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CHAPTER SIX 
    

AC ANALYSIS AND NETWORK FUNCTIONS 
 
 
 
This chapter discusses sinusoidal steady state power calculations.  Numerical 
integration is used to obtain the rms value, average power and quadrature 
power.  Three-phase circuits are analyzed by converting the circuits into the 
frequency domain and by using the Kirchoff voltage and current laws. The un-
known voltages and currents are solved using  matrix techniques. 
 
Given a network function or transfer function, MATLAB has functions that can 
be used  to (i) obtain the poles and zeros, (ii)  perform partial fraction expan-
sion,  and (iii) evaluate the transfer function at specific frequencies.   Further-
more, the frequency response of networks can be obtained using a MATLAB 
function.   These features of MATLAB are  applied in this chapter. 
 
 

6.1 STEADY STATE AC POWER 
 
Figure 6.1 shows an impedance with voltage across it given by v t( )  and cur-
rent through it  i t( ) . 

 

v(t)

i(t)

Z

 
 
+ 
Figure 6.1  One-Port Network with Impedance Z 

 
 
The instantaneous power p t( )  is 
 
 p t v t i t( ) ( ) ( )=      (6.1) 
 
If   v t( )  and i t( ) are periodic with  period  T ,   the rms or effective values of 
the voltage  and current are 
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T

v t dtrms

T

= ∫
1 2

0

( )      (6.2) 

 
 

 I
T

i t dtrms

T

= ∫
1 2

0

( )      (6.3) 

where 
 
 Vrms   is the rms value of v t( )  
 
 I rms   is the rms value of i t( )  
 
The average power dissipated by the one-port network is 
 

 P
T

v t i t dt
T

= ∫
1

0

( ) ( )      (6.4) 

 
The power factor, pf ,   is given as 
 

 pf P
V Irms rms

=       (6.5) 

For the special case, where both the current i t( )  and voltage v t( )  are both 
sinusoidal, that is, 
 
 v t V wtm V( ) cos( )= +θ     (6.6) 
 
and  
 
 i t I wtm I( ) cos( )= +θ      (6.7) 
  
the rms value of the voltage v t( )  is  
 

 V V
rms

m=
2

      (6.8) 

 
and that of the current is 
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 I I
rms

m=
2

      (6.9) 

 
The average power  P  is 
 
 P V Irms rms V I= −cos( )θ θ     (6.10) 
   
The power factor, pf ,  is 
 
 pf V I= −cos( )θ θ      (6.11) 
 
The reactive power Q  is 
 
 Q V Irms rms V I= −sin( )θ θ     (6.12) 
 
and the complex power, S ,  is 
 
 S P jQ= +       (6.13) 
 

 [ ]S V I jrms rms V I V I= − + −cos( ) sin( )θ θ θ θ   (6.14) 
 
Equations (6.2) to (6.4) involve the use of integration in the determination of 
the rms value and the average power.  MATLAB has two functions, quad and 
quad8, for performing numerical function integration. 
 
 
 
6.1.1 MATLAB Functions quad and quad8 
 
The quad function uses an  adaptive, recursive Simpson’s rule.  The quad8 
function uses an adaptive, recursive Newton Cutes 8 panel rule.  The quad8 
function is better than the quad at handling functions with “soft” singularities 

such as xdx∫ .  Suppose we want to find q given as 

 

 q funct x dx
a

b

= ∫ ( )  

 
The general forms of quad and quad8 functions that can be used to find q are 
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 quad funct a b tol trace(' ' , , , , )  
 
 quad funct a b tol trace8(' ' , , , , )  
 
where 
 funct    is a MATLAB function name (in quotes) that returns a  

vector of values of f x( ) for a  given  vector of input values 
x . 
 

 a is the lower limit of integration. 
 
 b is the upper limit of integration. 
 
 tol is the tolerance limit set for stopping  the iteration of the  

numerical integration.  The iteration continues until the rela-
tive error is less than tol.  The default value is 1.0e-3. 

 
 trace  allows  the plot of a graph showing the process of the  

numerical integration.  If the trace is nonzero, a graph is 
plotted.  The default value is zero. 

 
Example 6.1 shows the use of the quad function to perform alternating current 
power calculations. 
 
 
Example  6.1 
  
For Figure 6.1, if v t t( ) cos( )= +10 120 300π  and   

i t t( ) cos( )= +6 120 600π .  Determine the average power, rms value of 
v t( )  and the power factor using  (a) analytical solution and  (b) numerical so-
lution. 
 
 
Solution 
 
MATLAB Script 
 

diary  ex6_1.dat 
% This program computes the average power, rms value and 
% power factor using quad function. The analytical and  
% numerical results are compared. 
% numerical calculations 
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T = 2*pi/(120*pi); % period of the sin wave 
a = 0; % lower limit of integration 
b = T; % upper limit of integration 
x = 0:0.02:1; 
t = x.*b; 
v_int = quad('voltage1', a, b); 
v_rms = sqrt(v_int/b);  % rms of voltage 
i_int = quad('current1',a,b); 
i_rms = sqrt(i_int/b);  % rms of current 
 
p_int = quad('inst_pr', a, b); 
p_ave = p_int/b;    % average power 
pf = p_ave/(i_rms*v_rms); % power factor 
% 
% analytical solution 
% 
p_ave_an = (60/2)*cos(30*pi/180);  % average power 
v_rms_an = 10.0/sqrt(2); 
pf_an = cos(30*pi/180); 
 
% results are printed 
fprintf('Average power, analytical %f \n Average power, numerical: 
%f \n', p_ave_an,p_ave) 
fprintf('rms voltage, analytical: %f \n rms voltage, numerical: %f \n', 
v_rms_an, v_rms) 
fprintf('power factor, analytical: %f \n power factor, numerical: %f \n', 
pf_an, pf) 
diary 

 
 
The following functions are used in the above m-file: 
 

function vsq = voltage1(t) 
% voltage1  This function is used to 
%           define the voltage function 
vsq = (10*cos(120*pi*t + 60*pi/180)).^2; 
end 

 
function isq = current1(t) 
% current1  This function is to define the current 
% 
isq = (6*cos(120*pi*t + 30.0*pi/180)).^2; 
end 
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function pt = inst_pr(t) 
% inst_pr   This function is used to define 
%           instantaneous power obtained by multiplying 
%           sinusoidal voltage and current 
it = 6*cos(120*pi*t + 30.0*pi/180); 
vt = 10*cos(120*pi*t + 60*pi/180); 
pt = it.*vt; 
end 

 
 
 
The results obtained are 

 
Average power, analytical 25.980762  
Average power, numerical: 25.980762  
rms voltage, analytical: 7.071068  
rms voltage, numerical: 7.071076  
power factor, analytical: 0.866025  
power factor, numerical: 0.866023  

 
From the results, it can be seen that the two techniques give almost the same 
answers. 
 
 
 
6.2 SINGLE- AND THREE-PHASE AC CIRCUITS 
 
Voltages and currents of a network can be obtained in the time domain.  This 
normally involves solving differential equations.  By transforming the differen-
tial equations into algebraic equations using phasors  or complex frequency 
representation, the analysis can be simplified.   For a voltage given by 
 
 v t V e wtm

t( ) cos( )= +σ θ  
 

 [ ]v t V e wtm
t( ) Re cos( )= +σ θ     (6.15) 

 
the phasor is 
 
 V V e Vm

j
m= = ∠θ θ      (6.16) 

 
and the complex frequency  s  is 
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 s jw= +σ       (6.17)
  
When the voltage  is purely sinusoidal, that is 
 
 v t V wtm2 2 2( ) cos( )= +θ     (6.18) 
 
then the phasor 
 
 V V e Vm

j
m2 2 2 2

2= = ∠θ θ     (6.19) 
    
and complex frequency is purely imaginary, that is, 
 
 s jw=        (6.20) 
 
To analyze  circuits with sinusoidal excitations,  we convert the circuits  into 
the s-domain with s jw= .  Network analysis laws, theorems, and rules are 
used to solve for unknown currents and voltages in the frequency domain.  The 
solution is then converted into the time domain using inverse phasor transfor-
mation.  For example, Figure 6.2 shows an RLC circuit in both the time and 
frequency domains. 
 

V3(t)Vs(t) = 8 cos (10t + 15o) V

R1
L1 L2

R2

C1

R3

  
    (a) 
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V3Vs = 8  15o

R1 j10 L1
j10 L2

R2 R3

V1

V2

1/(j10C1)

 
    (b) 
 
 Figure 6.2   RLC Circuit with Sinusoidal Excitation (a) Time  
   Domain  (b) Frequency Domain Equivalent 
 
 
If the values of  R R R L L1 2 3 1 2, , , ,  and C1  are known, the voltage V3  can 
be obtained using circuit analysis tools.  Suppose V3  is 
 
 V Vm3 3 3= ∠ θ ,   
 
then the time domain voltage V3 (t) is 
 
 v t V wtm3 3 3( ) cos( )= +θ   
 
The following two examples illustrate the use of MATLAB for solving one-
phase circuits. 
 
 
 
Example 6.2 
 
In Figure 6.2, if R1   = 20 Ω, R2   = 100Ω , R3  = 50 Ω , and L1  = 4 H, L2  = 
8 H and C1  = 250µF, find v t3 ( )  when w = 10 rad/s. 
 
 
Solution 
 
Using nodal analysis, we obtain the following equations. 
 
At node 1, 
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V V

R
V V
j L

V V

j C

s1

1

1 2

1

1 3

1
10 1

10
0− + − + − =

( )
   (6.21) 

 
At node 2, 
 

 
V V
j L

V
R

V V
j L

2 1

1

2

2

2 3

210 10
0

−
+ +

−
=     (6.22) 

 
At node 3, 
  

 
V
R

V V
j L

V V

j C

3

3

3 2

2

3 1

1
10 1

10
0+ − + − =

( )
   (6.23) 

 
Substituting the element values in the above three equations and simplifying, 
we get the matrix equation 
  

0 05 0 0225 0 025 0 0025
0 025 0 01 0 0375 0 0125
0 0025 0 0125 0 02 0 01

0 4 15
0
0

1

2

3

0. . . .
. . . .
. . . .

.− −
−

− −

































=
∠















j j j
j j j
j j j

V
V
V

 

 
The above matrix can be written as  
 
 [ ][ ] [ ]Y V I= .  
  
We can compute the vector [v] using the MATLAB command 
 
 ( )V inv Y I= *  
  
where  

( )inv Y  is the inverse of the matrix [ ]Y . 
 
 
A MATLAB program for solving V3  is as follows: 
 
MATLAB Script 

 
diary ex6_2.dat 
% This program computes the nodal voltage v3 of circuit Figure 6.2 
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% Y is the admittance matrix; % I is the current matrix  
% V is the voltage vector 
 
Y = [0.05-0.0225*j   0.025*j        -0.0025*j; 
     0.025*j         0.01-0.0375*j   0.0125*j; 
    -0.0025*j        0.0125*j        0.02-0.01*j]; 
 
c1 = 0.4*exp(pi*15*j/180); 
I = [c1 
     0 
     0];  % current vector entered as column vector 
 
V = inv(Y)*I;  % solve for nodal voltages 
v3_abs = abs(V(3));  
v3_ang = angle(V(3))*180/pi; 
 
fprintf('voltage V3, magnitude: %f \n voltage V3, angle in degree: 
%f', v3_abs, v3_ang) 
diary 

 
 
The following results are obtained: 
 

voltage V3, magnitude: 1.850409  
voltage V3, angle in degree: -72.453299 

 
From the MATLAB results, the time domain voltage v t3 ( )  is 
   
  v t t3

0185 10 72 45( ) . cos( . )= −  V  
 
 
 
Example 6.3 
 
For the circuit shown in Figure 6.3, find the current  i t1 ( )  and the voltage 
v tC ( ) . 
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i(t)

5 cos (103t) V

4 Ohms 400  microfarads 8mH 10 Ohms

5 mH

6 Ohms

100  microfaradsVc(t)

2 cos (103 t + 75o) V

 
 Figure 6.3 Circuit with Two Sources 
 
 
Solution 
 
Figure 6.3 is transformed into the frequency domain. The resulting circuit is 
shown in Figure 6.4.  The impedances are in ohms. 
 

I1

5   0o V

4 -j2.5 j8 10

j5

6

-j10Vc

2   75o V

I2

 
Figure 6.4 Frequency Domain Equivalent of  Figure 6.3 

 
 
Using loop analysis, we have 
 
 − ∠ + − + + − − =5 0 4 2 5 6 5 10 00

1 1 2( . ) ( )( )j I j j I I  (6.24) 
 
 ( ) ( )( )10 8 2 75 6 5 10 02

0
2 1+ + ∠ + + − − =j I j j I I  (6.25)

  
Simplifying, we have 
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 ( . ) ( )10 7 5 6 5 5 01 2

0− − − = ∠j I j I  
   
 − − + + = − ∠( ) ( )6 5 16 3 2 751 2

0j I j I  
 
In matrix form, we obtain 
 

 
10 7 5 6 5

6 5 16 3
5 0
2 75

1

2

0

0

− − +
− + +


















 =

∠
− ∠











j j
j j

I
I

.
 

 
The above matrix equation can be rewritten as   
 

[ ][ ] [ ]Z I V= .   
 
We obtain the current vector  [ ]I  using the MATLAB command 
 
 ( )I inv Z V= *  
 
where  ( )inv Z  is the inverse of the matrix [ ]Z . 
 
 
The voltage VC  can be obtained as 
 
 V j I IC = − −( )( )10 1 2       
 
A  MATLAB program for determining I1  and Va  is as follows: 
 
MATLAB Script 
 

diary ex6_3.dat 
% This programs calculates the phasor current I1 and 
% phasor voltage Va. 
% Z is impedance matrix 
% V is voltage vector 
% I is current vector 
 
Z = [10-7.5*j   -6+5*j; 
     -6+5*j   16+3*j]; 
 
b = -2*exp(j*pi*75/180); 
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V = [5  
        b];  % voltage vector in column form 
 
I = inv(Z)*V; % solve for loop currents 
i1 = I(1); 
i2 = I(2); 
 
Vc = -10*j*(i1 - i2); 
i1_abs = abs(I(1));   
i1_ang = angle(I(1))*180/pi; 
Vc_abs = abs(Vc); 
Vc_ang = angle(Vc)*180/pi; 
 
%results are printed 
fprintf('phasor current i1, magnitude: %f \n phasor current i1, angle in 
degree: %f \n', i1_abs,i1_ang) 
fprintf('phasor voltage Vc, magnitude: %f \n phasor voltage Vc, angle 
in degree: %f \n',Vc_abs,Vc_ang) 
diary 
 

The following results were obtained: 
 
phasor current i1, magnitude: 0.387710  
phasor current i1, angle in degree: 15.019255  
phasor voltage Vc, magnitude: 4.218263  
phasor voltage Vc, angle in degree: -40.861691 

 
The current  i t1 ( )  is 
 
 i t t1

3 00 388 10 1502( ) . cos( . )= +   A 
 
and the voltage v tC ( )  is 
 
 v t tC ( ) . cos( . )= −4 21 10 40 863 0  V 
 
Power utility companies use three-phase circuits for the generation, transmis-
sion and distribution of large blocks of electrical power. The basic structure of 
a three-phase system consists of  a three-phase voltage source connected  to a 
three-phase load through transformers and transmission lines.  The three-phase 
voltage source can be wye- or delta-connected.  Also the three-phase load can 
be delta- or wye-connected. Figure 6.5 shows a 3-phase system with wye-
connected source and wye-connected load.  
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Z T1

Z T2

Z T3

Z t4 Z Y2Z Y3

Z Y1

Van

Vbn

Vcn

 
 
 Figure 6.5  3-phase System, Wye-connected Source and Wye- 
   connected Load 
 

Z t1

Z t2

Z t3
Z    2

Van

Vbn

Vcn

Z    3

Z    1

 
 
 
 Figure 6.6  3-phase System, Wye-connected Source and Delta- 
   connected Load 
 
For a balanced abc system, the voltages V V Van bn cn, ,  have the same magni-
tude and they are out of phase by 1200.  Specifically, for a balanced abc sys-
tem, we have 
 
 V Van P= ∠ 00  

 V Vbn P= ∠ − 1200      (6.26) 

 V Vcn P= ∠ 1200
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For cba system 
 
 V Van P= ∠ 00  

 V Vbn P= ∠ 1200      (6.27) 

 V Vcn P= ∠ − 1200  
    
The wye-connected load is balanced if 
 
 Z Z ZY Y Y1 2 3= =      (6.28) 
 
Similarly, the delta-connected load is balanced if 
 
 Z Z Z∆ ∆ ∆1 2 3= =      (6.29) 
 
We have a balanced three-phase system of Equations (6.26) to (6.29)  that are 
satisfied with the additional condition 
 
 Z Z ZT T T1 2 3= =      (6.30) 
 
Analysis of balanced three-phase systems can easily be done by converting the 
three-phase system into an equivalent one-phase system and performing simple 
hand calculations.  The method of symmetrical components can be used to ana-
lyze unbalanced three-phase systems.  Another method that can be used to ana-
lyze three-phase systems  is to use KVL and KCL.  The unknown voltage or 
currents are solved using MATLAB.  This is illustrated by the following ex-
ample. 
 
 
 
Example 6.4 
 
In Figure 6.7, showing an unbalanced wye-wye  system, find the phase volt-
ages V VAN BN,  and VCN . 
 
 
Solution 
 
Using  KVL, we can solve for I I I1 2 3, , . From the figure,  we have 
 
 110 0 1 1 5 120

1 1∠ = + + +( ) ( )j I j I    (6.31) 
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 110 120 1 2 3 40
2 2∠ − = − + +( ) ( )j I j I   (6.32) 

  
 110 120 1 0 5 5 120

3 3∠ = − + −( . ) ( )j I j I   (6.33) 
 
 

      +-

      +-

-       +

110   0o V

110  -120o V

110  120o V

1 + j1 Ohms

1 - j2 Ohms

1 - j0.5 Ohms

5 + j12 Ohms

3 + j4 Ohms

5 - j12 Ohms

NA

B

C

I1

I2

I3  
 
  Figure 6.7   Unbalanced Three-phase System 
 
 
Simplifying Equations (6.31), (6.32) and (6.33), we have 
 
 110 0 6 130

1∠ = +( )j I      (6.34) 
 
 110 120 4 20

2∠ − = +( )j I     (6.35) 
  
 110 120 6 12 50

3∠ = −( . )j I     (6.36) 
 
and expressing the above three equations in matrix form, we have 
 

 

6 13 0 0
0 4 2 0
0 0 6 12 5

110 0
110 120
110 120

1

2

3

0

0

0

+
+

−

































=
∠

∠ −
∠

















j
j

j

I
I
I.

 

 
The above matrix can be written as 
 
 [ ][ ] [ ]Z I V=  
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We obtain the vector [ ]I  using the MATLAB command 
 
 I inv Z V= ( ) *  
The phase voltages can be obtained as 
 
 V j IAN = +( )5 12 1  
 
 V j IBN = +( )3 4 2  
 
 V j ICN = −(5 )( )12 3  
 
The MATLAB program for obtaining the phase voltages is 
 
MATLAB Script 
 

diary ex6_4.dat 
% This program calculates the phasor voltage of an 
% unbalanced three-phase system 
% Z is impedance matrix 
% V is voltage vector and 
% I is current vector 
Z = [6-13*j   0       0; 
     0        4+2*j   0; 
     0        0       6-12.5*j]; 
c2 = 110*exp(j*pi*(-120/180)); 
c3 = 110*exp(j*pi*(120/180)); 
 
V = [110; c2; c3]; % column voltage vector 
I = inv(Z)*V;  % solve for loop currents 
% calculate the phase voltages 
% 
Van = (5+12*j)*I(1); 
Vbn = (3+4*j)*I(2); 
Vcn = (5-12*j)*I(3); 
Van_abs = abs(Van); 
Van_ang = angle(Van)*180/pi; 
Vbn_abs = abs(Vbn); 
Vbn_ang = angle(Vbn)*180/pi; 
Vcn_abs = abs(Vcn); 
Vcn_ang = angle(Vcn)*180/pi; 
 
% print out results 
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fprintf('phasor voltage Van,magnitude: %f \n phasor voltage Van, an-
gle in degree: %f \n', Van_abs, Van_ang) 
fprintf('phasor voltage Vbn,magnitude: %f \n phasor voltage Vbn, an-
gle in degree: %f \n', Vbn_abs, Vbn_ang) 
fprintf('phasor voltage Vcn,magnitude: %f \n phasor voltage Vcn, an-
gle in degree: %f \n', Vcn_abs, Vcn_ang) 
diary 

 
The following results were obtained: 
 

phasor voltage Van,magnitude: 99.875532  
phasor voltage Van, angle in degree: 132.604994  
phasor voltage Vbn,magnitude: 122.983739  
phasor voltage Vbn, angle in degree: -93.434949  
phasor voltage Vcn,magnitude: 103.134238  
phasor voltage Vcn, angle in degree: 116.978859 

 
 
 

6.3 NETWORK CHARACTERISTICS 
 
 
Figure 6.8 shows a linear network with input x t( )   and output  y t( ) .   Its 
complex frequency representation is also shown. 
 

     linear
     networkx(t) y(t)

 
           

  (a) 
 

     linear
     networkX(s)est Y(s)est

 
            

 (b) 
 
 Figure 6.8  Linear Network Representation  (a) Time Domain  

         (b) s- domain 
 

In general, the input x t( )   and output  y t( )  are related by the differential 
equation 
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a d y t
dt

a d y t
dt

a dy t
dt

a y t

b d x t
dt

b d x t
dt

b dx t
dt

b x t

n

n

n n

n

n

m

m

m m

m

m

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ + + + =

+ + +

−

−

−

−

−

−

1

1

1 1 0

1

1

1 1 0

!

"

 

        (6.37) 
 
where a a a b b bn n m m, , ..., , , , ...− −1 0 1 0  are real constants. 
 
 
If  x t X s est( ) ( )= , then the output must have the form y t Y s est( ) ( )= , 
where X s( ) and Y s( )  are phasor representations of x t( )  and y t( ) .  From 
equation (6.37), we have 
 

( ) ( )
( ) ( )

a s a s a s a Y s e
b s b s b s b X s e

n
n

n
n st

m
m

m
m st

+ + + + =

+ + + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

 

        
        (6.38) 
 
and the network function 
 

 H s Y s
X s

b s b s b s b
a s a s a s a

m
m

m
m

n
n

n
n( ) ( )

( )
= = + + +

+ + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

  (6.39) 

 
The network function can be rewritten in factored form 
 

 H s k s z s z s z
s p s p s p

m

n

( ) ( )( ) ( )
( )( ) ( )

= − − −
− − −

1 2

1 2

"
"

   (6.40) 

  
where 
 k  is a constant 
 z z zm1 2, , ...,  are zeros of the network function. 
 p p pn1 2, , ...,  are poles of the network function. 
 
The network function can also be expanded using partial fractions as 
 

 H s
r

s p
r

s p
r

s p
k sn

n
( ) .... ( )=

−
+

−
+ +

−
+1

1

2

2
 (6.41) 
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6.3.1 MATLAB functions roots, residue and polyval 
 
MATLAB has the function roots that can be used to obtain the poles and zeros 
of a network function. The MATLAB function residue can be used for partial 
fraction expansion.   Furthermore, the MATLAB function polyval can be used 
to evaluate the network function. 
 
The MATLAB function roots determines the roots of a polynomial.  The gen-
eral form of the roots function is 
 
 r roots p= ( )       (6.42) 
 
where   

p is a vector containing the coefficients of the polynomial in  
  descending order   

r is a column vector containing the roots of the polynomials 
 
 
For example, given the polynomial 
 
 f x x x x( ) = + + +3 29 23 15 
 
the commands to compute and print out the roots of  f x( )  are 
 

p  = [1  9  23  15] 
r  = roots (p) 

 
and the values printed are 
 
 r  =  
        -1.0000 
        -3.0000 
        -5.0000 
 
Given the roots of a polynomial, we can obtain the coefficients of the polyno-
mial by using the MATLAB function poly 
 
Thus 
 
 S  = poly ( [ -1    -3    -5  ]1 )    (6.43) 
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will give a row vector s given as 
 
 S = 
                   1.0000               9.0000            23.0000             15.0000 
 
 
The coefficients of  S are the same as those of  p. 
 
 
The MATLAB function polyval is used for polynomial evaluation.  The gen-
eral form of polyval is 
 
 polyval p x( , )       (6.44) 
 
where 

  
p  is a vector whose elements are the coefficients of a polynomial in  

  descending powers 
 polyval p x( , )   is the value of the polynomial evaluated at x  
 
For example, to evaluate the polynomial 
 
 f x x x x( ) = − − +3 23 4 15  
 
at x  = 2 , we use the command 
 
 p  = [1  -3    -4    15]; 
 polyval(p, 2) 
 
Then we get 
 

ans = 
          3 

 
 
The MATLAB function residue can be used to perform partial fraction expan-
sion.  Assuming  H s( )  is the network function,  since H s( )  may represent 
an improper fraction, we may express  H s( )  as a mixed fraction  

 H s
B s
A s

( )
( )
( )

=       (6.45)
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 H s k s
N s
D sn

n

N
n( )

( )
( )

= +
=
∑

0
    (6.46) 

   
where  

N s
D s

( )
( )

 is a proper fraction 

  
From equations (6.41) and ( 6.46), we get 
 

 H s
r

s p
r

s p
r

s p
k sn

n
n

n

N
n( ) ....=

−
+

−
+ +

−
+

=
∑1

1

2

2 0
 (6.47) 

   
Given the coefficients of the numerator and denominator polynomials, the 
MATLAB residue function provides the values of r1, r2, ...... rn , p1, p2, .....pn, 
an d  k1, k2 , .....kn .  The general form of the residue function is 
 
 [ , , ] ( , )r p k residue num den=     (6.48) 
 
where 
 
 num is a row vector whose entries are the coefficients of the  
  numerator polynomial in descending order 
 
 den is a row vector whose entries are the coefficient of the 
 denominator polynomial in descending order  
 
 r is returned as a column vector  
 
 p (pole locations)  is returned as  a column vector 
 
 k (direct term)  is returned  as a row vector 
 
The command 
 
 [ , ] ( , , )num den residue r p k=     (6.49) 
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Converts the partial fraction expansion back to the polynomial ratio   
 

H s
B s
A s

( )
( )
( )

=   

 
For example, given 
 

 H s
s s s s
s s s s

( ) =
+ + + +
+ + + +

4 3 6 10 20
2 5 2 8

4 3 2

4 3 2    (6.50) 

 
for the above network function, the following commands will perform partial 
fraction expansion 
 

 num = [4 3 6 10 20]; 
 den = [1 2 5 2 8]; 
 [r, p, k] = residue(num, den)    (6.51) 

 
and we shall get the following results 

 
r = 
     -1.6970 + 3.0171i 
     -1.6970 - 3.0171i 
     -0.8030 - 0.9906i 
     -0.8030 + 0.9906i 
 
p = 
     -1.2629 + 1.7284i 
     -1.2629 - 1.7284i 
      0.2629 + 1.2949i 
      0.2629 - 1.2949i 

 
k = 
      4 

 
The following two examples show how to use  MATLAB function roots to 
find  poles and zeros of circuits. 
 
 
 
Example 6.5 

For the circuit shown below, (a) Find the network function H s
V s
V s

o

S
( )

( )
( )

=  
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(b) Find the poles and zeros of  H s( ) , and 

 (c) if  v t e tS
t( ) cos( )= +−10 2 403 0 , find v t0 ( ) . 

 

Vo(t)Vs(t)

3 H

4 H

6 Ohms

2 Ohms

 
 
 Figure 6.9   Circuit for Example 6.5 
 
 
Solution 
 
In the s-domain,  the above figure becomes 

Vo(s)Vs

3s

4s

6

2

  
Figure 6.10  S-domain Equivalent Circuit of Figure 6.9 

 
 

 [ ]
V s
V s

V s
V s

V s
V s

s
s

s
s sS X

X

S

0 0 4
6 4

2 6 4
2 6 4 3

( )
( )

( )
( )

( )
( ) ( )

[ ( )]
( ( ))

= =
+

+
+ +

 

 
Simplifying, we get 
 

 
V s
V s

s s
s s sS

0
2

3 2

4 6
6 25 30 9

( )
( )

=
+

+ + +
    (6.52) 
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The phasor voltage VS
o= ∠10 40  ;   s j= − +3 2  

 

 V s H so
s j0 3 210 40( ) ( ) ( )= ∠ =− +  

 
(b, c) MATLAB  is used to find the poles, zeros and  v t0 ( ) . 
 
MATLAB Script 
 

diary ex6_5.dat 
% Program for poles and zeros 
num = [4  6  0]; 
den = [6  25  30  9]; 
disp('the zeros are') 
z = roots(num) 
disp('the poles are') 
p = roots(den) 
% program to evaluate transfer function and 
% find the output voltage 
s1 = -3+2*j; 
n1 = polyval(num,s1); 
d1 = polyval(den,s1); 
vo = 10.0*exp(j*pi*(40/180))*n1/d1; 
vo_abs = abs(vo); 
vo_ang = angle(vo)*180/pi; 
% print magnitude and phase of output voltage 
fprintf('phasor voltage vo, magnitude: %f \n phasor voltage vo, angle 
in degrees: %f', vo_abs, vo_ang) 
diary 

 
MATLAB results are 
 
Zeros 

z = 
      0 
     -1.5000 

 
Poles  

p = 
      -2.2153 
      -1.5000 
      -0.4514 

 
phasor voltage vo, magnitude: 3.453492  
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phasor voltage vo, angle in degrees: -66.990823 
 
From the results, the output voltage is given as 
 
  v t e tt( ) . cos( . )= −−3 45 2 66 993 0  
 
 
 
Example 6.6 
 
Find the inverse Laplace transform of  
 

 G s
s s

s s s
( ) =

+ +
+ + +
10 20 40

12 47 60

2

3 2   

 
Solution 
 
MATLAB Script 
 

diary ex6_6.dat 
% MATLAB is used to do the partial fraction expansion 
% 
num = [10 20 40]; 
den = [1 12 47 60]; 
 
% we get the following results 
[r, p, k] = residue(num,den) 
diary 

 
 
MATLAB results are 

 
r = 
       95.0000 
    -120.0000 
       35.0000 
 
p = 
       -5.0000 
       -4.0000 
       -3.0000 
 
k = 
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       [] 
 
From the results, we get 
 

 G s
s s s

( ) =
+

−
+

+
+

95
5

120
4

35
3

  

 
and the inverse Laplace transform is 
 
 g t e e et t t( ) = − +− − −35 120 953 4 5    (6.53) 
 
 
 

6.4 FREQUENCY RESPONSE 
 
The general form of  a  transfer  function of an analog circuit is given in Equa-
tion (6.39).  It is repeated here. 
 

 H s Y s
X s

b s b s b s b
a s a s a s a

m
m

m
m

n
n

n
n( ) ( )

( )
= = + + +

+ + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

   

 
More specifically, for a second-order analog filter, the following transfer func-
tions can be obtained: 
 
(i) Lowpass 
 

 H s
k

s Bs wLP ( ) =
+ +

1
2

0
2     (6.54) 

 
(ii) Highpass 

 

 H s
k s

s Bs wHP ( ) =
+ +

2
2

2
0
2     (6.55) 

 
(iii) Bandpass 
 

 H s
k s

s Bs wBP ( ) =
+ +

3
2

0
2     (6.56) 

(iv)  Bandreject 
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 H s
k s k

s Bs wBR ( ) =
+

+ +
4

2
5

2
0
2     (6.57) 

where 
 
 k k k k B1 2 3 4, , , ,  and w0  are constants  
  
 
Figure 6.11 shows the circuit diagram of some filter sections. 
 

Vo

R R

Rf

(K - 1)RfC

C

Vs

 
 
    (a) 

Vo

R

R

Rf

(K - 1)Rf

CC

Vs

 
   
               (b) 
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R2

R1 C

C

Vs

R3

V0

 
    (c ) 
 
 
 Figure 6.11  Active Filters (a) Lowpass, (b) Highpass and  
    (c ) Bandpass 
 
 
Frequency response is the response of a network to sinusoidal input signal.  If 
we substitute   s jw=  in the general network function, H s( ),  we get 
 

 H s M w ws jw( ) ( ) ( )= = ∠ θ     (6.58) 

 
where 

 M w H jw( ) ( )=      (6.59) 
 
and 
 
 θ( ) ( )w H jw= ∠      (6.60) 
 
 
The plot of M (ω) versus ω  is the magnitude characteristics or response.  Also, 
the plot of  θ( )w  versus  ω  is the phase response.   The magnitude and phase 
characteristics can be obtained using MATLAB function freqs. 
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6.4.1 MATLAB function freqs 
 
MATLAB function freqs is used to obtain the frequency response of  transfer 
function  H s( ) .   The general form of the frequency function is 
 
 
 hs freqs num den range= ( , , )     (6.61) 
 
where 

 H s Y s
X s

b s b s b s b
a s a s a s a

m
m

m
m

n
n

n
n( ) ( )

( )
= = + + +

+ + +
−

−

−
−

1
1

1 0

1
1

1 0

"
"

  (6.62) 

 
 

 [ ]num b b b bm m= −. ...1 1 0     (6.63) 
 

 [ ]den a a a an n= −1 1 0...     (6.64) 
 
   

range    is  range of frequencies for case 
 
 hs      is the frequency response (in complex number form) 
 
 
Suppose we want to graph the frequency response of the transfer function 
given as 

 H s
s

s s
( ) =

+
+ +
2 4

4 16

2

2      (6.65) 

 
We can use the following commands to find the magnitude characteristics 

 
 num = [2 0 4]; 
den = [1 4 16]; 
w = logspace(-2, 4); 
 h = freqs(num, den, w); 
 f = w/(2*pi); 
 mag = 20*log10(abs(h)); 
 semilogx(f, mag) 
 title('Magnitude Response') 
 xlabel('Frequency, Hz') 
 ylabel('Gain, dB') 
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The frequency response is shown in Figure 6.12. 
 

 
 
 Figure 6.12  Magnitude Response of Equation (6.65) 
 
 
The following example shows how to obtain and plot the frequency response 
of an RLC circuit. 
 
 
Example 6.7 
 
For the RLC circuit shown in Figure 6.13, (a) show that the transfer function is 

 H s
V s
V s

s
R
L

s s
R
L LC

o

i
( )

( )
( )

= =
+ +2 1    (6.66) 

 
(b)  If   L = 5 H, C  = 1.12 µF, and R  = 10000 Ω, plot the frequency re-

sponse.  
(c)  What happens when R  = 100 Ω, but L  and C  remain unchanged? 
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Vi

L C

R Vo(t)

 
 
 
 Figure 6.13  RLC Circuit 
 
Solution 
 
(a)  In the frequency domain,  
 

 H s
V s
V s

R

R sL
sC

sCR
s LC sCRi

( )
( )
( )

= =
+ +

=
+ +

0
21 1

 (6.67) 

which is 

 H s
V s
V s

s
R
L

s s
R
L LC

i
( )

( )
( )

= =
+ +

0

2 1  

 
 
Parts (b) and (c ) are solved using MATLAB. 
 
 
MATLAB Script 

 
% Frequency response of RLC filter 
% 
l = 5;   
c = 1.25e-6;  
r1 = 10000;   
r2 = 100; 
 
num1 = [r1/l 0]; 
den1 = [1 r1/l  1/(l*c)]; 
 
w = logspace(1,4); 
h1 = freqs(num1,den1,w); 
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f = w/(2*pi); 
mag1 = abs(h1); 
phase1 = angle(h1)*180/pi; 
 
num2 = [r2/l 0]; 
den2 = [1  r2/l  1/(l*c)]; 
h2 = freqs(num2,den2,w); 
mag2 = abs(h2); 
phase2 = angle(h2)*180/pi; 
 
% Plot the response 
 
subplot(221), loglog(f, mag1,'.') 
title('magnitude response R=10K') 
ylabel('magnitude') 
 
subplot(222), loglog(f,mag2,'.') 
title('magnitude response R=.1K') 
ylabel('magnitude') 
 
subplot(223), semilogx(f, phase1,'.') 
title('phase response R=10K'),... 
xlabel('Frequency, Hz'), ylabel('angle in degrees') 
 
subplot(224), semilogx(f, phase2,'.') 
title('phase response R=.1K'),... 
xlabel('Frequency, Hz'), ylabel('angle in degrees') 

 

The plots are shown in Figure 6.14.  As the resistance is decreased from 
10,000 to 100 Ohms, the bandwidth of the frequency response decreases and 
the quality factor of the circuit increases. 
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 Figure 6.14  Frequency Response of an RLC Circuit 
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EXERCISES 
 
 
6.1 If v t( )  is periodic with one period of  v t( ) given as   
 

v t e t( ) ( )= − −16 1 6  V    0 2≤ <t  s 
 
(a)   Use MATLAB to find the rms value of  v t( )     
(b)  Obtain the rms value of v t( )  using analytical technique.    

  Compare your result with  that obtained in part (a). 
 (c)  Find the power dissipated in the 4-ohm resistor when the  
  voltage v t( )  is applied across the 4-ohm resistor. 
  

  

v(t) R4 Ohms

 
  
  

Figure P6.1   Resistive Circuit  for part (c) 
 
 
6.2 A balanced Y-Y positive sequence system has phase voltage of the  

source Van = ∠120 00    rms if the load impedance per phase is 
( . )11 4 5+ j Ω, and the transmission line has an impedance per phase 
of ( . )1 0 5+ j Ω. 
 

 (a)    Use analytical techniques to find the magnitude of the line  
  current, and the power delivered to the load. 
 (b)    Use MATLAB to solve for the line current and the power 
  delivered to the load.    
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 (c )         Compare the results of parts (a) and (b). 
 
6.3 For the unbalanced 3-phase system shown in Figure P6.3, find the  

currents I I1 2, , I3 and  hence IbB .  Assume that  Z jA = +10 5 Ω,   
Z jB = +15 7 Ω  and Z jC = −12 3 Ω . 
 

1 Ohm

2 Ohms

1 Ohm

ZA

ZB

I1

I2

I3

C

120   0o V rms

      120   -120o V rms

B

A

      120    120o V rms

a

b

c

ZC

 
 
 Figure P6.3  Unbalanced Three-phase System 
 
 
6.4 For the system with network function 
 

  H s
s s s

s s s s
( ) =

+ + +
+ + + +

3 2

4 3 2

4 16 4
20 12 10

 

 
 find the poles  and zeros of H s( ).  
 
 
6.5 Use MATLAB to determine the roots of the following polynomials.   

Plot the polynomial over the appropriate interval to verify the roots 
location. 
 

  (a) f x x x1
2 4 3( ) = + +  

 
  (b) f x x x x2

3 25 9 5( ) = + + +    
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(c) f x x x x x x3

5 4 3 22 4 12 27 8 16( ) = − − + + −  
 
 

6.6 If  
V s
V s

s
s s

o

i

( )
( )

=
+ +
20

15 23 162 , 

 find  v t0 ( )  given that v t e ti
t( ) . cos( )= +−2 3 5 302 0 . 

 
 
 
6.7 For the circuit of Figure P6.7 

 (a) Find the transfer function  
V s
V s

o

i

( )
( )

. 

(b) If  v t e ti
t( ) cos( )= +−10 105 0 ,  find v t0 ( ) . 

 

 

Vi(t) Vo(t)

2 Ohms 2 H

4 Ohms0.5 F

 
  

Figure P6.7  RLC Circuit 
 
 
6.8 For Figure P6.8,   

(a) Find the transfer function  H s
V s
V s

o

i
( )

( )
( )

= . 

 (b)  Use MATLAB to plot the magnitude characteristics. 
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Vi(t)
Vo(t)

20 kilohms

20 kilohms

100 microfarads

10 microfarads

 
Figure P6.8  Simple Active Filter 
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