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ABSTRACT 
 
 

As part of a one-year Department of Defense 
demonstration project, Proton Exchange Membrane 
(PEM) fuel cell systems have been installed at three 
residences to provide electrical power and waste heat for 
domestic hot water and space heating.  The 5 kW-capacity 
fuel cells operate on reformed natural gas.  These systems 
operate at preset levels providing power to the residence 
and to the utility grid.  During grid outages, the residential 
power source is disconnected from the grid and the fuel 
cell system operates in standby mode to provide power to 
critical loads in the residence.  One of the units was 
equipped with a Supervisory Control and Data 
Acquisition system (SCADA) that was used to collect 
electrical and thermal load profiles. 

This paper describes the ability to model electrical 
and thermal loads for improved control and load 
management for very small systems, using limited easily 
obtainable forecast data. 

 
1.  INTRODUCTION 

 
 

 Fuel cell technology holds promise for more 
efficient conversion of fuel to electrical power and heat.  
The major challenge is to develop systems that perform as 
desired.  Gunes and Ellis (2003) use mathematical models 
to evaluate energy, environmental, and economic benefits 
of residential fuel cell combined heat and power systems, 
concluding that these systems may offer a technically 
feasible alternative to conventional grid connected energy 
systems in the residential sector. 

The United States Department of Defense (DoD) 
supports research in proton exchange membrane (PEM) 
fuel cells as a potential alternative power source for 
military applications.  Military installations located 
throughout the United States require power and heat for 
fixed facilities such as offices and residences.  As such, 
recent funding has targeted PEM fuel cells for residential 
application.  According to Holcomb, et al. (2004), the 
goals of this funding program are to assess fuel cells for 
providing power in support of sustainable design and to 
study their viability as an alternative power source to the 
DoD; to study the effect fuel cells have on the DoD’s 
ability to construct, operate, and maintain facilities; to 
assess installation and operation issues associated with the 
use of PEM fuel cells; and to stimulate growth in the fuel 
cell industry. 

As part of a one-year DoD demonstration project, 
identical PEM fuel cell systems have been installed at 
three residences located on a military installation in New 
York to provide electrical power and waste heat for 
domestic hot water and space heating.  The 5 kW-capacity 
fuel cells operate on reformed natural gas.  These systems 
operate at preset levels providing power to the residence 
and to the utility grid.  During grid outages, the residential 
power source is disconnected from the grid and the fuel 
cell system provides power to critical loads in the 
residence.  Under this project, the fuel cell manufacturer 
is responsible for fuel cell system installation, all system 
operation and maintenance, and site restoration.  A 
significant requirement of the project is that the fuel cells 
achieve an overall availability of at least 90% for the 
demonstration period. 

 

 



2.  SYSTEM DESIGN 
 
 
 Figure 1 provides a simplified schematic of the fuel 
cell system.  An autothermal reformer converts natural 
gas to hydrogen rich reformate.  Deionized water 
provided from a storage tank is required for the reforming 
process.  The fuel cell stack operating on air and 
reformate produces DC power.  A cooling loop maintains 
the desired stack temperature by transferring energy from 
the stack either to the household water supply loop or to 
the environment via heat exchangers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Fuel cell system schematic 
 
 

All three fuel cell systems are rated at 5 kW power 
output with user selected settings of 2.5, 4, and 5 kW.  
The fuel cell system’s integrated battery allows the 
system to provide transient load following capability 
when the fuel cell system operates in standby mode.  An 
inverter converts the DC supplied electricity to usable AC 
electricity for the residence.  The fuel cells are configured 
to continually operate as standby power.  With this 
configuration, power is continually supplied in parallel 
with grid-produced electricity.  Any fuel cell system 
generated power that is in excess to residence demand is 
fed into the grid.  During periods of grid outage, an 
automatic switch disconnects the fuel cell system from the 
grid and the fuel cell system provides power to the 
residence in response to the demand.  When grid power is 
reestablished, the switch automatically synchronizes with 
the grid and then reconnects the fuel cell system. 

Fuel cell heat recovery was designed for hot water 
flow from the fuel cell unit to the hot water heater and 
then to the space heater.  This was done since domestic 
hot water normally requires a higher temperature than 
space heating and it simplifies control.  Figure 2 provides 
a schematic of the design. 
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Fig. 2  Thermal heat recovery system 

 
All three residence basements are unheated and 

unfinished with exposed piping in the ceiling.  Space 
heaters (heat exchangers) were installed in all three 
basements and incorporated into the domestic water lines.  
Unfinished ceilings allowed easier installation of piping 
compared to the installation requirements in a finished 
basement.  However, installation of the system as a 
retrofit to an existing home rather than installation as part 
of construction of a new home provided challenges 
associated with the constraints of existing structural 
components and lines.  All new lines were run from the 
fuel cell unit located outside the residence through a 
basement window pane replaced by plywood to interior 
connections.  Massie, et al. (2003) discuss design 
considerations in greater detail. 

3.  MODELING 
 
 

The goal for developing models was to determine if 
artificial intelligence techniques, specifically neural 
networks (NN), could accurately model the thermal and 
electrical demand profiles.  A supervisory control system 
might be better able to predict thermal or electrical loads 
in advance, to adjust setpoints for better utilize the 
system.  This also has the potential to maximize the use of 
thermal or even electrical storage when the unit is grid 
disconnected in an electrical grid contingent condition.  It 
might also be economically attractive to be able to predict 
loads when electrical buy and sell utility rates are 
different.  Thermal storage was not available and thus not 
a part of the demonstration. 

Hermansson (2004) performed a similar analysis, but 
used many more input variables to include total load 
(kW), outdoor temperature (°C), temperature gradient 
(°C), temperature delay (°C), the time variables hour and 
day and heated area (m2).  Area was tested when data 
from more than one house were used as inputs.  
Temperature gradient was defined as the hourly 
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difference in indoor temperature to account for diurnal 
heat capacity and building transients.  The larger number 
of inputs was not used for this study since they generally 
would not be available for load predictions. 

mapping. The size of input and output vectors can vary, as 
can the number of nodes and layers.  More nodes and 
weights in the network architecture allows for more 
complex modeling of nonlinear systems, but it is 
computationally intensive and may result in a network 
that does not obtain a generalized solution.  Neural networks are a form of artificial intelligence 

that consists of nonlinear computer algorithms that 
“learn” with feedback to reproduce the existing 
relationship between input and output variables of 
complex non-linear systems (Rumelhart and McClelland 
1986, Cowan and Sharp 1988, Wasserman 1989, and 
Bishop 1995). NN are particularly well suited for the type 
of problems posed by equipment modeling because they 
are easily configured to map several input variables to 
multiple output variables.  Several types of NN structures 
are available; this study used a cascaded, feed-forward 
network without recursion. This type of NN has a 
structure similar to that of Fig. 3, where nodes (shown as 
circles), also known as neurons, within each layer are 
connected by weighting factors (shown as lines).  The  

The development of a NN requires selection of the 
number of layers, the number of nodes in each layer, the 
activation function of each layer, and the training 
algorithm, which is used to minimize the error between 
the input and output vectors, Wasserman (1989).  Once 
the architecture has been determined, the network is 
trained and then tested. In the training (or learning) phase, 
the NN is taught to match a known set of corresponding 
input and output values in order to “learn” the relationship 
existing between them.  At the same time, the training 
algorithm modifies the weights associated with each 
neural connection.  Training is the most time-consuming 
phase of NN development and it is critical for the success 
of the neural network as a predictive model. In the testing 
phase, also known as generalization, the NN is tested 
using another known set of corresponding input and 
output values (none of which belong to the training set) 
and to evaluate its performance is evaluated.  
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Input variables for modeling were restricted to day 
type, either weekday or weekend, time of day, high and 
low ambient temperature and recursion of the previous 
two recorded power or thermal loads.  Recursion is a 
technique where the algorithm uses output from an 
iteration as input for a following iteration.  It often 
improves accuracy since it provides recent predicted 
information to the algorithm.  The limited input variables 
were chosen since they are readily available. 

Fig. 3. Generic view of NN layered architecture. 
 
goal of the network of layers is to map the relationship 
between the input vector and output vector.  The nodes 
collect information from weighted upstream node output, 
process the information using an activation function, and 
pass the information to the next layer using more weights. 
Use of a nonlinear activation function, such as the 
sigmoid function, Massie (2001), results in nonlinear  

4.  RESULTS 
 
Results indicate that it is difficult to predict the electrical 
and thermal loads of a residence given limited input 
information.  Figure 4 shows actual and predicted  
 
 

Fig 4. Actual vs. predicted domestic hot water usage 
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domestic hot water use over a four day period.  It appears 
that a neural network, with the input information listed 
above is unable to provide detailed predictions of 
domestic or whole house thermal loads.  The loads for an 
individual house are transient, sporadic and sensitive to 
the behavior of the occupant.  Figure 5 shows the 
electrical demand profile for a one-day period.  This too 
was unable to be accurately modeled in a predictive 
manner.  

As was the case with Hermansson (2004), we found a 
three-fold increase in the ability to model the total thermal 
load (space heat plus domestic hot water).  Although 
mathematically this looks promising, the relative constant 
nature of the total load profile makes this analysis 
uninteresting. 

 

N o ve m b e r 8 ,  2 0 0 3

0

1

2

3

4

5

6

7

1 2 :0 0 :0 0  A M 4 :4 8 :0 0  A M 9 :3 6 :0 0  A M 2 :2 4 :0 0  P M 7 :1 2 :0 0  P M 1 2 :0 0 :0 0  A M 4 :4 8 :0 0  A M

T im e

E
le

ct
ric

 D
em

an
d 

[k
W

]

 
Fig 5. Electrical demand profile 

 
5. FUTURE WORK 

Similar neural network models were created for a 
campus electrical and thermal load profiles.  Figure 6 
shows the actual and predicted load profiles over a 12-day  

 

period.  Predictions varied from actual electrical demand 
by only 1.6 percent.  Since these predictions are quite 
accurate, the next step might be to investigate the 
additional information needed for small-scale power 

 

Fig 6. Campus electrical load prediction  
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predictions.  Another corollary would be to determine if 
there was a threshold at which different modeling 
methods should be applied.  Olofsson (1997) 
demonstrated that aggregated loads can be expected to 
decrease the load prediction errors by one-third 
 

6.  CONCLUSIONS 

From this research it was found that very small 
electrical and thermal load predictions are difficult to 
predict with any reasonable accuracy.  Loads have a 
tendency to swing considerably with a single household 
activity and unless the activity can be precisely identified, 
general information such as outside ambient temperature 
or time stamp is not sufficient to predict loads. With 
increased input variables, the accuracy of load predictions 
could be increased, but the information required to predict 
those future loads is generally not available. 
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