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Abstract: In this paper, two mathematical models are 
presented to approximate, accurately enough, the large signal 
dynamical behaviour and the steady state behaviour of the PRC- 
LCC resonant topology with a capacitor as output filter. The 
method used to obtain these models is based on the applying of 
the extended describing function and the generalised averaging 
modelling techniques. Therefore, the evolution of the topology 
waveforms, most of them sinusoidal, is approximated by their 
corresponding envelope. These envelopes are expressed by a set 
of non linear differential equations which are solved numerically 
with the help of a computer. The resulting algorithm is faster 
than a straight PSpice simulation and free of convergence 
problems. Finally, the good concordance between the models 
and the practice is verified with a wide set of experimental 
results. 

I. INTRODUCTION. 

The PRC-LCC with capacitive output filter (fig. 1 )  is a 
well-known topology, which has already been commented as 
available for high power applications [I]. In fact, as it 
combines the good behaviour of PRC at light load and SRC at 
full load, converters based on it are able to operate at a wide 
load range, being controlled by frequency andor duty-cycle. 
Furthermore, considering its resonant stage arrangement, this 
topology appears as specially suitable for high-voltage 
applications, since the parasitic elements from the step up 
transformer are directly assumed by it [2], [4]. Nevertheless, 
its use as an effective solution has been ballasted because its 
complexity (more than two reactive components in its 
resonant stage) and the lack of simple models to aid the 
designer. 

Certainly, a complete steady-state analysis has already been 
presented in some papers [3], [4], but its formulation is still 
complex. Also the small signal analysis with and LC output 
filter has been presented in [5], using the extended describing 
function concept. However, there has been no attempt in the 
literature addressing the large-signal modelling with a 
capacitor as output filter. This kind of filter, preferable for 
high voltage applications, presents additional complexity 
from the modelling point of view, since the output rectifier 
operates in discontinuous conduction mode, and therefore, the 
parallel capacitor, C p ,  is regularly clamped to the value of the 
output voltage. Fig. 2 shows the main waveforms for this 
configuration. 

In this paper, the different steps to obtain a large-signal 
model for this topology are presented. Moreover, also a 
simpler steady-state solution than in [ 3 ]  is described, as and 
additional output. Both models are successfully contrasted 
with several experimental results, whose good agreement is 
also included. 
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Figure 1. 
PRC-LCC resonant topology with a capacitor as output filter. 

11. NON-LINEAR STATE EQUATIONS. FIRST VERSION. 

A simple analysis of the circuit in figure 2 allows to obtain 
a first expression for the non-linear state equations: 

di ( t )  
v A B ( t ) = V S ( t ) + v P ( t ) + L S  .C---+r.i,(t) (la> 

dt 

where "r '' represents a series resistors with in the resonant 
tank, quantifying the transformer and switching losses. The 
meaning of the other terms can be consulted in figure 1. 

There are six variables: Vs(t), F ( t ) ,  \6(t), iL(t), iD(t) and 
VAB(t), in three equations. Therefore, only three of these 
variables can remain. They are the three state variables which 
constitute the state vector [8], and are distinguished to be 
energy storing magnitudes. The other variables must be 
expressed as a function of the control parameters and the state 
variables. 

On one hand, and paying attention to the energy storing 
magnitudes, the state vector is concluded to be composed by: 
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On the other hand, the control variables (frequency, j ;  and 
duty cycle, d )  are implicitly included in the input voltage to 
the resonant tank, VAR. 

I- 
- 

t TI2 dT t 
T 

4 
i?t 

Figure 2. 

+Y 
Experimental main waveforms in a converter based on the PRC-LCC 

topology with a capacitor as output filter. 

In short, the (1) expressions are not easy to evaluate, since 
there are too many variables and those related to the control 

are not present in an explicit way. Consequently, certain 
relationships must be found and, in the way, some 
simplifications will have to be done. 

That the voltage in the parallel capacitor, Vp, has not been 
considered as state variable in (2), and that its differential 
relationship between current and voltage has not been 
included in ( l ) ,  is remarkable. This is due to the fact that Vp 
waveform is not differentiable. In fact, Vp sinusoidal 
evolution is clamped to the output voltage, VO, twice every 
period (fig 2), when the rectifying diodes are on. Then, the 
filter capacitor, C, is connected in parallel with Cp. In 
comparison with Cf, Cp stores a very small amount of energy. 
The value of C p  is only relevant to establish, under any 
particular value of the resonant current, iL, the time required 
for the sinusoidal transitions between the clamping values 
+Vo and -Vo. Just considering the waveforms Vo and iI- for 
every period is enough to calculate, dynamically, the 
appropriate value of . Hence, the dynamic behaviour of V p  
is completely defined by the energy stored in Vo and iL. 

111. STATE VARIABLES HARMONIC APPROACH. 

As figure 2 shows, the resonant current and the series 
capacitor voltage are predominantly sinusoidal, without any 
DC component and low presence of high frequency 
harmonics. Thus, it is accurate enough to approximate these 
magnitudes by their fundamental terms in the Fourier series. 
So, using the exponential formulation, the equalities (3) and 
(4) can be written: 

i, ( t )  = (i, ) , ( t )  . ela) + (iL )-, ( t )  . e--" ' 
V, (t> = (v,), (t>.e la, + (v,)-, ( t )  .e-'"' 

(3) 

(4) 

beingj  the imaginary unit, the pulsation and every ( y ) ,  a 

complex Fourier coefficient whose value can be calculated as: 

( 5 )  
1 6  

( Y ) J 4 9  = TJCI-7Y(Z)e-*/mdZ 

where ZE [to - T, to] .  Tn the calculation of ( 5 ) ,  it can be 

verified that the terms ( Y ) - ~  and (U), are complex 
conjugate. So, they can be expressed as: 

( i L ) ,  = x, + j . x2 ; (iI,)-, = x, - j ex2 
( v ~ ) ~  = x 3 + j . x 4 ;  (Vs)-, = x 3 - j . x 4  (6b) 

( 6 4  

being every X j a real number. 
Physically, xl and x3 represent the semi-amplitudes of the 

cosenoidal part of i~ and Vs respectively. At the same time, x2 
and x4 are the corresponding semi-amplitudes of the 
sinusoidal components. Therefore, the amplitude and phase of 
any of both waveforms can be easily evaluated. For instance: 

M = J x :  + x,' ( 7 4  

(7b) - XI 
sinf-P= Jm 
On the other hand, the output voltage is a continuous 

magnitude and shows very low ripple. It can be approximated 
by its average value. By making this assumption: 

v, ( t )  = ( v")o (t)  

( vo )o ( t )  = x7 ( t )  (8b) 

( 8 4  
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Notice that terms into brackets and any Xi are time 
dependants, in consequence, their dynamic behaviour can be 
investigated. However, it must be remarked that their 
variation is slow when compared to the period length. 

1V. EXTENDED DESCRIBING FUNCTION (E.D.F.) 

To simplify the model stated in (l), and to obtain a useful 
one, it is necessary to express VAB, Vp and iD as a function of 
the control (f, d, VC) and/or the state variables (a, 9, a, a, 
x7). The major hindrance for that, is the presence of two non- 
linear stages (inverter and output rectifier). The extended 
describing function concept, [6] [7], would have to be 
applied. This way, the equations for each stage will be re- 
written in a proper manner. 

A.  Inverter stage. 

This stage generates a quasi-square voltage at its output, 
which is applied to the resonant tank (fig 1 & 2). The E.D.F. 
method is applied to obtain a Fourier formulation for this 
voltage as function of the control variables, since it only 
depends on d and VG (fig 2). So, it can be written: 

J%t)=Cf, , (d& ).e’“ (9) 
k 

where f’ is the extended describing function for this stage, 
and$, is i ts  i-esime harmonic component. As the resonant 
tank acts as a band-pass filter, the inverter must be tuned. In 
this situation, the effect of any harmonic component of VAB, 
but the first, can be neglected (first harmonic prevalence). 
The sinusoidal appearance of the resonant current confirms 
this fact. Therefore, it is accurately enough to consider only 
the first harmonic for V,e, and (9) transforms into ( 1  0): 

V,,( t ) = A,,( U, 1. e” + A,- I ( d,V, 1. e-’w* (10) 
Attending to the information contained in fig. 2, (1 0) can be 

integrated, resulting (12. 

&(dYYG) =E. [sir@rd)- j + j  . cos@cg)] (1  1) 
n 

where fi,-l is the complex conjugate off, I .  

B. Output rectifier stage. 

The E.D.F. method is applied to this stage to the obtain the 
describing functions, A(t) and f3(@ for the voltage in the 
parallel capacitor, Vp(t), and for the current through the 
rectifier diodes, i d t ) .  Both of them should depend on the state 
and the control variables. 

To work out these functions, the behaviour of the stage 
must be investigated with the help of fig. 2. There, it can be 
observed that, when V p ( i  is clamped to the output voltage, 
the resonant current goes through the rectifying diodes and 
iu(t)=iL(t). Then, iL(Q changes its sign and all the diodes are 
off. The current iL(t) flows entirely through Cp, and its voltage 
experiments a sinusoidal evolution from -VO to + VO (or vice 
versa), being clamped again. With this clamping, all this 
process is repeated. Hence, it can be affirmed that the 
conduction periods in the output rectifier bridge are 
determined exclusively by two of the state variables, V& and 
iL(t). 

With this, (12) can be written: 
Vp( t )=  Cf2& K O  ) -e ’ rur (124 

k 

i,( t ) = hA( i, , V, 1. ejo.‘ (12b) 
k 

Again, the resonant tank band-pass filtering action explains 
the prevalence of the first harmonic effects on Vp(t). On the 
contrary, the output filter has been design to provide DC 
voltage, and only the average value of io(@ is relevant for this 
magnitude (fig 3). Hence, (14a) and (14b) can be easily 
admitted. 

( 1  3 4  
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”- 

Figure 3. 
Simplified equivalent circuit for the topology. The state variables 

appearance is sinusoidal in the net on the right and continuous on the left. 

If the values of iL(t) and VO(t) are known, the angle can 
be calculated from the sinusoidal transition of Vp(t). Bearing 
in mind Cp initial and final voltage, and that the transition 
occurs when the whole resonant current goes through it, 
expression (14b) is easily deduced from (14a). 

1 v,(o) = ~ , ( q n ) t - - - r i , ( t ) .  dot  3 (14a) 

(14b) 

CP ‘p 

x ,  ,c, .o 
c o s y = l -  Jm 
Bearing in mind all the aforementioned data about Vp(0 

and io(?), the following expressions about Vp(t) are obtained: 

f2,1 = x5 + j- x, ; f 2 , - ,  = x5 - j .  x, (15a) 

[x, . sinzly + x2 . ,u] 1 x5 = 
?r . C p o  

[x, . sin ’ v / -  x, . ,u] 1 
x, = 

7G.CpW 
where: 
p= [ tp - s inv  cos4  
and about i& : 

V. HARMONIC BALANCE. 

In (I), the state variables appear also in their first derivative 
form. In order to simplify the system, they must also be 
approximated by their corresponding harmonic term. 
Assuming frequency as a time invariant magnitude, or at least 
with a slowly enough variation: 
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P.C., based on the Runge Kutta module 4 integrating method. 
d t  dt (16a) The predictions calculated this way have been compared 

successfully with experimental measurements and Pspice 

iWB =LkiL), . ~ J W  + Q ~ ) - ~  . ~ - J w ] =  

[ 4(4J+j4iL),]. dt $” +[ d [ ( ~ ~ - l l - ~ ~ ~ ~ ~ ~ ] . ~ - ~ ~  simulations, Section VIII. 

VI. STEADY STATE EQUATIONS and identically: 
Any large signal model contains, implicitly, an steady state 

solution. To obtain it the derivatives in(19) are substituted by 
zero, since the variables does not experiment any change in 
steady state. The solution of the remaining system is showed 
in (21). 

(16b) 

dt 

Now, it is possible to re-write (l) ,  using the results 
obtained in the harmonic approximation of Section III, and 
the E.D.F. of Section IV. In all the resulting equations, the 
exponential tenns e’”‘ and e-’@‘ can be put into separated 
groups, and, this way, every equation is divided into two 
complex conjugated ones. Now there are two complex- 
conjugated systems whose solutions are complex-conjugated. 
Therefore, taking into account one of them is enough, being 
possible,to simplify ( I )  to: 

where the new state vector will be: 

&t) = [ ( h ) l ( w s  )1(t)9(J70)0(t)1 (18) 
Equations (17a) and (1%) are complex. To separate them 

in real and imaginary parts is a good idea. Remembering (6), 
(8b) and (14) and substituting the E.D.F. expressions, (17) 
becomes: 

L, &L = 5 [cos(2lrd) - 11- x4 - x6 - P-X, - oL, X, (19a) 

L, - d.I = !E. sin(2ml) - x, - x5 - rx, + WL, x2 (19b) 

dt K 

dt 7t 

c, .%=xl +wcs ’X4 
C , . - - X 2 - ~ , * X ,  k 4  - 

dt 

dt 

The system is completed with (14b) and (15d). In this 
situation, the new state vector will be : 

4 t )  = [XI 9x2 9 x, > x4 9 x, 1 (20) 
where the state variables are the complex coefficients of the 
Fourier exponential series. 

The differential equations system (19) constitutes a large 
signal model by itself. To obtain a solution, it is just 
necessary to integrate it. Numerical methods are used with 
this purpose, and a software package has been developed for 

+cos@. do)  4) 

x20 X30=- 
CS -% 

TC + 2 R .  W, . Cp x70 = 

where the subindex ‘0’ means steady state magnitude. 
With this model, it is very simple to collect in graphics the 

operation points of any converter. These graphics can adopt 
several formats depending on the magnitudes studied and on 
which of them are maintained constant. In the figures 4 and 5 
some graphics are presented as an example. In them, all the 
magnitudes have been normalised according to the base in the 
annexe, and CS has been kept equal to Cp. 

- 

VII. OPTIMUM SWITCHING LINE. 

To drive this topology into the optimum switching line can 
result interesting from the converter losses point of view [4]. 
In this mode of operation, no energy is returned from the 
resonant circuit to the input voltage source (minimising 
processed energy and conduction losses) and the four 
switches are forced off (minimising switching losses). To 
work under this condition it is necessary to maintain null the 
phase between the resonant current and the inverter output 
voltage, =O. Therefore, resonant current should be sensed, 
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a d  a feedback loop should be implemented to synchronise 
the switching of one leg of the inverter with the resonant 
current zero-crossing. The duty cycle is determined this way, 
using its value to assure right synchronisation. The 
appearance of the resulting topology waveforms is very 
sipilar to that described in fig 2 ,  b u t j  =O. 

0.7 0.8 0.9 1 1.1 0.7 0.8 0.9 1 1.1 Frequency Frequency 

Figure 4. 
0 Steady state relationships, when the output power is 1 per unit and the 

output voltage, VO, is changing. All the magnitudes are nornialised. 
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at this figure has been normalised with the base in the annexe, 

Figuie 5 
Steady state relationships for different constant loads, when the duty cycle 

Considering Section VII, it is very simple to model this 
operation mode in steady state. It is just necessary to oblige 
xfo, cosenoidal component of iL(t), to be null in system (21). 
The required duty cycle to maintain this value can be 
calculated from @le) and ( 2  lQ, resulting : 

is constant: &=0.3. NI magnitudes are normalised. 

(22) 
1 

P 
do = -. Arc tg[-H,] 

and the rest of the system remains the same as in (21). 
Now, it is possible to obtain some graphics from the model, 

in order to characterise the behaviour of the topology under 
these circumstances, fig. 6. Again, all the magnitudes have 
been normalised according to the base in the annexe, and Ci 

consiilering: 
a =- c s  

c, +c, 

ii 

Figure 6 
Steady state relationships for different output power situations, under 
optimum switching line condition. All magnitudes are nornialised. 

0 02 04 06 08 ** 
Figure 7 

Steady state curves for different constant power transferred to the output, 
when the output voltage is 1 p. u., the relationship between the resonant 

capacities, a, changes and the optimum switching line mode of operation is 
ohseived. 

VIII. EXPERIMENTAL RESULTS. 

A. Large Signal Model .  

The numerical solution of the large signal model provides, 
as result, the dynamical evolution of all the magnitudes in the 
converter. Notwithstanding, the accuracy in some of them is 
very difficult to check. For instance, it is easy to represent the 
modelled evolution of q(t) and j (t), but not the experimental 
ones. In fig. 7 theoretical (envelope) and experimental results 
for the state variables are shown, with high agreement grade, 
during an input voltage step in the conditions of table 3. 

has been keRt equal to CP. T ~ f i l  I: 3 

estimated under this circumstances. It is even possible to 
compare how the operation points are modified this way. In 
fig. 7, there is an example of this possibility. The magnitudes 
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Figure 7. 
Experimental and modelled evolution for the states 

variables under conditions in table 3. 

B. Steady State Solution. 

In table 2 ,  a set of experimental values are compared with 
theoretical for permanent conditions. An excellent agreement 
between them must be remarked. Also the few calculus time 
required. 

TABLE 2 

. .  - I  17” 5 6% Q2’ 7.2% 6.8% 
- .  - 84” 8 2u/. 5.70 4% 5.6% 

The data required for calculations are on white boxes. 

IX. CONCLUSIONS 
A very simple steady state model and a large signal model 

have been deduced for the PRC-LCC topology with a 
capacitor as output filter. The models predict with an 
excellent precision and really low calculus time all the 
electrical circuit magnitudes, using harmonic approach and 
extended description functions. Furthermore, their accuracy 
has been confirmed by experimentation. 
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XI. ANNEXE. 
Base of normalization: 

Voltage: V B  = VG 

Impedance: 

1 
fB = 2 7 4 7  

Frequency: 

where C is the series association of Cs and Cp: 
From previous base magnitudes, any other can be defined. 
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