
ZVS Frequency Analysis of a Current-Fed Resonant Converter 

Aiguo P Hu John T Boys Grant A Covic 

Acapulco, MEXICO The Electical and Elctronic Department 
October 15 - 19 University of Auckland 

New Zealand 

a. hu0,auckland.ac.nz 

Abstract- ZVS (Zero Voltage Switching) is a basic control Transfer) system [3]. It is also useful for system modeling 
Strategy for normal current-fed DC-AC Parallel  ant and analysis. For example, the actual operating frequency is 
converters. However, the ZVS operating frequency and how it needed for GSSA (Generalized State Space Averaging) 

modeling of current-fed resonant converters, otherwise trial varies with the load and system parameters remains an unsolved 
theoretical problem of practical importance. After identifying 
different types of resonant frequencies of a typical resonant tank and Or methods have to be [41 to 
of a current-fed resonant converter, this paper gives both approach the right 
accurate numerical solution and approximate analytical SOhtiOn This paper identifies different types of resonant 
of ZVS frequencies. The analysis is based on a Step C ~ r e n t  frequencies and analyses the steady state ZVS operating 

analysis is proven with PSpice simulation results. 
injection model in a half-switching cyc1e. The Of the frequency of a typical current-fed parallel resonant converter. 

I. INTRODUCTION 

Resonant converters are becoming popular mainly for two 
reasons: quasi-sinusoidal waveforms can be generated with 
less harmonics and EM1 (Electromagnetic Interference), and 
switching devices can be turned on or off at natural zero 
voltage or zero current crossing points resulting in lower 
switching losses and higher efficiency. For current-fed, 
parallel resonant DC-AC converters such as that shown in 
Fig. 1, an additional advantage is that the reactive power 
circulates inside the parallel resonant tank without going 
through the switching network and the DC power supply. 
Hence the current rating of the switching devices can be 
smaller and.the conduction loss can be greatly reduced at a 
given power level. A basic requirement for this type of 
converter is that the switches must operate at zero voltage 
crossing points, otherwise shorting of the resonant capacitors 
will occur and a large shorting current may cause the 
switching devices to fail. In other words, ZVS is critical for 
the safe operation of these converters. 

Many control techniques, such as PLL (Phase Lock Loop) 
controllers, current or voltage error based VCO (Voltage 
Controlled Oscillator) integral controllers, have been 
developed to achieve ZVS in the steady state [l]. Complete 
dynamic ZVS, including self start-up, is also achieved using 
initially forced DC current and instant zero voltage detection 
[2]. Now it is of practical and theoretical interest to know at 
what frequency the system will actually operate and how this 
is affected by load and system parameters. This knowledge is 
required for EMC (Electromagnetic Compatibility) analysis 
and can be used to improve the circuit design, such as the 
secondary pick-up tuning design of an IPT (Inductive Power 

11. RESONANT FREQUENCIES AND zvs FREQUENCY 

A .  A Typical Current-Fed Resonant Converter 

Fig. 1 shows a typical current-fed full-bridge parallel 
resonant converter. A series load resistor is assumed as in the 
load situation of IPT (Inductive Power Transfer) applications. 
This assumption is acceptable when an IPT system is 
essentially tuned and the total pick-up load is not too heavy to 
cause detuning problems. IPT system detuning is possible 
and has been observed [5]; however, the frequency shift 
range analysis required to account for this is beyond the 
scope of this paper and needs further investigation. In Fig 1, a 
parallel resonant tank consisting of an inductor L, a load 
resistor R, and a tuning capacitor C is formed. A DC inductor 
Ld links a DC power supply Ed, and a full bridge inverting 
network comprising two switching pairs; S 1, S 1 ’ and S2, S2’. 
The two switches in the same pair function simultaneously, 
when one pair is on the other pair will be off, and all such 
commutations are controlled to occur at the zero voltage 
crossing points of the resonant voltage v,. As a result the 
switching losses are minimized and the shorting of the 
resonant capacitor, which is a potential danger to the 
switching devices, is avoided. 

The resonant tank alternately receives current injection 
from the DC link via an inverting network. But because the 
average voltage across the DC inductor Ld is zero in the 
steady state, the average resonant voltage vc, over a half- 
switching cycle will be equal to Ed. Consequently, the peak 
value of the quasi-sinusoidal waveform of vc, caused by the 
resonance, will be approximately Ed multiplied by d 2 .  With 
this driving voltage, a quasi-sinusoidal current can be 
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generated in the resonant inductor L and the power is 
transferred from DC supply to the load. 

Fig. 1. A current-fed resonant converter 

B. Different Types of Resonant Frequencies 

For the series loaded parallel resonant tank as employed in 
Fig. 1, different resonant conditions may occur at the 
following frequencies. 

Zero Phase Anale Frequencv 

If we have a pure sinusoidal voltage or current excitation at 
the input to the parallel resonant tank, then at a certain 
frequency the voltage and current will be in phase in the 
steady state. This frequency corresponds to zero impedance 
phase angle and unity power factor. The reactive power 
inside the resonant tank circulates only internally without 
exchange with the outside. This is the situation normally 
referred to as resonance, and this resonant frequency is only 
determined by circuit parameters: 

w, = w ,  J-F 1-- (1) 

where ao=l/  E , and quality factor Q= 6 / R =aoL/R. 
Note here Q is in fact a defined ratio and it is not exactly the 
same as the circuit quality factor at resonance, which should 
be a,L/R. However, they are very close when Q is high. 

Maximum Inductor Current Freauencv 

Strictly speaking, the zero phase angle resonance does not 
necessarily mean that the current flowing through the 
resonant inductor, corresponding to the track power supply 
current in an IPT system [ 11, reaches its maximum value. For 
a given sinusoidal current source, it can be proven that the 
steady state maximum inductor current of the parallel 
resonant tank (series loaded ) occurs at frequency 

where a. and Q have the same meaning as in (1). 

Natural Oscillation Freauencv (Free Rinainz Freauencv) 

If the resonant circuit has initial energy, for example the 
resonant inductor has an initial current of iL(0), or the 
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capacitor has an initial voltage, then even when there is no 
external excitation, the resonant tank may oscillate naturally. 
The natural oscillation frequency, sometimes called free 
ringing frequency, is determined by the eigenvalues of the 
differential equations used to describe the resonant circuit. It 
can be shown that the natural frequency of the parallel 
resonant circuit used in Fig. 1 is: 

where a. and Q have the same meaning as in (1). 

Undamved Natural Freauencv 

As described in [6], different resonant frequencies may be 
defined for one single circuit. While the three frequencies 
discussed above are all called resonant frequencies, the first 
one, zero phase angle frequency, is most commonly accepted. 
The first two situations are only valid for steady state 
sinusoidal AC analysis, while the last situation is related to 
the natural component of the complete system dynamic 
solution. One important characteristic in common is that the 
resonant frequencies are determined only by the system 
parameters and have nothing to do with the external 
excitations. 

It is interesting to note that if Q is high the three 
frequencies become very close. For a lossless resonant 
circuit, i.e. R=O and Q=w, all the above three frequencies 
converge to: 

WO = 1IJLc. (4) 

This frequency is called undamped natural frequency. 

C. ZVS Frequency 

For the practical nonlinear current-fed resonant converter 
shown in Fig. 1, the commutation of the switching devices is 
controlled at zero voltage crossing points. In consequence, 
ZVS operating frequency is of primary importance. 

As discussed before, if the excitation to the resonant tank is 
sinusoidal, then at zero phase angle frequency the voltage and 
current are in phase under steady state conditions. This means 
the ZVS frequency is the same as the zero phase angle 
resonant frequeflcy a,. But in the case of current-fed 
inverters, , the injection current into the resonant tank is 
essentially square wave rather than sinusoidal in the steady 
state. In addition to the fundamental, it also includes higher 
order harmonic components. As the circuit has an unique zero 
phase angle resonant frequency, the fundamental and the 
harmonics cannot result in circuit resonance at the same time. 
Therefore, considering the fundamental and harmonic 
components together, the steady state ZVS frequency will be 
different from the zero phase angle resonant frequency a, as 
shown in (1). 



The free ringing frequency, wf, only reflects the natural 
oscillatory component of the dynamic solution; the actual 
ZVS frequency is determined by the complete solution of the 
voltage response. Therefore, a complete dynamic analysis is 
necessary to find the ZVS frequency. 

111. STEADY STATE zvs FREQUENCY ANALYSIS 

A .  Completete Resonant Voltage Solution 

For the converter as shown in Fig. 1, if the inductance of 
the DC inductor is much larger than the resonant inductor L, 

injects alternative square wave current into the resonant tank, 
where the magnitude of the of this current is determined by 

in the steady state the switching network approximately ._ '  
50 1M 

t i -4 

-10 

Fig. 3. Complete solution of voltage and current the load. 

I IL(O) - L 
I I -  I 

Fig. 2. Step current injection model 

Fig. 2 shows a parallel resonant tank with a step current 
excitation. This model essentially describes the situation in a 
half-switching period of a practical current-fed converter. 
From this model, we can write the state space equations as: 

If variable v, is considered only, its second order ordinary 
differential equation can be written as: 

LC%+RC+, = I R  

Considering , the initial condition v,(0)=v,~,o=O, 
dv,. 
- dl 

above equation: 
we can get the complete solution of the 

v, ( t )  = s e - ' ' T  sin(w,t - 6) + IR , (7) 

where of is the free ringing frequency as defined in (3), 
T=2L/R is the time constant, and 8 is an initial phase angle: 

of IRC ' = tan-' i,(O)+I(l-RCIT) . 

0 

Equation (7) shows that the complete solution for the 
resonant capacitor voltage v, has two parts, as also illustrated 
in Fig. 3. The first part is the transient component with 
oscillatory decay; the second part is the forced component, 
which is DC offset. Because of this offset, the time between 
the zero crossing points becomes larger than the free ringing 
half-period tf, as can be seen in Fig 3. 

B. Numerical Analysis 

the capacitor voltage, so let vc=O, and equation (7) becomes: 

(9) 

As ZVS frequency is determined by the zero crossing of 

sin(w t ,  - 8) + sin 8 = 0 . e-tz IT  

The solution of this equation is the ZVS half-period, t. 
What we need to know to solve this equation are circuit 
parameter L, C, load R (corresponding to a certain Q), the 
injection current I, and the initial current iL(0). Actually only 
the ratio iL(0)/I, rather than I and iL(0) individually, 
contributes as (8) can be rewritten as: 

./4Qz-l 
2Q2(Ki+l ) - l  ' e = tan-' 

where Ki=iL(0)/I, and Q(=ooL/R) is the same as defined 
before. 

Now the problem is that practically the injection current is 
a positive and negative square current injection in the steady 
state, and the initial inductor current iL(0) is a dependent 
value which can not be defined arbitrarily. To find this initial 
value, and thus the ratio Ki for a given I, the following 
complete dynamic current analysis is done. 

Similar to the voltage solution, the complete inductor 
current solution can be expressed as: 
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Because the process is actually repeated each half cycle 
with only a polarity change, in the steady state, the 
relationship iL(tz)=-iL(0) must hold (as shown in Fig. 3). This 
condition can be further expressed as: 

K,  -1 
sin(u,t, - 4.) + - sin 4. = 0 1 T 

K ,  +1 

Although accurate analytical analysis is very difficult, 
theoretically the solutions of t, and another variable Ki are 
governed by (9) and (13) with 0 and 0i as interim variables 
which are associated with the auxiliary equations (10) and 
(12). With the help of modem computing techniques, 
numerical solutions of such problems can be implemented 
using many available software packages such as MATLAB 
and C. A computer program has been developed to do the 
analysis and its flow chart is shown in Fig. 4. 

m (with L.C given) 

A given load R + 
Q=o ,UR 
T=2UR 

f 
f f  =A= 

Tty initial K,(O)=Q 

+ 
Calculate Ki(tZ) 

2 3  fz=l It( 2 

Fig. 4. Flow chart of a numerical analysis 

The program starts with given circuit parameters L and C, 
so the undamped natural frequency oo and its half-period tO 
can be determined. Then we can choose a load R and 
calculate Q, time constant T, as well as the free ringing 
frequency ff. Then comes the most important part of the 
algorithm. We have an initial try Ki(O)=Q to start the 
iteration. With Ki(0) known, a numerical solution t, can be 
obtained by finding the zero of equation (13) around t=b, 
then with this t, known we can calculate Ki(tz)=iL(tZ)/I using 
(1 1). The next step is to check whether Ki(t,) and -Ki(O) have 
converged to a given error limit, e.g. If the answer is 
YES, the program terminates with ZVS frequency f, 
calculated; otherwise, the iteration repeats with Ki(0) updated 
at half an error step each time until a converged solution is 
obtained. 

C. Approximate Annlyticnl Analysis 

An approximate analytical result can be very helpful in 
providing a better starting guess of the initial values and the 
range of the final solutions for the numerical analysis. To 
achieve such a result, equation (9) can be rewritten in the 
following format: 

sin(w,t - 6)  = - sin &?IT , (14) 

so that we can see that the solution is the intersection point 
of a sine function curve and an exponential function curve. 
Using Tailor's series and ignoring the high order items: 

sin 6' = 6 and e' = 1 + t 1 T ,  we can get the following 
approximate analytical solution: 

x.26 
of - B I T  

t ,  = 

Thus, the ZVS frequency can be expressed as: 

of - B I T  
w, = 

1+261n 

(15) 9 

Furthermore, by considering the input and output power 
balance, the current ratio can be estimated as: 

K i  = L , / z .  

With this estimation, equation (10) becomes: 

7z 

aJ4Q2-1 B = tan-' S Q 3 f i + a ( 2 Q 2 - I )  

Equation (16) and its auxiliary equation (18) give direct 
analytical ZVS frequency solution without iterative numeric 
computation. 
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IV. ANALYSIS RESULTS AND DISCUSSIONS 

Fig. 5 shows the relationship of ZVS frequency versus Q. It 
can be seen that the numerical results are quite accurate as 
they are very close to the direct waveform measurements 
from element level PSpice simulations which have been 
found to be in agreement with practical experiments. 

2 8500 

BODO 

(L=SOuH, C=5.1uF) 

2 3 4 5 6 7 8 9 10 
quality factor 0 

7500 

Fig. 5.  ZVS frequency results 

Fig. 5 also shows that the analytical results are quite good 
for large Q’s, but the error becomes larger when Q is smaller. 
There are two main reasons for this: the assumption made for 
Tailor’s series for solving the nonlinear equation (14), and the 
estimation of Ki as shown in (17). Both procedures are only 
valid for large Q’s. Hence the error becomes larger as Q 
reduces. 

I 
70 I 

2 3 4 5 6 7 8 9 I O  
q“.lMy I?.Sl., 0 

Fig. 6. Different resonant frequencies 

Fig. 6 compares the different resonant frequencies in the 
same graph. It can be seen that all the resonant frequencies 
tend to converge to the undamped natural frequency 1OkHz 
when Q is large. However, it is clear that the differences are 
quite large for small Q’s, ZVS frequency being the lowest 
and free ringing frequency the highest. The maximum 
difference can as high as 30%. An important aspect is that the 
critical load conditions of the resonant situations are 

different. From (1) to (3), we can see that the minimum 
requirement of Q for free ringing, maximum inductor current 
resonance, and zero phase angle resonance is respectively 
0.5, 0.707, and 1. Due to the DC offset and the decay in a 
half-switching cycle (as shown in Fig. 3), a higher Q is 
required to maintain the ZVS condition. It is found from the 
numerical analysis that when Q is smaller than 1.86, there 
will be no zero crossing solution, which means a steady state 
ZVS condition does not exist at all. 

V. CONCLUSION 

Four definitions of resonant frequencies and their critical 
resonant conditions available for a parallel resonant tank have 
been identified in this paper. The natural frequency, also 
called free the ringing frequency, reflects the natural 
oscillatory property of the electric and magnetic energy 
circulation in a LC circuit; while the zero phase angle 
resonant frequency and the maximum inductor current 
resonant frequency are both based on the steady state solution 
with sinusoidal excitation. At zero phase angle resonant 
frequency, the reactive energy circulates inside the resonant 
tank only and the terminal voltage and current are in phase. 
Meanwhile, at the maximum inductor current resonant 
frequency, the inductor current reaches its maximum 
magnitude in the steady state. 

For a current-fed resonant converter, the operating 
frequency is actually the ZVS frequency, which is different 
from other resonant frequencies. Based on a complete 
dynamic analysis of a step current injection model in a half- 
switching period, a numerical computation algorithm and an 
approximate analytical equation have been obtained for the 
ZVS frequency analysis. It has been shown that the numerical 
solutions are quite accurate as they are almost the same as the 
component level PSpice simulation results, and the analytical 
analysis gives good solutions for large Q’s. 
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