TOSHIBA

GaAs IRED & PHOTO-IC

Transistor Inverter

Inverter for Air Conditioner

IGBT Gate Drive

Power MOSFET Gate Drive

The Toshiba TLP250 consists of a GaA ℓ As light emitting diode and an integrated photodetector. This unit is in an 8-lead DIP package. TLP250 is suitable for the gate driving circuit of an IGBT or power MOSFET.

- Input Threshold Current $: I_F = 5mA (Max.)$
- Supply Current (I_{CC}) : 11mA (Max.)
- Supply Voltage (V_{CC}) : 10-35V
- Output Current (I_O)
- Switching Time (t_{pLH}/t_{pHL})
- Isolation VoltageUL Recognized
- : 0.5µs (Max.) : 2500V_{rms} (Min.)

: ±0.5A (Min.)

: UL1577, File No. E67349

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipment which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

(Note) When a VDE0884 approved type is needed, please designate the "Option (D4)"

• Option (D4) type VDE Approved: DIN VDE0884/06.92, Certificate No. 76823 Maximum Operating Insulation Voltage: 630 V_{PK} Highest Permissible Over Voltage : 4000 V_{PK}

 Creepage Distance 	: 6.4mm (Min.)
Clearance	: 6.4mm (Min.)

TOSHIBA CORPORATION

The information contained here is subject to change without notice.

9.66±0.25	0.25 - 0.00
JEDEC -	-
EIAJ -	-
TOSHIBA 11-1	0C4
Weight: 0.54g	

Supplementary Information	Page (s)
Lead Form Options	31-32
Tape and Reel	39-40

Unit in mm

TLP250

Schematic

Pin Configuration (Top View)

Truth Table

		Tr1	Tr2
Input LED	ON	ON	OFF
	OFF	OFF	ON

Absolute Maximum Ratings (Ta = 25°C)

CHARACTERISTIC			SYMBOL	RATING	UNIT	
Forward Current				20	mA	
	Forward Current Derating (Ta \ge 70°C)		∆I _F /∆Ta	-0.36	mA/°C	
LED	Peak Transient Forward Current	(Note 1)	I _{PFT}	1	A	
	Reverse Voltage		V _R	5	V	
	Junction Temperature		Tj	125	°C	
	"H" Peak Output Current (P _W ≤2.5µs, f≤15kHz)	(Note 2)	I _{OPH}	-1.5	A	
	"L" Peak Output Current (P _W ≤2.5μs, f≤15kHz)	(Note 2)	I _{OPL}	+1.5	A	
		(Ta ≤ 70°C)	V.	35	V	
		(Ta = 85°C)	O	24	v	
DETECTOR	Supply Voltage	(Ta ≤ 70°C)	Vaa	35	V	
	Supply voltage	(Ta = 85°C)	V CC	24	v	
	Output Voltage Derating (Ta \ge 70°C)	ΔV _O /ΔTa	-0.73	V/°C		
	Supply Voltage Derating (Ta \ge 70°C)		ΔV _{CC} /ΔTa	-0.73	V/°C	
	Junction Temperature		(T _j)	125	°C	
Operating Frequency (Note 3)		(Note 3)	f	25	kHz	
Operating Temperature Range			T _{opr}	-20~85	°C	
Storage Temperature Range		T _{stg}	-55~125	°C		
Lead Solder Temperature (10s)			T _{sol}	260	°C	
Isolation Voltag	ge (AC, 1 min., R.H. ≤ 60%, Ta = 25°C)	(Note 4)	BVS	2500	V _{rms}	

Note 1: Pulse width $P_W \le 1\mu s$, 300pps

Note 2: Exporential Waveform

Note 3: Exporential Waveform, $I_{OPH} \le -1.0A$ ($\le 2.5\mu s$), $I_{OPL} \le + 1.0A$ ($\le 2.5\mu s$)

Note 4: Device considered a two terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.

Note 5: A ceramic capacitor (0.1µF) should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length betwene capacitor and coupler should not exceed 1 cm.

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MX.		UNIT
Input Current, ON	I _{F(ON)}	7	8	1	mA	
Input Voltage, OFF	V _{F(OFF)}	0	_	0.8		V
Supply Voltage	V _{CC}	15	_	30 20		V
Peak Output Current	I _{OPH} /I _{OPL}	_	_	±0.5		А
Operating Temperature	T _{opr} -20		25	70	85	°C

Electrical Characteristics (Ta = -20~70°C, Unless otherwise specified)

CHARACTE	RISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.*	MX.	UNIT	
Input Forward Volt	tage	V _F	_	I _F = 10mA, Ta = 25°C	-	1.6	1.8	V	
Temperature Coef ward Voltage	ficient of For-	ΔV _F /ΔTa	_	I _F = 10mA	_	-2.0	_	mV/°C	
Input Reverse Cu	rrent	I _R	-	V _R = 5V, Ta = 25°C	-	-	10	μA	
Input Capacitance)	CT	-	V = 0, f = 1MHz, Ta = 25°C	-	45	250	pF	
	"H" Level	I _{OPH}	3	$V_{8-6} = 30V(*1)$ $I_F = 10mA$ $V_{8-6} = 4V$	-0.5	-1.5	_	- A - V	
Output Outrent	"L" Level	I _{OPL}	2	$I_{\rm F} = 0$ $V_{6-5} = 2.5V$	0.5	2	_		
	"H" Level	V _{OH}	4	V_{CC1} = +15V, V_{EE1} = -15V R _L = 200 Ω , I _F = 5mA	11	12.8	_		
Output voltage	"L" Level	V _{OL}	5	$V_{CC1} = +15V, V_{EE1} = -15V$ $R_L = 200\Omega, V_F = 0.8V$	-	-14.2	-12.5		
"H" Level	"H" Level	Іссн	_	$V_{CC} = 30V$, $I_F = 10mA$ Ta = 25°C	-	7	-		
				$V_{CC} = 30V, I_F = 10mA$	-	-	11		
Supply Current	"L" Level	I _{CCL}	_	$V_{CC} = 30V, I_F = 0mA$ Ta = 25°C	-	7.5	_		
			V _{CC} = 30V, I _F = 0mA	-	-	11			
Threshold Input Current	"Output L→H"	I _{FLH}	_	$V_{CC1} = +15V, V_{EE1} = -15V$ $R_{L} = 200\Omega, V_{O} \ge 0V$	-	1.2	5	mA	
Threshold Input Voltage	"Output H→L"	V _{FHL}	-	$V_{CC1} = +15V, V_{EE1} = -15V$ $R_L = 200\Omega, V_O \le 0V$	0.8	-	-	V	
Supply Voltage	Supply Voltage V _{CC} –			10	-	35	V		
Capacitance (Inpu	ut-Output)	CS	_	V _S = 0, f = 1MHz, Ta = 25°C	-	1.0	2.0	pF	
Resistance (Input-	-Output)	R _S	_	V _S = 500V, Ta = 25°C, R.H.≤60%	5 x 10 ¹⁰	10 ¹⁴	_	Ω	

*All typical values are at Ta = $25^{\circ}C$

(*1) : Duration of I_0 time $\leq 50\mu s$

Switching Characteristics (Ta = -20~70°C, Unless otherwise specified)

CHARACTERI	CHARACTERISTIC		SYMBOL TEST CONDITION		MIN.	TYP.*	MX.	UNIT	
Propagation Delay	L→H	t _{pLH}	$I_{F} = 8mA$			_	0.15	0.5	
Time	H→L	t _{pHL}		_	0.15	0.5			
Output Rise Time	tput Rise Time t_r $V_{CC1} = +15V, V_{EE1} = -15V$ $R_1 = 200\Omega$		_	_	_	μο			
Output Fall Time		t _f		-	_	_	_		
Common Mode Trans Immunity at High Leve	Common Mode Transient mmunity at High Level Output C_{MH} 7 $V_{CM} = 600V$, $I_F = 8mA$ $V_{CC} = 30V$, $Ta = 25^{\circ}C$		-5000	_	_	V/µs			
Common Mode Transient Immunity at Low Level Output		C _{ML}	7	$V_{CM} = 600V$, $I_F = 0mA$ $V_{CC} = 30V$, $Ta = 25^{\circ}C$	5000	_	-	V/µs	

*All typical values are at Ta = 25° C

TEST CIRCUIT 1 :

TEST CIRCUIT 2 : IOPL

TEST CIRCUIT 3 : IOPH

TEST CIRCUIT 4 : VOH

TEST CIRCUIT 5 : VOL

TEST CIRCUIT 6 : tpLH, tpHL, tr, tf

TEST CIRCUIT 7 : CMH, CML

 $C_{ML}(C_{MH})$ is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

