAPHICAL CONSTRUCTION OF IMPEDANCES AND TRANSFER FUNCTIONS

Often, we can draw approximate Bode diagrams by inspection, without large amounts of messy algebra
and the inevitable associated algebra mistakes. A great deal of insight can be gained into the operation of
the circuit using this method. It becomes clear which components dominate the circuit response at vari-
ous frequencies, and so suitable approximations become obvious. Analytical expressions for the approx-
imate corner frequencies and asymptotes can be obtained directly. Impedances and transfer functions of
quite complicated networks can be constructed. Thus insight can be gained, so that the design engineer

Fig. 8.37 Waveforms of the converters
of Fig. 8.36, for a step response in duty
cycle. The average diode current and out-
put voltage initially decrease, as predicted
by the RHP zero. Eventually, the inductor
current increases, causing the average
diode current and the output voltage to
increase.

t
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t
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can modify the circuit to obtain a desired frequency response.
The graphical construction method, also known as “doing algebra on the graph,” involves use of

a few simple rules for combining the magnitude Bode plots of impedances and transfer functions.

8.3.1 Series Impedances: Addition of Asymptotes

A series connection represents the addition of impedances. If the Bode
diagrams of the individual impedance magnitudes are known, then the
asymptotes of the series combination are found by simply taking the
largest of the individual impedance asymptotes. In many cases, the
result is exact. In other cases, such as when the individual asymptotes
have the same slope, then the result is an approximation; nonetheless,
the accuracy of the approximation can be quite good.

Consider the series-connected R–C network of Fig. 8.38. It is
desired to construct the magnitude asymptotes of the total series imped-
ance Z(s), where

(8.135)

Let us first sketch the magnitudes of the individual impedances. The 10 Ω resistor has an impedance
magnitude of 10 Ω ⇒  20 dBΩ. This value is independent of frequency, and is given in Fig. 8.39. The
capacitor has an impedance magnitude of 1/ωC. This quantity varies inversely with ω, and hence its mag-
nitude Bode plot is a line with slope –20 dB/decade. The line passes through 1 Ω ⇒  0 dBΩ at the angu-
lar frequency ω where

(8.136)

that is, at

(8.137)

Fig. 8.38 Series R–C network
example.

R
10 Ω

C
1 µF

Z(s)

Z(s) = R + 1
sC

Fig. 8.39 Impedance magnitudes of the individual elements in the network of Fig. 8.38.
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In terms of frequency f, this occurs at

(8.138)

So the capacitor impedance magnitude is a line with slope –20 dB/dec, and which passes through 0 dBΩ
at 159 kHz, as shown in Fig. 8.39. It should be noted that, for simplicity, the asymptotes in Fig. 8.39
have been labeled R and 1/ωC. But to draw the Bode plot, we must actually plot dBΩ; for example,
20 log10 (R/1 Ω) and 20 log10 ((1/ωC)/1 Ω).

Let us now construct the magnitude of Z(s), given by Eq. (8.135). The magnitude of Z can be
approximated as follows:

(8.139)

The asymptotes of the series combination are simply the larger of the individual resistor and capacitor
asymptotes, as illustrated by the heavy lines in Fig. 8.40. For this example, these are in fact the exact
asymptotes of || Z ||. In the limiting case of zero frequency (dc), then the capacitor tends to an open cir-
cuit. The series combination is then dominated by the capacitor, and the exact function tends asymptoti-
cally to the capacitor impedance magnitude. In the limiting case of infinite frequency, then the capacitor
tends to a short circuit, and the total impedance becomes simply R. So the R and 1/ωC lines are the exact
asymptotes for this example.

The corner frequency f0, where the asymptotes intersect, can now be easily deduced. At angular
frequency ω0 = 2πf0, the two asymptotes are equal in value:

(8.140)

Solution for ω0 and f0 leads to:

f = ω
2π = 106

2π = 159 kHz

Z( jω) = R + 1
jωC

≈
R for R > 1/ωC

1
ωC for R < 1/ωC

Fig. 8.40 Construction of the composite asymptotes of || Z ||. The asymptotes of the series combination can be
approximated by simply selecting the larger of the individual resistor and capacitor asymptotes.
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(8.141)

So if we can write analytical expressions for the asymptotes, then we can equate the expressions to find
analytical expressions for the corner frequencies where the asymptotes intersect.

The deviation of the exact curve from the asymptotes follows all of the usual rules. The slope of
the asymptotes changes by +20 dB/decade at the corner frequency f0 (i.e., from –20 dBΩ/decade to
0 dBΩ/decade), and hence there is a zero at f = f0. So the exact curve deviates from the asymptotes by
+3 dBΩ at f = f0, and by +1 dBΩ at f = 2f0 and at f = f0/2.

8.3.2 Series Resonant Circuit Example

As a second example, let us construct the magnitude asymptotes
for the series R–L–C circuit of Fig. 8.41. The series impedance Z(s) is 

(8.142)

The magnitudes of the individual resistor, inductor, and capacitor asymp-
totes are plotted in Fig. 8.42, for the values

(8.143)

The series impedance Z(s) is dominated by the capacitor at low frequency,
by the resistor at mid frequencies, and by the inductor at high frequencies,
as illustrated by the bold line in Fig. 8.42. The impedance Z(s) contains a
zero at angular frequency ω1, where the capacitor and resistor asymptotes intersect. By equating the
expressions for the resistor and capacitor asymptotes, we can find ω1:

(8.144)

ω0 = 1
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Fig. 8.41 Series R–L–C
network example.
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Z(s) = R + sL + 1
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Fig. 8.42 Graphical con-
struction of || Z || of the series
R–L–C network of Fig. 8.41,
for the element values speci-
fied by Eq. (8.143).
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A second zero occurs at angular frequency ω2, where the inductor and resistor asymptotes intersect.
Upon equating the expressions for the resistor and inductor asymptotes at ω2, we obtain the following:

(8.145)

So simple expressions for all important features of the magnitude Bode plot of Z(s) can be obtained
directly. It should be noted that Eqs. (8.144) and (8.145) are approximate, rather than exact, expressions
for the corner frequencies ω1 and ω2. Equations (8.144) and (8.145) coincide with the results obtained
via the low-Q approximation of Section 8.1.7.

Next, suppose that the value of R is decreased to 10 Ω. As R is reduced in value, the approxi-
mate corner frequencies ω1 and ω2 move closer together until, at R = 100 Ω, they are both 100 krad/sec.
Reducing R further in value causes the asymptotes to become independent of the value of R, as illustrated
in Fig. 8.43 for R = 10 Ω. The || Z || asymptotes now switch directly from ωL to 1/ωC. 

So now there are two zeroes at ω = ω0. At corner frequency ω0, the inductor and capacitor
asymptotes are equal in value. Hence,

(8.146)

Solution for the angular corner frequency ω0 leads to

(8.147)

At ω = ω0, the inductor and capacitor impedances both have magnitude R0, called the characteristic
impedance. 

Since there are two zeroes at ω = ω0, there is a possibility that the two poles could be complex
conjugates, and that peaking could occur in the vicinity of ω = ω0. So let us investigate what the actual
curve does at ω = ω0. The actual value of the series impedance Z( jω0) is

(8.148)

R = ω2L ⇒ ω2 = R
L
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Fig. 8.43 Graphical construction of impedance asymptotes for the series R–L–C network example, with R
decreased to 10 Ω.
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Substitution of Eq. (8.146) into Eq. (8.147) leads to

(8.149)

At ω = ω0, the inductor and capacitor impedances are equal in magnitude but opposite in phase. Hence,
they exactly cancel out in the series impedance, and we are left with Z( jω0) = R, as illustrated in
Fig. 8.44. The actual curve in the vicinity of the resonance at ω = ω0 can deviate significantly from the
asymptotes, because its value is determined by R rather than ωL or 1/ωC.

We know from Section 8.1.6 that the deviation of the actual curve from the asymptotes at ω =
ω0 is equal to Q. From Fig. 8.44, one can see that

(8.150)

or,

(8.151)

Equations (8.146) to (8.151) are exact results for the series resonant circuit.
The practice of adding asymptotes by simply selecting the larger asymptote can be applied to

transfer functions as well as impedances. For example, suppose that we have already constructed the
magnitude asymptotes of two transfer functions, G1 and G2, and we wish to find the asymptotes of G =
G1 + G2. At each frequency, the asymptote for G can be approximated by simply selecting the larger of
the asymptotes for G1 and G2:

(8.152)

Corner frequencies can be found by equating expressions for asymptotes as illustrated in the preceding
examples. In the next chapter, we will see that this approach yields a simple and powerful method for
determining the closed-loop transfer functions of feedback systems.

Z( jω0) = R + jR0 +
R0

j
= R + jR0 – jR0 = R

Fig. 8.44 Actual impedance magnitude (solid line) for the series resonant R–L–C example. The inductor and
capacitor impedances cancel out at f = f0, and hence Z(jω0) = R.
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8.3.3 Parallel Impedances: Inverse Addition of Asymptotes

A parallel combination represents inverse addition of impedances:

(8.153)

If the asymptotes of the individual impedances Z1, Z2, …, are known, then the asymptotes of the parallel
combination Zpar can be found by simply selecting the smallest individual impedance asymptote. This is
true because the smallest impedance will have the largest inverse, and will dominate the inverse sum. As
in the case of the series impedances, this procedure will often yield the exact asymptotes of Zpar.

Let us construct the magnitude asymptotes for the parallel
R–L–C network of Fig. 8.45, using the following element values:

(8.154)

Impedance magnitudes of the individual elements are illustrated in
Fig. 8.46. The asymptotes for the total parallel impedance Z are
approximated by simply selecting the smallest individual element
impedance, as shown by the heavy line in Fig. 8.46. So the parallel impedance is dominated by the
inductor at low frequency, by the resistor at mid frequencies, and by the capacitor at high frequency.
Approximate expressions for the angular corner frequencies are again found by equating asymptotes:

(8.155)

These expressions could have been obtained by conventional analysis, combined with the low-Q approx-
imation of Section 8.1.7.

Z par = 1
1
Z1

+ 1
Z2

+

Z(s) R L C

Fig. 8.45 Parallel R–L–C network
example.

R = 10 Ω
L = 1 mH
C = 0.1 µF
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Fig. 8.46 Construction of
the composite asymptotes of
|| Z ||, for the parallel R–L–C
example. The asymptotes of
the parallel combination can
be approximated by simply
selecting the smallest of the
individual resistor, inductor,
and capacitor asymptotes.

at ω = ω1, R = ω1L ⇒ ω1 = R
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8.3.4 Parallel Resonant Circuit Example

Figure 8.47 illustrates what happens when the value of R in the parallel R–L–C network is increased to
1 kΩ. The asymptotes for || Z || then become independent of R, and change directly from ωL to 1/ωC at
angular frequency ω0. The corner frequency ω0 is now the frequency where the inductor and capacitor
asymptotes have equal value:

(8.156)

which implies that

(8.157)

At ω = ω0, the slope of the asymptotes of || Z || changes from +20 dB/decade to –20 dB/decade, and
hence there are two poles. We should investigate whether peaking occurs, by determining the exact value
of || Z || at ω = ω0, as follows:

(8.158)

Substitution of Eq. (8.156) into (8.158) yields

(8.159)

So at ω = ω0, the impedances of the inductor and capacitor again cancel out, and we are left with
Z( jω0) = R. The values of L and C determine the values of the asymptotes, but R determines the value of
the actual curve at ω = ω0.

The actual curve is illustrated in 8.48. The deviation of the actual curve from the asymptotes at
ω = ω0 is

ω0L = 1
ω0C

= R0

ω0 = 1
LC
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Fig. 8.47 Graphical construc-
tion of impedance asymptotes
for the parallel R–L–C example,
with R increased to 1 kΩ.
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(8.160)

or,

(8.161)

Equations (8.156) to (8.161) are exact results for the parallel resonant circuit.
The graphical construction method for impedance magnitudes is well known, and reactance

paper can be purchased commercially. As illustrated in Fig. 8.49, the magnitudes of the impedances of
various inductances, capacitances, and resistances are plotted on semilogarithmic axes. Asymptotes for
the impedances of R–L–C networks can be sketched directly on these axes, and numerical values of cor-
ner frequencies can then be graphically determined.
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magnitude (solid line) for the
parallel R–L–C example. The
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ances cancel out at f = f0, and
hence Z( jω0) = R.
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8.3.5 Voltage Divider Transfer Functions: Division of Asymptotes

Usually, we can express transfer functions in terms of impedances—for example, as the ratio of two
impedances. If we can construct these impedances as described in the previous sections, then we can
divide to construct the transfer function. In this section, construction of the transfer function H(s) of the
two-pole R–L–C low-pass filter (Fig. 8.50) is discussed in detail. A filter of this form appears in the
canonical model for two-pole converters, and the results of this section are applied in the converter exam-
ples of the next section.

The familiar voltage divider formula shows that the transfer function of this circuit can be
expressed as the ratio of impedances Z2/Zin, where Zin = Z1 + Z2 is the network input impedance:

(8.162)

For this example, Z1(s) = sL, and Z2(s) is the parallel combination of R and 1/sC. Hence, we can find the
transfer function asymptotes by constructing the asymptotes of Z2 and of the series combination repre-
sented by Zin, and then dividing. Another approach, which is easier to apply in this example, is to multi-
ply the numerator and denominator of Eq. (8.162) by Z1:
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Zinv1(s)

L C R
Zout

Z2Z1

{ {
L

C R

Z2Z1

{ {

Zin

Fig. 8.50 Two-pole low-pass filter based on voltage divider circuit: (a) transfer function H(s), (b) determination
of Zout, by setting independent sources to zero, (c) determination of Zin(s).
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(8.163)

where Zout = Z1 || Z2 is the output impedance of the voltage divider. So another way to construct the volt-
age divider transfer function is to first construct the asymptotes for Z1 and for the parallel combination
represented by Zout, and then divide. This method is useful when the parallel combination Z1 || Z2 is eas-
ier to construct than the series combination Z1 + Z2. It often gives a different approximate result, which
may be more (or sometimes less) accurate than the result obtained using Zin.

The output impedance Zout in Fig. 8.50(b) is

(8.164)

The impedance of the parallel R–L–C network is constructed in Section 8.3.3, and is illustrated in
Fig. 8.51(a) for the high-Q case.

According to Eq. (8.163), the voltage divider transfer function magnitude is || H || = || Zout ||/
|| Z1 ||. This quantity is constructed in Fig. 8.51(b). For ω < ω0, the asymptote of || Zout || coincides with
|| Z1 ||: both are equal to ωL. Hence, the ratio is || Zout ||/ || Z1 || = 1. For ω > ω0, the asymptote of || Zout || is
1/ωC, while || Z1 || is equal to ωL. The ratio then becomes || Zout ||/ || Z1 || = 1/ω2LC, and hence the high-
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Zout(s) = R || 1
sC || sL

Fig. 8.51 Graphical construction of H and Zout of
the voltage divider circuit: (a) output impedance
Zout; (b) transfer function H.
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frequency asymptote has a –40 dB/decade slope. At ω = ω0, || Zout || has exact value R, while || Z1 || has
exact value R0. The ratio is then || H( jω0) || = || Zout( jω0) ||/ || Z1( jω0) || = R/R0 = Q. So the filter transfer
function H has the same ω0 and Q as the impedance Zout.

It now becomes obvious how variations in element values affect the salient features of the trans-
fer function and output impedance. For example, the effect of increasing L is illustrated in Fig. 8.52. This
causes the angular resonant frequency ω0 to be reduced, and also reduces the Q-factor.

8.4 GRAPHICAL CONSTRUCTION OF CONVERTER TRANSFER FUNCTIONS

The small-signal equivalent circuit model of the buck converter, derived in Chapter 7, is reproduced in
Fig. 8.53. Let us construct the transfer functions and terminal impedances of this converter, using the
graphical approach of the previous section.

The output impedance Zout(s) is found with the d(s) and vg(s) sources set to zero; the circuit of
Fig. 8.54(a) is then obtained. This model coincides with the parallel R–L–C circuit analyzed in Sections
8.3.3 and 8.3.4. As illustrated in Fig. 8.54(b), the output impedance is dominated by the inductor at low
frequency, and by the capacitor at high frequency. At the resonant frequency f0, given by

(8.165)

the output impedance is equal to the load resistance R. The Q-factor of the circuit is equal to 
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Fig. 8.53 Small-signal model of the buck converter, with input impedance Zin(s) and output impedance Zout(s)
explicitly defined.
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Fig. 8.54 Construction of buck converter output impedance Zout(s): (a) circuit model; (b) impedance asymptotes.
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(8.166)

where

(8.167)

Thus, the circuit is lightly damped (high Q) at light load, where the value of R is large.
The converter input impedance Zin(s) is also found with the d(s) and vg(s) sources set to zero, as

illustrated in Fig. 8.55(a). The input impedance is referred to the primary side of the 1:D transformer, and
is equal to

(8.168)
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Fig. 8.55 Construction of the input impedance
Zin(s) for the buck converter: (a) circuit model;
(b) the individual resistor, inductor, and capacitor
impedance magnitudes; (c) construction of the
impedance magnitudes || Z1 || and || Z2 ||; (d) con-
struction of || Zout ||; (e) final result || Zin ||.
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(8.169)

and

(8.170)

We begin construction of the impedance asymptotes corresponding to Eqs. (8.168) to (8.170) by con-
structing the individual resistor, capacitor, and inductor impedances as in Fig. 8.55(b). The impedances
in Fig. 8.55 are constructed for the case R > R0. As illustrated in Fig. 8.55(c), || Z1 || coincides with the
inductor reactance ωL. The impedance || Z2 || is asymptotic to resistance R at low frequencies, and to the
capacitor reactance 1/ωC at high frequency. The resistor and capacitor asymptotes intersect at corner fre-
quency f1, given by

(8.171)

According to Eq. (8.168), the input impedance Zin(s) is equal to the series combination of Z1(s) and Z2(s),
divided by the square of the turns ratio D. The asymptotes for the series combination [Z1(s) + Z2(s)] are
found by selecting the larger of the || Z1 || and || Z2 || asymptotes. The || Z1 || and || Z2 || asymptotes inter-
sect at frequency f0, given by Eq. (8.165). It can be seen from Fig. 8.55(c) that the series combination is
dominated by Z2 for f < f0, and by Z1 for f > f0. Upon scaling the [Z1(s) + Z2(s)] asymptotes by the factor
1/D2, the input impedance asymptotes of Fig. 8.55(e) are obtained.

 The zeroes of Zin(s), at frequency f0, have the same Q-factor as the poles of Zout(s) [Eq. (8.166)].
One way to see that this is true is to note that the output impedance can be expressed as

(8.172)

Hence, we can relate Zout(s) to Zin(s) as follows:

(8.173)

The impedances || Z1 ||, || Z2 ||, and || Zout || are illustrated in Fig. 8.55(d). At the resonant frequency f = f0,
impedance Z1 has magnitude R0 and impedance Z2 has magnitude approximately equal to R0. The output
impedance Zout has magnitude R. Hence, Eq. (8.173) predicts that the input impedance has the magnitude

(8.174)

At f = f0, the asymptotes of the input impedance have magnitude R0/D2. The deviation from the asymp-
totes is therefore equal to Q = R/R0, as illustrated in Fig. 8.55(e).

The control-to-output transfer function Gvd(s) is found with the vg(s) source set to zero, as in
Fig. 8.56(a). This circuit coincides with the voltage divider analyzed in Section 8.3.5. Hence, Gvd(s) can
be expressed as

(8.175)
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The quantities || Zout || and || Z1 || are constructed in Fig. 8.56(b). According to Eq. (8.175), we can con-
struct || Gvd(s) || by finding the ratio of || Zout || and || Z1 ||, and then scaling the result by Vg. For f < f0,
|| Zout || and || Z1 || are both equal to ωL and hence || Zout || / || Z1 || is equal to 1. As illustrated in Fig.
8.56(c), the low-frequency asymptote of || Gvd(s) || has value Vg. For f > f0, || Zout || has asymptote 1/ωC,
and || Z1 || is equal to ωL. Hence, || Zout || / || Z1 || has asymptote 1/ω2LC, and the high-frequency asymp-
tote of || Gvd(s) || is equal to Vg/ω

2LC. The Q-factor of the two poles at f = f0 is again equal to R/R0. 
The line-to-output transfer function Gvg(s) is found with the d(s) sources set to zero, as in Fig.

8.57(a). This circuit contains the same voltage divider as in Fig. 8.56, and additionally contains the 1:D
transformer. The transfer function Gvg(s) can be expressed as
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Fig. 8.56 Construction of the control-to-output
transfer function Gvd(s) for the buck converter:
(a) circuit model; (b) relevant impedance asymptotes;
(c) transfer function  || Gvd(s) ||.
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(8.176)

This expression is similar to Eq. (8.175), except for the scaling factor of D. Therefore, the line-to-output
transfer function of Fig. 8.57(b) has the same shape as the control-to-output transfer function Gvd(s).

8.5 MEASUREMENT OF AC TRANSFER FUNCTIONS AND IMPEDANCES

It is good engineering practice to measure the transfer functions of prototype converters and converter
systems. Such an exercise can verify that the system has been correctly modeled and designed. Also, it is
often useful to characterize individual circuit elements through measurement of their terminal imped-
ances.

Small-signal ac magnitude and phase measurements can be made using an instrument known as
a network analyzer, or frequency response analyzer. The key inputs and outputs of a basic network ana-
lyzer are illustrated in Fig. 8.58. The network analyzer provides a sinusoidal output voltage vz of con-
trollable amplitude and frequency. This signal can be injected into the system to be measured, at any
desired location. The network analyzer also has two (or more) inputs, vx and vy. The return electrodes of
vz, vy, and vx are internally connected to earth ground. The network analyzer performs the function of a
narrowband tracking voltmeter: it measures the components of vx and vy at the injection frequency, and
displays the magnitude and phase of the quantity vy/vx. The narrowband tracking voltmeter feature is
essential for switching converter measurements; otherwise, switching ripple and noise corrupt the
desired sinusoidal signals and make accurate measurements impossible [3]. Modern network analyzers
can automatically sweep the frequency of the injection source vz to generate magnitude and phase Bode
plots of the transfer function vy/vx.

A typical test setup for measuring the transfer function of an amplifier is illustrated in
Fig. 8.59. A potentiometer, connected between a dc supply voltage VCC and ground, is used to bias the

Gvg(s) = D
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Z1(s)
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– 134.7˚
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Fig. 8.58 Key features and functions of a network analyzer: sinusoidal source of controllable amplitude and fre-
quency, two inputs, and determination of relative magnitude and phase of the input components at the injection fre-
quency.



318 Converter Transfer Functions

amplifier input to attain the correct quiescent operating point. The injection source voltage vz is coupled
to the amplifier input terminals via a dc blocking capacitor. This blocking capacitor prevents the injection
voltage source from upsetting the dc bias. The network analyzer inputs vx and vy are connected to the
input and output terminals of the amplifier. Hence, the measured transfer function is

(8.177)

Note that the blocking capacitance, bias potentiometer, and vz amplitude have no effect on the measured
transfer function

An impedance

(8.178)

can be measured by treating the impedance as a transfer function from current to voltage. For example,
measurement of the output impedance of an amplifier is illustrated in Fig. 8.60. The quiescent operating
condition is again established by a potentiometer which biases the amplifier input. The injection source
vz is coupled to the amplifier output through a dc blocking capacitor. The injection source voltage vz
excites a current iout in impedance Zs. This current flows into the output of the amplifier, and excites a
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Fig. 8.59 Measurement of a transfer function.
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voltage across the amplifier output impedance:

(8.179)

A current probe is used to measure iout. The current probe produces a voltage proportional to iout; this
voltage is connected to the network analyzer input vx. A voltage probe is used to measure the amplifier
output voltage vy. The network analyzer displays the transfer function vy/vx, which is proportional to Zout.
Note that the value of Zs and the amplitude of vz do not affect the measurement of Zout.

In power applications, it is sometimes necessary to measure impedances that are very small in
magnitude. Grounding problems[4] cause the test setup of Fig. 8.60 to fail in such cases. The reason is
illustrated in Fig. 8.61(a). Since the return connections of the injection source vz and the analyzer input vy
are both connected to earth ground, the injected current iout can return to the source through the return
connections of either the injection source or the voltage probe. In practice, iout divides between the two
paths according to their relative impedances. Hence, a significant current (1 – k) iout flows through the
return connection of the voltage probe. If the voltage probe return connection has some total contact and
wiring impedance Zprobe, then the current induces a voltage drop (1 – k)ioutZprobe in the voltage probe wir-
ing, as illustrated in Fig. 8.61(a). Hence, the network analyzer does not correctly measure the voltage
drop across the impedance Z. If the internal ground connections of the network analyzer have negligible
impedance, then the network analyzer will display the following impedance:

(8.180)

Here, Zrz is the impedance of the injection source return connection. So to obtain an accurate measure-
ment, the following condition must be satisfied:

(8.181)
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Fig. 8.60 Measurement of the output impedance of a circuit.

Z + (1 – k)Z probe = Z + Z probe||Zrz

Z > Z probe||Zrz
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Fig. 8.61 Measurement of a small impedance Z(s): (a) current flowing in the return connection of the voltage
probe induces a voltage drop that corrupts the measurement; (b) an improved experiment, incorporating isolation of
the injection source.
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A typical lower limit on || Z || is a few tens or hundreds of milliohms.
An improved test setup for measurement of small impedances is illustrated in Fig. 8.61(b). An

isolation transformer is inserted between the injection source and the dc blocking capacitor. The return
connections of the voltage probe and injection source are no longer in parallel, and the injected current
iout must now return entirely through the injection source return connection. An added benefit is that the
transformer turns ratio n can be increased, to better match the injection source impedance to the imped-
ance under test. Note that the impedances of the transformer, of the blocking capacitor, and of the probe
and injection source return connections, do not affect the measurement. Much smaller impedances can
therefore be measured using this improved approach.

8.6 SUMMARY OF KEY POINTS

1. The magnitude Bode diagrams of functions which vary as (f/f0)
n have slopes equal to 20n dB per decade,

and pass through 0 dB at f = f0.

2. It is good practice to express transfer functions in normalized pole-zero form; this form directly exposes
expressions for the salient features of the response, that is, the corner frequencies, reference gain, etc.

3. The right half-plane zero exhibits the magnitude response of the left half-plane zero, but the phase
response of the pole.

4. Poles and zeroes can be expressed in frequency-inverted form, when it is desirable to refer the gain to a
high-frequency asymptote.

5. A two-pole response can be written in the standard normalized form of Eq. (8.58). When Q > 0.5, the poles
are complex conjugates. The magnitude response then exhibits peaking in the vicinity of the corner fre-
quency, with an exact value of Q at f = f0. High Q also causes the phase to change sharply near the corner
frequency.

6. When Q is less than 0.5, the two pole response can be plotted as two real poles. The low-Q approximation
predicts that the two poles occur at frequencies f0/Q and Qf0. These frequencies are within 10% of the
exact values for Q ≤ 0.3.

7. The low-Q approximation can be extended to find approximate roots of an arbitrary degree polynomial.
Approximate analytical expressions for the salient features can be derived. Numerical values are used to
justify the approximations.

8. Salient features of the transfer functions of the buck, boost, and buck-boost converters are tabulated in
Section 8.2.2. The line-to-output transfer functions of these converters contain two poles. Their control-to-
output transfer functions contain two poles, and may additionally contain a right half-plane zero.

9. Approximate magnitude asymptotes of impedances and transfer functions can be easily derived by graphi-
cal construction. This approach is a useful supplement to conventional analysis, because it yields physical
insight into the circuit behavior, and because it exposes suitable approximations. Several examples, includ-
ing the impedances of basic series and parallel resonant circuits and the transfer function H(s) of the volt-
age divider circuit, are worked in Section 8.3. The input impedance, output impedance, and transfer
functions of the buck converter are constructed in Section 8.4, and physical origins of the asymptotes, cor-
ner frequencies, and Q-factor are found.

10. Measurement of transfer functions and impedances using a network analyzer is discussed in Section 8.5.
Careful attention to ground connections is important when measuring small impedances.
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PROBLEMS

8.1 Express the gains represented by the asymptotes of Figs. 8.62(a) to (c) in factored pole-zero form. You
may assume that all poles and zeroes have negative real parts.

8.2 Express the gains represented by the asymptotes of Figs. 8.63(a) to (c) in factored pole-zero form. You
may assume that all poles and zeroes have negative real parts.

8.3 Derive analytical expressions for the low-frequency asymptotes of the magnitude Bode plots shown in
Fig. 8.63(a) to (c).

8.4 Derive analytical expressions for the three magnitude asymptotes of Fig. 8.16.
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–20 dB/decade

–20 dB/decade
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Fig. 8.62 Gain asymptotes for Problem 8.1.
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8.5 An experimentally measured transfer function. Figure 8.64 contains experimentally measured magni-
tude and phase data for the gain function A(s) of a certain amplifier. The object of this problem is to find
an expression for A(s). Overlay asymptotes as appropriate on the magnitude and phase data, and hence
deduce numerical values for the gain asymptotes and corner frequencies of A(s). Your magnitude and
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–40 dB/decade
f2
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Fig. 8.63 Gain asymptotes for Problems 8.2 and 8.3.
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Fig. 8.64 Experimentally-measured magnitude and phase data, Problem 8.5.
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phase asymptotes must, of course, follow all of the rules: magnitude slopes must be multiples of ±20 dB
per decade, phase slopes for real poles must be multiples of ±45˚ per decade, etc. The phase and magni-
tude asymptotes must be consistent with each other.

It is suggested that you start by guessing A(s) based on the magnitude data. Then construct the
phase asymptotes for your guess, and compare them with the given data. If there are discrepancies, then
modify your guess accordingly and redo your magnitude and phase asymptotes. You should turn in: (1)
your analytical expression for A(s), with numerical values given, and (2) a copy of Fig. 8.64, with your
magnitude and phase asymptotes superimposed and with all break frequencies and slopes clearly
labeled.

8.6 An experimentally-measured impedance. Figure 8.65 contains experimentally measured magnitude and
phase data for the driving-point impedance Z(s) of a passive network. The object of this problem is the
find an expression for Z(s). Overlay asymptotes as appropriate on the magnitude and phase data, and
hence deduce numerical values for the salient features of the impedance function. You should turn in: (1)
your analytical expression for Z(s), with numerical values given, and (2) a copy of Fig. 8.65, with your
magnitude and phase asymptotes superimposed and with all salient features and asymptote slopes
clearly labeled.

8.7 In Section 7.2.9, the small-signal ac model of a nonideal flyback converter is derived, with the result
illustrated in Fig. 7.27. Construct a Bode plot of the magnitude and phase of the converter output
impedance Zout(s). Give both analytical expressions and numerical values for all important features in
your plot. Note: Zout(s) includes the load resistance R. The element values are: D = 0.4, n = 0.2, R = 6 Ω,
L = 600 µH, C = 100 µF, Ron = 5 Ω.

8.8 For the nonideal flyback converter modeled in Section 7.2.9:

(a) Derive analytical expressions for the control-to-output and line-to-output transfer functions
Gvd(s) and Gvg(s). Express your results in standard normalized form.

(b) Derive analytical expressions for the salient features of these transfer functions.

(c) Construct the magnitude and phase Bode plots of the control-to-output transfer function, using
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Fig. 8.65 Impedance magni-
tude and phase data, Problem
8.6.
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the following values: n = 2, Vg = 48 V, D = 0.3, R = 5 Ω, L = 250 µH, C = 100 µF, Ron = 1.2 Ω.
Label the numerical values of the constant asymptotes, all corner frequencies, the Q-factor, and
asymptote slopes.

8.9 Magnitude Bode diagram of an R–L–C filter circuit. For the filter circuit of Fig. 8.66, construct the Bode
plots for the magnitudes of the Thevenin-equivalent output impedance Zout and the transfer function H(s)
= v2/v1. Plot your results on semilog graph paper. Give approximate analytical expressions and numeri-
cal values for the important corner frequencies and asymptotes. Do all of the elements significantly
affect Zout and H?

8.10 Operational amplifier filter circuit. The op amp circuit shown in Fig. 8.67 is a practical realization of
what is known as a PID controller, and is sometimes used to modify the loop gain of feedback circuits to
improve their performance. Using semilog graph paper, sketch the Bode diagram of the magnitude of the
transfer function v2(s)/v1(s) of the circuit shown. Label all corner frequencies, flat asymptote gains, and
asymptote slopes, as appropriate, giving both analytical expressions and numerical values. You may
assume that the op amp is ideal.

8.11 Phase asymptotes. Construct the phase asymptotes for the transfer function v2(s)/v1(s) of Problem 8.10.
Label all break frequencies, flat asymptotes, and asymptote slopes.

8.12 Construct the Bode diagram for the magnitude of the output impedance Zout of the network shown in Fig.
8.68. Give suitable analytical expressions for each asymptote, corner frequency, and Q-factor, as appro-
priate. Justify any approximations that you use.
The component values are:

L1 =100 µH L2 = 16 mH

C1 = 1000 µF C2 = 10 µF

R1 = 5 Ω R2 = 50 Ω

+
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+
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Fig. 8.66 Filter circuit of Problem 8.9.
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Fig. 8.67 Op-amp PID controller circuit, Problem 8.10.
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8.13 The two section input filter in the circuit of Fig. 8.69 should be designed such that its output impedance
 meets certain input filter design criteria, and hence it is desirable to construct the Bode plot

for the magnitude of Zs. Although this filter contains six reactive elements, || Zs || can nonetheless be con-
structed in a relatively straightforward manner using graphical construction techniques. The element val-
ues are:

L1 = 32 mH C1 = 32 µF

L2 = 400 µH C2 = 6.8 µF

L3 = 800 µH R1 = 10 Ω
L4 = 1 µH R2 = 1 Ω

(a) Construct || Zs || using the “algebra on the graph” method. Give simple approximate analytical
expressions for all asymptotes and corner frequencies.

(b) It is desired that || Zs || be approximately equal to 5 Ω at 500 Hz and 2.5 Ω at 1 kHz. Suggest a
simple way to accomplish this by changing the value of one component.

8.14 Construct the Bode plot of the magnitude of the output impedance of the filter illustrated in Fig.
Fig. 8.70. Give approximate analytical expressions for each corner frequency. No credit will be given
for computer-generated plots.

8.15 A certain open-loop buck-boost converter contains an input filter. Its small-signal ac model is shown in
Fig. 8.71, and the element values are specified below. Construct the Bode plot for the magnitude of the
converter output impedance || Zout(s) ||. Label the values of all important corner frequencies and asymp-
totes.

D = 0.6 Lf = 150 µH

R = 6 Ω Cf = 16 µF

C = 0.33 µF Cb = 2200 µF

L = 25 µH Rf = 1 Ω

+
–v1

Zout
R1

R2

C2

L1

C1

L2

Fig. 8.68 Filter network of Problem 8.12.

Zout vg 0=

+
–vg

Zs

R1

C2

L1

C1

R2L2

L3

L4

Fig. 8.69 Input filter circuit of Problem 8.13.
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8.16 The small-signal equations of the Watkins-Johnson converter operating in continuous conduction mode
are:

(a) Derive analytical expressions for the line-to-output transfer function Gvg(s) and the control-to-
output transfer function Gvd(s).

(b) Derive analytical expressions for the salient features (dc gains, corner frequencies, and Q-fac-
tors) of the transfer functions Gvg(s) and Gvd(s). Express your results as functions of Vg, D, R, L,
and C.

(c) The converter operates at Vg = 28 V, D = 0.25, R = 28 Ω, C = 100 µF, L = 400 µF. Sketch the
Bode diagram of the magnitude and phase of Gvd(s). Label salient features.

8.17 The element values in the buck converter of Fig. 7.68 are:

Vg = 120 V D = 0.6

R = 10 Ω Rg = 2 Ω
L = 550 µH C = 100 µF

(a) Determine an analytical expression for the control-to-output transfer function Gvg(s) of this con-
verter.

(b) Find analytical expressions for the salient features of Gvg(s).

(c) Construct magnitude and phase asymptotes for Gvg. Label the numerical values of all slopes and
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Fig. 8.70 Input filter circuit of Problem 8.14.
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Fig. 8.71 Small-signal model of a buck converter with input filter, Problem 8.15.
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di(t)
dt

= – Dv(t) + (2Vg – V)d (t) + (D – D')vg(t)

C
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= Di(t) –
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R
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other important features.

8.18 Loss mechanisms in capacitors, such as dielectric loss and contact and foil resistance, can be modeled
electrically using an equivalent series resistance (esr). Capacitors whose dielectric materials exhibit a
high dielectric constant, such as electrolytic capacitors, tantalum capacitors, and some types of multi-
layer ceramic capacitors, typically exhibit relatively high esr.

A buck converter contains a 1.6 mH inductor, and operates with a quiescent duty cycle of 0.5. Its
output capacitor can be modeled as a 16 µF capacitor in series with a 0.2 Ω esr. The load resistance is
10 Ω. The converter operates in continuous conduction mode. The quiescent input voltage is Vg = 120 V.

(a) Determine an analytical expression for the control-to-output transfer function Gvg(s) of this con-
verter.

(b) Find analytical expressions for the salient features of Gvg(s).

(c) Construct magnitude and phase asymptotes for Gvg. Label the numerical values of all slopes and
other important features.

8.19 The LCC resonant inverter circuit contains the following transfer function:

(a) When C1 is sufficiently large, this transfer function can be expressed as an inverted pole and a
quadratic pole pair. Derive analytical expressions for the corner frequencies and Q-factor in this
case, and sketch typical magnitude asymptotes. Determine analytical conditions for validity of
your approximation.

(b) When C2 is sufficiently large, the transfer function can be also expressed as an inverted pole and
a quadratic pole pair. Derive analytical expressions for the corner frequencies and Q-factor in
this case, and sketch typical magnitude asymptotes. Determine analytical conditions for validity
of your approximation in this case.

(c) When C1 = C2 and when the quadratic poles have sufficiently high Q, then the transfer function
can again be expressed as an inverted pole and a quadratic pole pair. Derive analytical expres-
sions for the corner frequencies and Q-factor in this case, and sketch typical magnitude asymp-
totes. Determine analytical conditions for validity of your approximation in this case.

8.20 A two-section L–C filter has the following transfer function:

The element values are:

R = 50 mΩ
C1 = 680 µF C2 = 4.7 µF

L1 = 500 µH L2 = 50 µH

(a) Factor G(s) into approximate real and quadratic poles, as appropriate. Give analytical expres-
sions for the salient features. Justify your approximation using the numerical element values.

(b) Construct the magnitude and phase asymptotes of G(s).

(c) It is desired to reduce the Q to 2, without significantly changing the corner frequencies or other
features of the response. It is possible to do this by changing only two element values. Specify
how to accomplish this.

8.21 The boost converter of Fig. 8.72 operates in the continuous conduction mode, with quiescent duty cycle

H(s) =
sC1R

1 + sR(C1 + C2) + s2LC1 + s3LC1C2R

G(s) = 1

1 + s
L1 + L2

R + s2 L1 C1 + C2 + L2C2 + s3 L1L2C1
R + s4 L1L2C1C2
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D = 0.6. On semi-log axes, construct the magnitude and phase Bode plots of

(a) the control-to-output transfer function Gvd(s),

(b) the line-to-output transfer function Gvg(s),

(c) the output impedance Zout(s), and

(d) the input impedance Zin(s).

On each plot, label the corner frequencies and asymptotes.

8.22 The forward converter of Fig. 8.73 operates in the continuous conduction mode, with the quiescent val-
ues Vg = 380 V and V = 28 V. The transformer turns ratio is n1/n3 = 4.5. On semi-log axes, construct the
magnitude and phase Bode plots of

(a) the control-to-output transfer function Gvd(s), and

(b) the line-to-output transfer function Gvg(s).

On each plot, label the corner frequencies and asymptotes. Hint: other than introduction of the turns 
ratio n1/n3, the transformer does not significantly affect the small-signal behavior of the forward con-
verter.

8.23 The boost converter of Fig. 8.74 operates in the continuous conduction mode, with the following quies-
cent values: Vg = 120 V, V = 300 V. It is desired to control the converter input current waveform, and
hence it is necessary to determine the small-signal transfer function
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Fig. 8.72 Boost converter of
Problem 8.21.
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d Fig. 8.73 Forward converter of Problem 8.22.
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(a) Derive an analytical expression for Gid(s). Express all poles and zeroes in normalized standard
form, and give analytical expressions for the corner frequencies, Q-factor, and dc gain.

(b) On semi-log axes, construct the Bode plot for the magnitude and phase of Gid(s).

8.24 The buck-boost converter of Fig. 8.75 operates in the continuous conduction mode, with the following
quiescent values: Vg = 48 V, V = –24 V. On semi-log axes, construct the magnitude and phase Bode plots
of:

(a) the control-to-output transfer function Gvd(s), and

(b) the output impedance Zout(s).

On each plot, label the corner frequencies and asymptotes as appropriate.
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Fig. 8.74 Boost converter of
Problem 8.23.
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