
Attia, John Okyere. “Control Statements .”
Electronics and Circuit Analysis using MATLAB.
Ed. John Okyere Attia
Boca Raton: CRC Press LLC, 1999

© 1999 by CRC PRESS LLC

CHAPTER THREE

CONTROL STATEMENTS

3.1 FOR LOOPS

“FOR” loops allow a statement or group of statements to be repeated a fixed
number of times. The general form of a for loop is

for index = expression
 statement group X
end

The expression is a matrix and the statement group X is repeated as many
times as the number of elements in the columns of the expression matrix. The
index takes on the elemental values in the matrix expression. Usually, the ex-
pression is something like

m:n or m:i:n

where m is the beginning value, n the ending value, and i is the increment.

Suppose we would like to find the squares of all the integers starting from 1 to
100. We could use the following statements to solve the problem:

sum = 0;
for i = 1:100
 sum = sum + i^2;
end
sum

For loops can be nested, and it is recommended that the loop be indented for
readability. Suppose we want to fill 10-by-20 matrix, b, with an element value
equal to unity, the following statements can be used to perform the operation.

%
n = 10; % number of rows
m = 20; % number of columns
for i = 1:n
 for j = 1:m
 b(i,j) = 1; % semicolon suppresses printing in the loop
 end
end

© 1999 CRC Press LLC

© 1999 CRC Press LLC

b % display the result
%

It is important to note that each for statement group must end with the word
end. The following program illustrates the use of a for loop.

Example 3.1

The horizontal displacement x t() and vertical displacement y t() are given
with respect to time, t, as

x t t
y t t
()
() sin()

=
=

2

For t = 0 to 10 ms, determine the values of x t() and y t() . Use the values to
plot x t() versus y t() .

Solution:

MATLAB Script

%
for i= 0:10
 x(i+1) = 2*i;
 y(i+1) = 2*sin(i);
end
plot(x,y)

Figure 3.1 shows the plots of x t() and y t() .

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Figure 3.1 Plot of x versus y.

3.2 IF STATEMENTS

IF statements use relational or logical operations to determine what steps to
perform in the solution of a problem. The relational operators in MATLAB
for comparing two matrices of equal size are shown in Table 3.1.

Table 3.1
Relational Operators

RELATIONAL
OPERATOR

MEANING

< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
~= not equal

© 1999 CRC Press LLC

© 1999 CRC Press LLC

When any of the above relational operators are used, a comparison is done be-
tween the pairs of corresponding elements. The result is a matrix of ones and
zeros, with one representing TRUE and zero FALSE. For example, if

a = [1 2 3 3 3 6];
b = [1 2 3 4 5 6];
a == b

The answer obtained is

ans =
 1 1 1 0 0 1

The 1s indicate the elements in vectors a and b that are the same and 0s are the
ones that are different.

There are three logical operators in MATLAB. These are shown in Table 3.2.

Table 3.2
Logical Operators

LOGICAL OPERATOR
SYMBOL

MEANING

& and
! or
~ not

Logical operators work element-wise and are usually used on 0-1 matrices,
such as those generated by relational operators. The & and ! operators com-
pare two matrices of equal dimensions. If A and B are 0-1 matrices, then A&B
is another 0-1 matrix with ones representing TRUE and zeros FALSE. The
NOT(~) operator is a unary operator. The expression ~C returns 1 where C is
zero and 0 when C is nonzero.

There are several variations of the IF statement:

• simple if statement

• nested if statement

• if-else statement

© 1999 CRC Press LLC

© 1999 CRC Press LLC

• if-elseif statement

• if-elseif-else statement.

• The general form of the simple if statement is

if logical expression 1
 statement group 1
end

In the case of a simple if statement, if the logical expression1 is true, the state-
ment group 1 is executed. However, if the logical expression is false, the
statement group 1 is bypassed and the program control jumps to the statement
that follows the end statement.

• The general form of a nested if statement is

if logical expression 1
 statement group 1
 if logical expression 2
 statement group 2
 end
 statement group 3
end
statement group 4

The program control is such that if expression 1 is true, then statement groups
1 and 3 are executed. If the logical expression 2 is also true, the statement
groups 1 and 2 will be executed before executing statement group 3. If logical
expression 1 is false, we jump to statement group 4 without executing state-
ment groups 1, 2 and 3.

• The if-else statement allows one to execute one set of statements if a

logical expression is true and a different set of statements if the logical
statement is false. The general form of the if-else statement is

if logical expression 1
 statement group 1
 else
 statement group 2
end

© 1999 CRC Press LLC

© 1999 CRC Press LLC

In the above program segment, statement group 1 is executed if logical expres-
sion 1 is true. However, if logical expression 1 is false, statement group 2 is
executed.

• If-elseif statement may be used to test various conditions before execut-

ing a set of statements. The general form of the if-elseif statement is

if logical expression 1
 statement group1
 elseif logical expression 2
 statement group2
 elseif logical expression 3
 statement group 3
 elseif logical expression 4
 statement group 4
end

A statement group is executed provided the logical expression above it is true.
For example, if logical expression 1 is true, then statement group 1 is executed.
If logical expression 1 is false and logical expression 2 is true, then statement
group 2 will be executed. If logical expressions 1, 2 and 3 are false and logical
expression 4 is true, then statement group 4 will be executed. If none of the
logical expressions is true, then statement groups 1, 2, 3 and 4 will not be exe-
cuted. Only three elseif statements are used in the above example. More elseif
statements may be used if the application requires them.

• If-elseif-else statement provides a group of statements to be executed if

other logical expressions are false. The general form of the if-elseif-else
statement is

if logical expression 1
 statement group1
 elseif logical expression 2
 statement group 2
 elseif logical expression 3
 statement group 3
 elseif logical expression 4
 statement group4
 else
 statement group 5
end

© 1999 CRC Press LLC

© 1999 CRC Press LLC

The various logical expressions are tested. The one that is satisfied is exe-
cuted. If the logical expressions 1, 2, 3 and 4 are false, then statement group 5
is executed. Example 3.2 shows the use of the if-elseif-else statement.

Example 3.2

A 3-bit A/D converter, with an analog input x and digital output y, is repre-
sented by the equation:

y = 0 x < -2.5
 = 1 -2.5 ≤ x < -1.5
 = 2 -1.5 ≤ x < -0.5
 = 3 -0.5 ≤ x < 0.5
 = 4 0.5 ≤ x < 1.5
 = 5 1.5 ≤ x < 2.5
 = 6 2.5 ≤ x < 3.5
 = 7 x ≥ 3.5

Write a MATLAB program to convert analog signal x to digital signal y. Test
the program by using an analog signal with the following amplitudes: -1.25,
2.57 and 6.0.

Solution

MATLAB Script

diary ex3_2.dat
%
y1 = bitatd_3(-1.25)
y2 = bitatd_3(2.57)
y3 = bitatd_3(6.0)
diary

function Y_dig = bitatd_3(X_analog)
%
% bitatd_3 is a function program for obtaining
% the digital value given an input analog
% signal
%
% usage: Y_dig = bitatd_3(X_analog)
% Y_dig is the digital number (in integer form)

© 1999 CRC Press LLC

© 1999 CRC Press LLC

% X_analog is the analog input (in decimal form)
%
if X_analog < -2.5
 Y_dig = 0;
elseif X_analog >= -2.5 & X_analog < -1.5
 Y_dig = 1;
elseif X_analog >= -1.5 & X_analog < -0.5
 Y_dig = 2;
elseif X_analog >= -0.5 & X_analog < 0.5
 Y_dig = 3;
elseif X_analog >= 0.5 & X_analog < 1.5
 Y_dig = 4;
elseif X_analog >= 1.5 & X_analog < 2.5
 Y_dig = 5;
elseif X_analog >= 2.5 & X_analog < 3.5
 Y_dig = 6;
else
 Y_dig = 7;
end
Y_dig;
end

The function file, bitatd_3.m, is an m-file available in the disk that accompa-
nies this book. In addition, the script file, ex3_2.m on the disk, can be used to
perform this example. The results obtained, when the latter program is exe-
cuted, are

y1 =
 2

y2 =
 6

y3 =
 7

3.3 WHILE LOOP

A WHILE loop allows one to repeat a group of statements as long as a speci-
fied condition is satisfied. The general form of the WHILE loop is

© 1999 CRC Press LLC

© 1999 CRC Press LLC

while expression 1
 statement group 1
end
statement group 2

When expression 1 is true, statement group 1 is executed. At the end of exe-
cuting the statement group 1, the expression 1 is retested. If expression 1 is
still true, the statement group 1 is again executed. However, if expression 1 is
false, the program exits the while loop and executes statement group 2. The
following example illustrates the use of the while loop.

Example 3.3

Determine the number of consecutive integer numbers which when added to-
gether will give a value equal to or just less than 210.

Solution

MATLAB Script

diary ex3_3.dat
% integer summation
int = 1; int_sum = 0;
max_val = 210;
while int_sum < max_val
 int_sum = int_sum + int;
 int = int + 1;
end
last_int = int
if int_sum == max_val
 num_int = int - 1
 tt_int_ct = int_sum
 elseif int_sum > max_val
 num_int = int - 1
 tt_int_ct = int_sum - last_int
 end
end
diary

The solution obtained will be

last_int =
 21

© 1999 CRC Press LLC

© 1999 CRC Press LLC

num_int =
 20

tt_int_ct =
 210

Thus, the number of integers starting from 1 that would add up to 210 is 20.
That is,
 1 2 3 4 20 210+ + + + + =...

3.4 INPUT/OUTPUT COMMANDS

MATLAB has commands for inputting information in the command window
and outputting data. Examples of input/output commands are echo, input,
pause, keyboard, break, error, display, format, and fprintf. Brief descriptions
of these commands are shown in Table 3.3.

Table 3.3
Some Input/output Commands

COMMAND

DESCRIPTION

break exits while or for loops
disp displays text or matrix
echo displays m-files during execution
error displays error messages
format switches output display to a particular

format
fprintf displays text and matrices and specifies

format for printing values
input allows user input
keyboard invokes the keyboard as an m-file
pause causes an m-file to stop executing. Press-

ing any key cause resumption of program
execution.

Break

The break command may be used to terminate the execution of for and while
loops. If the break command exits in an innermost part of a nested loop, the

© 1999 CRC Press LLC

© 1999 CRC Press LLC

break command will exit from that loop only. The break command is useful in
exiting a loop when an error condition is detected.

Disp

The disp command displays a matrix without printing its name. It can also be
used to display a text string. The general form of the disp command is

disp(x)
disp(‘text string’)

disp(x) will display the matrix x. Another way of displaying matrix x is to type
its name. This is not always desirable since the display will start with a leading
“x = ”. Disp(‘text string’) will display the text string in quotes. For ex-
ample, the MATLAB statement

disp(‘3-by-3 identity matrix’)

will result in

3-by-3 identity matrix
and
 disp(eye(3,3))

will result in

 1 0 0
 0 1 0
 0 0 1

Echo

The echo command can be used for debugging purposes. The echo command
allows commands to be viewed as they execute. The echo can be enabled or
disabled.

echo on - enables the echoing of commands
echo off - disables the echoing of commands
echo - by itself toggles the echo state

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Error

The error command causes an error return from the m-files to the keyboard
and displays a user written message. The general form of the command is

error(‘message for display’)

Consider the following MATLAB statements:

x = input(‘Enter age of student’);
if x < 0
 error(‘wrong age was entered, try again’)
end
x = input(‘Enter age of student’)

For the above MATLAB statements, if the age is less that zero, the error mes-
sage ‘wrong age was entered, try again’ will be displayed and the user will
again be prompted for the correct age.

Format

The format controls the format of an output. Table 3.4 shows some formats
available in MATLAB.

Table 3.4
Format Displays

COMMAND

MEANING

format short 5 significant decimal digits
format long 15 significant digits
format short e scientific notation with 5 significant digits
format long e scientific notation with 15 significant digits
format hex hexadecimal
format + + printed if value is positive, - if negative; space is

skipped if value is zero

By default, MATLAB displays numbers in “short” format (5 significant dig-
its). Format compact suppresses line-feeds that appear between matrix dis-
plays, thus allowing more lines of information to be seen on the screen. For-

© 1999 CRC Press LLC

© 1999 CRC Press LLC

mat loose reverts to the less compact display. Format compact and format
loose do not affect the numeric format.

fprintf

The fprintf can be used to print both text and matrix values. The format for
printing the matrix can be specified, and line feed can also be specified. The
general form of this command is

fprintf(‘text with format specification’, matrices)

For example, the following statements

cap = 1.0e-06;
fprintf('The value of capacitance is %7.3e Farads\n', cap)

when executed will yield the output

The value of capacitance is 1.000e-006 Farads

The format specifier %7.3e is used to show where the matrix value should be
printed in the text. 7.3e indicates that the capacitance value should be printed
with an exponential notation of 7 digits, three of which should be decimal
digits. Other format specifiers are

%f - floating point
%g - signed decimal number in either %e or %f format,

 whichever is shorter

The text with format specification should end with \n to indicate the end of
line. However, we can also use \n to get line feeds as represented by the fol-
lowing example:

r1 = 1500;
fprintf('resistance is \n%f Ohms \n', r1)

the output is

resistance is
1500.000000 Ohms

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Input

The input command displays a user-written text string on the screen, waits for
an input from the keyboard, and assigns the number entered on the keyboard as
the value of a variable. For example, if one types the command

r = input(‘Please enter the four resistor values’);

when the above command is executed, the text string ‘Please, enter the four
resistor values’ will be displayed on the terminal screen. The user can then
type an expression such as

[10 15 30 25];

The variable r will be assigned a vector [10 15 30 25]. If the user strikes the
return key, without entering an input, an empty matrix will be assigned to r.

To return a string typed by a user as a text variable, the input command may
take the form

x = input(‘Enter string for prompt’, ’s’)

For example, the command

x = input(‘What is the title of your graph’, ’s’)

when executed, will echo on the screen, ‘What is the title of your graph.’ The
user can enter a string such as ‘Voltage (mV) versus Current (mA).’

Keyboard

The keyboard command invokes the keyboard as an m-file. When the word
keyboard is placed in an m-file, execution of the m-file stops when the word
keyboard is encountered. MATLAB commands can then be entered. The
keyboard mode is terminated by typing the word, “return” and pressing the
return key. The keyboard command may be used to examine or change a vari-
able or may be used as a tool for debugging m-files.

© 1999 CRC Press LLC

© 1999 CRC Press LLC

Pause

The pause command stops the execution of m-files. The execution of the m-
file resumes upon pressing any key. The general forms of the pause command
are

pause
pause(n)

Pause stops the execution of m-files until a key is pressed. Pause(n) stops the
execution of m-files for n seconds before continuing. The pause command can
be used to stop m-files temporarily when plotting commands are encountered
during program execution. If pause is not used, the graphics are momentarily
visible.

SELECTED BIBLIOGRAPHY

1. MathWorks, Inc., MATLAB, High-Performance Numeric
 Computation Software, 1995.

2. Biran, A. and Breiner, M., MATLAB for Engineers, Addison-
 Wesley, 1995.

3. Etter, D.M., Engineering Problem Solving with MATLAB, 2nd
 Edition, Prentice Hall, 1997.

EXERCISES

3.1 Write a MATLAB program to add all the even numbers from 0 to
 100.

3.2 Add all the terms in the series

 1
1
2

1
4

1
8

+ + + + ...

until the sum exceeds 1.995. Print out the sum and the number of
terms needed to just exceed the sum of 1.995.

© 1999 CRC Press LLC

© 1999 CRC Press LLC

3.3 The Fibonacci sequence is given as

 1 1 2 3 5 8 13 21 34 …

 Write a MATLAB program to generate the Fibonacci sequence up
 to the twelfth term. Print out the results.

3.4 The table below shows the final course grade and its corresponding
 relevant letter grade.

LETTER GRADE FINAL COURSE GRADE
A 90 < grade ≤ 100
B 80 < grade ≤ 90
C 70 < grade ≤ 80
D 60 < grade ≤ 70
F grade ≤ 60

For the course grades: 70, 85, 90, 97, 50, 60, 71, 83, 91, 86, 77, 45,
67, 88, 64, 79, 75, 92, and 69

(a) Determine the number of students who attained the grade of A
 and F.
(b) What are the mean grade and the standard deviation?

3.5 Write a script file to evaluate y[1], y[2], y[3] and y[4] for the
 difference equation:

 y n y n y n x n[] [] [] []= − − − +2 1 2

for n ≥ 0. Assume that x n[] = 1 for n ≥ 0, y[]− =2 2 and
y[]− =1 1.

3.6 The equivalent impedance of a circuit is given as

 Z jw jwL
jwCeq () = + +100
1

 If L = 4 H and C = 1 µF,

(a) Plot Z jweq () versus w. (b) What is the minimum impedance?

(c) With what frequency does the minimum impedance occur?

© 1999 CRC Press LLC

© 1999 CRC Press LLC

	Electronics and Circuit Analysis using MATLAB
	Contents
	CONTROL STATEMENTS
	3.1 FOR LOOPS
	Example 3.1
	Solution

	3.2 IF STATEMENTS
	Example 3.2
	Solution

	3.3 WHILE LOOP
	Example 3.3
	Solution

	3.4 INPUT/OUTPUT COMMANDS
	Break
	Disp
	Echo
	Error
	Format
	fprintf
	Input
	Keyboard
	Pause

	SELECTED BIBLIOGRAPHY
	EXERCISES

