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ONE-CYCLE CONTROL OF SWITCHING CONVERTERS

Keyue M. Smedley1 and Slobodan Ćuk

Power Electronics Group
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Abstract

A new nonlinear control technique is conceived to control the duty-
ratio d of the switch in real time such that in each cycle the average
value of the chopped waveform at the switch rectifier output diode is
exactly equal to the control reference. Experiments demonstrate that
switching converters with this new One-Cycle Control reject input-
voltage perturbations in only one switching cycle and follow the con-
trol reference very quickly. This new control method is very general
and directly applicable to all dc-to-dc switching converters in either
pulse-width-modulated or quasi-resonant modes.

1 Introduction

Switching converters are pulsed and nonlinear dynamic systems.
There has been no standard way to model and control nonlinear sys-
tems. At present, most control schemes are approached by first lin-
earizing the governing equations and then applying a linear feedback
technique. This approach greatly restricts the capability of switching
nonlinear systems.

The objective of this work is to achieve large-signal nonlinear con-
trol of switching converters. The motivation is that pulsed nonlinear
systems under pulsed nonlinear control should be more robust, have
faster dynamic response, and better input-perturbation rejection than
the same system under linear control. A new pulsed nonlinear control
technique, One-Cycle Control, is introduced in this paper. This tech-
nique takes advantage of the pulsed and nonlinear nature of switching
converters and achieves instantaneous control of the average value of
the chopped voltage or current. This technique provides fast dynamic
response and good input-perturbation rejection. It is suitable for
the control of pulse-width-modulated (PWM) converters and quasi-
resonant (QR) converters.

In Section 2, the One-Cycle Control theory is developed based on
the analysis of the basic buck converter with conventional feedback
control and current-mode control. In Section 3, experiments were
conducted to verify the feasibility of One-Cycle Control of the buck
converter. In Section 4, the dynamic behavior of One-Cycle Controlled
switching converters is studied. The Ćuk converter is used as an ex-
ample for the analysis and experiments. In Section 5, the One-Cycle
Control theory is generalized to control all types of switching convert-
ers: constant frequency, constant turn-on time, constant turn-off time,
and variable switches. Conclusions and some further discussions are
given in Section 6 .

2 Development of New Control Technique

A new control technique is developed based on the fundamental study
of the basic buck converter with conventional feedback control and
current-mode control. The duty-ratio of the conventional control is a
linear function of the control reference, the duty ratio of the current-
mode control contains some nonlinear state feedback, while the duty
ratio of the new control technique is a completely nonlinear function
of the control reference and some state variables.

1Keyue Smedley is currently with the Superconducting Super Collider Lab in
Texas.

2.1 The Basic Buck Converter

The simplest configuration buck converter, shown in Fig. 1, is used
as an example to study the features of control techniques mentioned
above. The DC line input voltage is vg and the switch S is operated

Figure 1: The Buck Converter.

with a constant frequency fs = 1
Ts

. When the transistor is ON, the
diode is OFF, and the diode-voltage vs is equal to the input voltage vg.
When the transistor is OFF, the diode is ON, and the diode-voltage vs
is zero. The DC line-input voltage is chopped by the switch resulting
in a chopped waveform vs. The average, or DC, of this waveform is
Vs.

Vs =
1

Ts

∫ Ts

0
vsdt = dvg (1)

The LC low-pass filter transmits this value to the output while reject-
ing most of the undesired switch frequency fs. Therefore, the output
voltage contains the desired DC value dvg and a small residual switch
ripple. The buck converter has a conversion rate equal to its duty-
ratio d. By controlling the duty-ratio d, the output DC voltage is
controlled.

2.2 Conventional Feedback Control

In conventional control, the duty ratio pulses are produced by compar-
ing the control reference signal with a saw-tooth signal. As a result,
the control reference signal is linearly modulated into the duty ratio
signal:

d = αvref , (2)

where α is a constant. With feedback, the above equation becomes

d = α(vref − vo) (3)

A buck converter with conventional feedback is shown in Fig. 2.
The duty-ratio is modulated in the direction to reduce the error.

Suppose the input voltage is perturbed, for example by a large step
up, the duty-ratio control does not see the change instantaneously
since the error signal must change first. Therefore, the output voltage
jumps up and the typical output voltage transient overshoot is ob-
served as illustrated in Fig. 3. The feedback signal is compared with
the reference, and the error is amplified to control the duty-ratio. The
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Figure 2: The Conventional Feedback Buck Converter.

Figure 3: The Feedback Transient.

duration of the transient is dictated by the loop-gain bandwidth and
a large number of switching cycles is required before the steady-state
limit is reached. The output is always influenced by the input-voltage
perturbation. Furthermore, the addition of an input filter might cause
oscillations due to interactions with the originally stable closed-loop
buck regulator.

2.3 Current-Mode Control

Current-mode control, shown in Fig. 4, utilizes some of the pulsed
and nonlinear nature of the switching converter. The switch current is
sensed and compared with the control reference. A constant frequency
clock pulse turns the transistor on. When the switch current reaches
the control reference the comparator changes its state and turns the
transistor off. The duty ratio signal is determined by the following
relation, which contains some nonlinear state feedback.

iL +m1
dTs
2

= iref , (4)

where iL is the inductor current and m1 is the rising slope of the
inductor current, for the buck converter m1 =

vg−vo
L .

Figure 4: Current-Mode Control of the Buck Converter.

When the input voltage is perturbed, for example by a step up,
the current ramp immediately increases to control the duty-ratio, as

Figure 5: Current-Mode Control of Buck Converter with Artificial
Ramp.

shown in Fig. 5.

dn+1 − dn ≈ − vo
vg − vo

(dn − dn−1) (5)

dn |n=∞ =

{
dnew

vo
vg
< 0.5

oscillates vo
vg
> 0.5

. (6)

When vo
vg
< 0.5, the transient process converges, however, it takes

several cycles for the system to reach the new steady state. When
vo
vg
> 0.5, the transient process does not converge; an artificial ramp

can be employed to stabilize the system. If the artificial ramp is chosen
to be exactly equal to the falling slope sf of the switch current, the
system fully rejects the input voltage perturbations. The falling slope
of the switch current of the buck converter is determined by the output
voltage and the output filter inductance L.

sf =
vo
L

(7)

When the output voltage changes, the artificial ramp must change
accordingly; therefore, only the buck converter operating at a constant
output voltage satisfies this condition. For converters other than the
buck converter the falling slope of the switch current may be a function
of the input voltage, the voltage across the energy-transfer capacitor,
and/or the output voltage. Therefore, the artificial ramp can no longer
match the falling slope of the switch current. Due to this mismatch,
current-mode control is unable to reject input-voltage perturbations.

2.4 One-Cycle Control

Let’s go back to the original buck converter shown in Fig. 1. Close
observation of the diode voltage leads to an interesting discovery. The
output voltage of the buck converter is the average value of the diode
voltage, which is equal to the area under each diode-voltage pulse
divided by the switching period.

Vs =
1

Ts

∫ Ts

0
vsdt =

1

Ts

∫ dTs

0
vgdt (8)

Figure 6: One-Cycle Control of Buck Converter.

A new control scheme, shown in Fig. 6, is conceived for constant
switching frequency.
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The controller uses constant frequency pulses to simutaneously turn
ON the transistor and activate the integrator. The diode voltage is
integrated and compared with a control reference. As soon as the
integrated diode voltage reaches the control reference, the transistor
is turned OFF and the integrator is reset to zero.

If the control reference is constant, then the average of the diode
voltage is constant; therefore, the output voltage is constant, as shown
in Fig. 7. The slope of the integration is directly proportional to the
input voltage. The integration value is continuously compared with
the constant control reference. If where the input voltage is higher,
the slope of the integration is steeper; therefore, the integration value
reaches the control reference faster. As a result, the duty ratio is
smaller. If the input voltage is lower, the duty ratio is larger.

Figure 7: Constant Control Reference.

If the control reference is changing, then the average of the diode
voltage is equal to the changing control reference in each cycle; there-
fore, the output voltage equals the control reference. Fig. 8 shows the
case where the control reference changes its value in a single step up.
The integration value of the diode voltage keeps up with the control
reference immediately.

Figure 8: Variable Control Reference.

With this control scheme, the duty ratio d is determined by

1

Ts

∫ dTs

0
vgdt = vref (9)

which is a nonlinear function of the input voltage and the control
reference. If this control concept is practically realizable, the transient
of the average value of the diode voltage would be completed within
one switching cycle. This control scheme is defined as One-Cycle
Control.

3 Feasibility of One-Cycle Control

Experiments were conducted to verify the feasibility of One-Cycle
Control. According to the analysis of last section, the diode-voltage
of the One-Cycle Controlled switching converter is exactly equal to
the control reference; therefore, the average value of the diode voltage
should completely reject the input voltage perturbations and instantly
follow the control reference. The circuit used for the experiments
is shown in Fig. 9. The operating condition for the experiments is
Vg = 15V , fs = 30kHz, L2 = 0.48mH, C2 = 30µF , R = 25Ω. A, B,
C, D, and E are the test points used in the experiments.

The diode-voltage is fed back to the real-time integrator. The in-
tegration value is compared with the control reference in real time.

When the output voltage of the integrator reaches the control refer-
ence, the transistor is turned OFF and the integration is immediately
reset to zero to prepare for the next cycle.

Figure 9: One-Cycle Control Buck Converter.

In each cycle, the diode-voltage waveform may be different; however,
as long as the area under the diode-voltage waveform in each cycle is
the same as the control reference signal, instantaneous control of the
diode-voltage vs is achieved.

3.1 Input-Voltage Perturbation Rejection

Suppose the control reference and the load are constant while the
input voltage vg is perturbed by an arbitrary pattern. The changing
diode-voltage is integrated in real time and the slope of the integrated
diode-voltage changes exactly and immediately when changes occur in
the diode-voltage. Therefore, the input voltage directly and instantly
affects the duty-ratio d such that the integration of the diode-voltage
is constant in each cycle. In Fig. 10 the input voltage is stepped

Figure 10: Rejection of Input-Voltage Perturbations.

up while the transistor is ON. The slope of the integration changes
immediately; therefore, the speed to reach the control reference is
adjusted instantaneously in order to keep the integrated value of the
diode-voltage the same as the control reference. Theoretically, this
control technique completely rejects input-voltage perturbations.

Experiment 1 The response of the diode-voltage to a step-up per-
turbation of the input voltage was measured. A step-up function from
10V to 20V was injected into the input voltage vg at Point C, while
the load and the control reference were held constant. The output
response of the integrator vint was measured at Point E. Note that
the input voltage has been reduced by a factor of two in order to fit it
into the plot of the experimental results shown in Fig. 11. The spikes
on the input voltage are caused by the non-zero output impedance of
the power source. These spikes did not influence the average value of
the diode-voltage, because the spikes are included in the real-time in-
tegration that is compared to the reference voltage. The input voltage
stepped up while the transistor was on and the slope of the integra-
tion of that cycle changed immediately; therefore, the duty-ratio was
adjusted instantaneously.
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Figure 11: Buck Converter Rejects a Step-Up in the Input Voltage.

3.2 Load-Disturbance Rejection

Suppose the control reference and the input voltage are constant,
whereas the load current is perturbed. If the input voltage source
has some output impedance, the amplitude of the diode-voltage will
be perturbed because the disturbing current generates a voltage dis-
turbance across the input impedance. This disturbance is equivalent
to the case when the input voltage is perturbed. One-Cycle control
completely rejects load disturbances at the diode-voltage, and keeps
the average of the diode-voltage constant. However, the output volt-
age is disturbed because of the dynamics of the output filter.

3.3 Following the Control Reference

Suppose the input voltage and the control reference are changing at
the same time. For example, the input voltage has a step up per-
turbation while the control reference changes sinusoidaly. The slope

Figure 12: Following the Control Signal and Rejecting the Input Volt-
age Perturbation.

of the integration becomes steeper when the amplitude of the input
voltage steps up. No matter how the integration slope changes, the
integration value still keeps up with the sinusoid control reference in
each cycle. Therefore, the average value of the diode-voltage does not
see the input perturbation and it follows the control reference in one
cycle, as shown in Fig. 12.

Experiment 2 The capability of the diode voltage to reject a step-up
input-voltage perturbation while following a sinusoidally varying con-
trol reference was measured. A step-up function from 10V to 20V was
injected into the input voltage at Point C, while the control reference
was varied with a sinusoid wave vref = 3.1 + 1.2sinωt, f = 10kHz,
at Point A. The output response of the integrator was measured at
Point E. Note that the input voltage has been reduced by a factor of
two in order to fit it into the plot of the experimental results shown in
Fig. 13. The slope of the integration changed immediately when the
input voltage stepped up. The envelope of the integration waveform
kept up with the control reference exactly. Therefore, the average of
the diode-voltage was not influenced by the input disturbance and was
fully controlled by the control reference.

Figure 13: Buck Converter Response to a Step-Up in the Input Volt-
age and a Sinusoid Change in the Control Reference.

4 Stability of One-Cycle Control

Experiments proved the feasibility of One-Cycle Control of the buck
converter. If converter is more complicated, such as the Ćuk converter,
will One-Cycle Control still work? Is the system globally stable?

Fig. 14 shows the One-Cycle Controlled Ćuk converter. The clock
triggers the RS flip-flop to turn ON the transistor with a constant
frequency. The diode-voltage is integrated and compared with the
reference voltage vref . When the integrated value of the diode-voltage

Figure 14: The Experimental Ćuk Converter with One-Cycle Control.

reaches the control reference, the comparator changes its state, which
resets the RS flip-flop and consequently turns OFF the transistor.
A,B,C,D, and E are the test points. The circuit operating condition
is Vg = 20V , fs = 50kHz, L1 = 2.39mH, L2 = 2.34mH, C1 = 100µF ,
C2 = 1000µF , RL1 = 1Ω, RL2 = 1Ω, R = 10Ω.

4.1 Global Stability of the One-Cycle Controlled Ćuk
Converter

With One-Cycle Control, the average value of the diode voltage of the
Ćuk converter is exactly equal to the control reference. Therefore, the
dynamics of the system is isolated by the diode voltage. The output
voltage is not influenced by the input filter dynamics or by the input
voltage perturbations. The Switching Flow-Graphshown in Fig. 15
reveals that the system is seprated into two subloops. The output
loop, which is a second-order linear system, is always stable. The
input loop is a non-linear second-order system[1]. The state-space
equations for input loop are obtained from Fig. 15.

L1
diL1

dt
= vg −RL1iL1 − (1 − d)vC1 (10)
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Figure 15: The Large-Signal Model of the One-Cycle Controlled Ćuk
converter.

C1
dvC1

dt
= (1 − d)iL1 − diL2 (11)

d =
vref
vC1

(12)

Two singular points, P1 and P2, and a singular line, vC1 = 0, are
easily found by setting the derivatives in Equations (10) and (11) equal
to zero.

The global dynamic behavior, simulated by the TUTSIM program,
is shown in Fig. 16. The x-axis represents the voltage across the input

Figure 16: The Global Dynamic Behavior of the One-Cycle Con-
trolled Ćuk Converter.

capacitor vC1 and the y-axis represents the input inductor current
iL1. The system is not globally stable. P1 is a stable spiral point and
P2 is an unstable saddle point. The region around P1 is the desired
working region. The lower part of the y-axis is an unstable region,
and the upper part of the y-axis is stable.

In practice, there is a physical restriction on the duty-ratio, Dmin ≤
d ≤ Dmax. When vC1 ≤ vref

Dmax
, the system operates at the maximum

duty-ratio Dmax; therefore, the state space Equations (10) and (11)
become linear with d = Dmax.

When vC1 ≥ vref
Dmin

, the system operates at the minimum duty-ratio
Dmin and the system Equations (10) and (11) becomes linear again
with d = Dmin.

If the maximum duty-ratio is artificially restricted such that
Dmax <

vref
V2

, then the unstable saddle point P2 = (V2, I2) is avoided
and the system is globally stable. The global dynamics are shown in
Fig. 17. The definition of the axes is the same as that in Fig. 16.

4.2 Local Dynamic Behavior

In a linear feedback system, an infinite loop-gain is required in order to
have instantaneous control over some variables. However, all physical
systems have limited bandwidth. Consequently, when the loop-gain
is higher than a certain value, the loop becomes unstable. Therefore,
it is impossible to achieve instantaneous control in a linear feedback
control system.

Figure 17: The Global Dynamic Behavior with Duty-Ratio Limita-
tion.

However, instantaneous control is possible in One-Cycle Controlled
converters. For the One-Cycle Controlled Ćuk converter, the average
value of the diode-voltage actually has an instantaneous response to
the control reference. To further understand One-Cycle Control, a
study of the linearized local dynamic behavior and the loop-gain is
necessary.

The output loop does not contain any switching branches, therefore,
it is a stable linear second-order system. The input loop is nonlinear.
Suppose the One-Cycle Controlled switch operates around the steady-
state point, Vref , VC1, and D with small-signal perturbations, v̂ref ,

v̂C1, and d̂. The linearized small-signal transfer function of the One-

Figure 18: The Loop-Gain of the One-Cycle Controlled Ćuk Con-
verter.

Cycle Controlled Ćuk converter with parasitic resistance is

G =
D(RD′2 −RL1D)

RD′3
(1 − DL1S

RD′2−RL1D
)(1 + C1RL2S)

1 + C1(RL1+D′2RL2)
D′2 S + L1C1

D′2 S2
. (13)

A digital injector [3] was built to measure the loop-gain. The predicted
and the measured loop-gains are plotted in Fig. 18. The loop-gain of
the One-Cycle Controlled Ćuk converter is not infinite; it is actually
lower than 0db!

One-Cycle Control instantaneously controls the average value of the
diode-voltage. Nevertheless, the loop-gain is not infinite. All the other
state variables inside the loop obey the physical laws. The variables
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Figure 19: Take Advantage of the Pulsed and Nonlinear Nature.

actually move along the state-space trajectory shown in Fig. 17. As
a matter of fact, the voltage across the diode has a finite transient.
One-Cycle Control takes advantage of the pulsed and nonlinear nature
of the switching converter, and adjusts the average value of the diode-
voltage instantaneously. For example, when the control reference steps
up, the voltage across the input capacitor undergoes an attenuating
oscillation. The input signal of the One-Cycle Controlled switch is the
capacitor voltage vC1. The output signal of the One-Cycle Controlled
switch is the diode-voltage vd, which has an envelope equal to the
capacitor voltage vC1. The real-time integrated value is compared
with the control reference in each cycle. Therefore, the duty-ratio is
precisely adjusted such that the average of the diode-voltage is exactly
equal to the control reference. The real transient of the diode-voltage
is not instantaneously controlled, as shown in Fig. 19.

4.3 Frequency Response Measurements

Experiment 3 The control-to-diode-voltage frequency response was
measured. A sweeping frequency signal was injected into the control

Figure 20: The Control-to-Diode-Voltage Frequency Response of the
One-Cycle Controlled Ćuk Converter.

reference at Point A, while the diode-voltage response was measured
at Point D. The experimental result is plotted in Fig. 20. Since the
average value of the diode-voltage was fully controlled by the control
reference, it was predicted that the frequency response of the diode-
voltage to the control reference should be flat. The detected frequency
response has a very flat amplitude response and phase lag over the
frequency range 5Hz to 50 kHz.

Figure 21: The Control-to-Output Frequency Response of the One-
Cycle Controlled Ćuk Converter.

Figure 22: The Input-to-Output Frequency Response of the One-
Cycle Controlled Ćuk Converter.

Experiment 4 The control-to-output frequency response was mea-
sured. A sweeping frequency signal was injected into the control ref-
erence at Point A, and the output-voltage response was measured at
Point B. The experimental result is plotted in Fig. 21. The frequency
response of the One-Cycle Controlled Ćuk converter is equivalent to
a second-order system as expected.

Experiment 5 The input-to-output frequency response was mea-
sured. A sweeping frequency signal was injected into the input voltage
at Point C, while the output-voltage response was measured at Point
B. The experimental result is plotted in Fig. 22. Theoretically, the
system should completely reject the input-voltage perturbation. The
experimental data show that the input perturbation is attenuated by
more than 20 db over the frequency range 5Hz to 50 kHz. There is a
peak near the corner frequency, 300Hz, of the input filter. That is due
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to the fact that the real diode has a non zero conducting resistance
and the wire wrap circuit has some AC coupling.

5 Extension of One-Cycle Control

The One-Cycle Control technique found for the constant frequency
switching converter is extended to general theory. The implementation
circuits are found for any type of switch, constant frequency, constant
ON-time, constant OFF-time, and variable.

5.1 General Theory

A switch operates according to the switch function k(t) at a frequency
fs = 1

Ts
.

k(t) =

{
1 0 < t < TON

0 TON < t < Ts
(14)

In each cycle, the switch is ON for a time duration TON and is OFF
for a time duration TOFF , where TON + TOFF = Ts. The duty-ratio
d = TON

Ts
is modulated by an analog control signal vref (t). The switch

input signal x(t) is chopped by the switch. The frequency and the
pulse width of the switch output y(t) is the same as that of the switch
function k(t), while the envelope of y(t) is x(t), as shown in Fig. 23.

y(t) = k(t)x(t) (15)

Four types of switches are considered here:

switch type TON TOFF Ts

constant frequency variable variable constant

constant ON-time constant variable variable

constant OFF-time variable constant variable

variable variable variable variable

Figure 23: The Switch Function

Suppose the switch frequency fs is much higher than the frequency
bandwidth of either the input signal x(t) or the control signal vref (t);
then the effective signal carried in the switch output is

y(t) =
1

Ts

∫ TON

0
x(t)dt (16)

≈ x(t)
1

Ts

∫ TON

0
dt (17)

= x(t)d(t) (18)

= x(t)vref (t) (19)

The output signal y(t) of the switch is the product of the input signal
x(t) and the control signal vref (t); therefore, the switch is nonlinear.
If the control signal vref (t) is constant, for example vref (t) = D, the
output signal of the switch is Dx(t), which is the case when the switch
is used for digital signal processing. In power processing applications,
for example a power amplifier, the input x(t) usually represents the
power, while the control signal vref (t) represents the signal to be am-
plified. In the ideal case the input power x(t) is constant X; therefore,
the output signal y(t) = Xvref (t). However, in reality perturbations
always exist in the input power x(t); hence, the output signal y(t)
contains the power disturbance as well.

If the duty-ratio of the switch is modulated such that the integration
of the chopped waveform at the switch output is exactly equal to the
integration of the control signal in each cycle, ie.

∫ TON

0
x(t)dt =

∫ Ts

0
vref (t)dt, (20)

then the average value of the chopped waveform at the switch output
is exactly equal to the average value of the control signal in each cycle,
ie.

1

Ts

∫ TON

0
x(t)dt =

1

Ts

∫ Ts

0
vref (t)dt. (21)

Therefore, the output signal is instantaneously controlled within one
cycle, ie.

y(t) =
1

Ts

∫ TON

0
x(t)dt =

1

Ts

∫ Ts

0
vref (t)dt = vref (t) (22)

The technique to control switches according to this concept is defined
as the One-Cycle Control technique. With One-Cycle Control, the
effective output signal of the switch is

y(t) = vref (t). (23)

The switch fully rejects the input signal and linearly all-passes the
control signal vref ; therefore, the One-Cycle Control technique turns
a non-linear switch into a linear switch.

5.2 One-Cycle Control of Constant Frequency Switches

For a constant frequency switch, Ts is constant. The object of One-
Cycle Control is to adjust the switch ON-time TON in each cycle, such
that the integrated value of the chopped waveform is exactly equal to
the control reference.

Figure 24: The One-Cycle Controlled Constant Frequency Switch.

Figure 25: The Waveforms of the One-Cycle Controlled Constant
Frequency Switch.

The implementation circuit for One-Cycle Control of a constant
frequency switch is shown in Fig. 24. The key component of the One-
Cycle Control technique is the real-time integrator. The real-time
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integration is started the moment the switch is turned ON by the
fixed frequency clock pulse. The integration value,

vint =
1

Ts

∫ t

0
x(t)dt, (24)

is compared with the control signal vref (t) in real time. At the instant
when the integration value vint reaches the control signal vref (t), the
controller sends a command to the switch to change it from the ON
state to the OFF state. At the same time, the controller resets the
real-time integrator to zero to prepare for the next cycle. The duty-
ratio d of the present cycle is determined by the following equation:

1

Ts

∫ TON

0
x(t)dt = vref (t) (25)

Since the switch period Ts is constant and the duty-ratio is controlled,
the average value of the waveform at the switch output y(t) is guar-
anteed to be

y(t) =
1

Ts

∫ TON

0
x(t)dt = vref (t) (26)

in each cycle. Fig. 25 shows the operating waveforms of the circuit.

5.3 One-Cycle Control of Constant ON-Time Switches

For a constant ON-time switch, TON is constant. The object of One-
Cycle Control is to adjust the OFF-time TOFF in each cycle, such
that the average value of the chopped waveform is exactly equal to
the control reference.

The implementation circuit for One-Cycle Control of a constant
ON-time switch is shown in Fig. 26. The monostable multivibrator
generates a constant pulse width.

Figure 26: The One-Cycle Controlled Constant ON-Time Switch.

Figure 27: The Waveforms of the One-Cycle Controlled Constant
ON-Time Switch.

The real-time integration is started at the moment the switch is
turned ON. From t = 0 to t = TON , vint decreases. When the monos-
table multivibrator changes its state from high to low, the switch is

turned OFF. From t = TON to t = Ts, vint increases.

vint =

{ ∫ t
0 vref (t)dt−

∫ t
0 x(t)dt 0 < t < TON∫ t

0 vref (t)dt−
∫ TON
0 x(t)dt TON < t < Ts

. (27)

At the instant when vint reaches zero, the comparator changes its
state from low to high, which triggers the monostable multivibrator
to high and turns the switch back ON. The present switching cycle is
completed and the switch starts the next cycle.

The OFF-time TOFF of the present cycle is determined by the fol-
lowing equation:∫ TON

0
x(t)dt = (TON + TOFF )vref (t) (28)

The waveform at the switch output y(t) is guaranteed to be

y(t) =
1

Ts

∫ TON

0
x(t)dt = vref (t). (29)

where Ts is time dependent and TON is constant. Fig. 27 shows the
operating waveforms of the circuit.

5.4 One-Cycle Control of Constant OFF-Time Switches

For a constant OFF-time switch, TOFF is constant. The object of
One-Cycle Control is to adjust the ON-time TON in each cycle, such
that the average value of the chopped waveform is exactly equal to
the control reference.

The implementation circuit for One-Cycle Control of a constant
OFF-time switch is shown in Fig. 28. The monostable multivibrator
generates a constant pulse width. The real-time integration is started

Figure 28: The One-Cycle Controlled Constant OFF-Time Switch.

Figure 29: The Waveforms of the One-Cycle Controlled Constant
OFF-Time Switches.

the moment the switch is turned OFF. From t = 0 to t = TOFF , vint
increases. When the monostable multivibrator changes its state from
high to low, the switch is turned ON. From t = TOFF to t = Ts, vint
decreases.

vint =

{ ∫ t
0 vref (t)dt 0 < t < TOFF∫ t
0 vref (t)dt−

∫ t
TOFF

x(t)dt TOFF < t < Ts
. (30)
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At the instant when vint reaches zero, the comparator changes its
state from low to high, which triggers the monostable multivabrator
to high and turns the switch OFF. The present switching cycle is
completed and the switch starts the next cycle.

The ON-time TON of the present cycle is determined by the follow-
ing equation:

∫ TOFF +TON

TOFF

x(t)dt = (TON + TOFF )vref (t) (31)

Since the OFF-time TOFF of the switch is constant and the ON-time
TON is controlled, the average value of the waveform at the switch
output y(t) is guaranteed to be

y(t) =
1

Ts

∫ TOFF +TON

TOFF

x(t)dt = vref (t) (32)

in each cycle. Fig. 29 shows the operating waveforms of the circuit.

5.5 One-Cycle Control of Variable Switches

For a variable switch, there are two adjustable control parameters,
TON and TOFF . Usually, one parameter is governed by the particular
application. If a particular application requires the ON-time vary in
a particular pattern, then the One-Cycle Control can be implemented
in an approach similar to the one described for the constant ON-
time switches. If a particular application restricts the OFF-time by
some function, then the One-Cycle Control can be implemented in
an approach similar to the one described for the constant OFF-time
switches.

6 Conclusion

The One-Cycle Control technique is designed to control the duty-
ratio d of the switch in real time, such that in each cycle the average
of the chopped waveform at the switch output is exactly equal to the
control reference. Experiments show that a switching converter with
One-Cycle Control, rejects input-voltage perturbations, and follows
the control reference quickly. Implementation circuits are found for
any type of switch, constant frequency, constant ON-time, constant
OFF-time, and variable. Therefore, the One-Cycle Control technique
is suitable for large-signal robust control of PWM switching converters
and quasi-resonant converters, inverters, and rectifiers. This technique
may also useful for signal processing and other applications.

Theoretically, converters with One-Cycle Control are capable of re-
jecting the input-voltage perturbations, and the diode-voltage is able
to follow the control signal instantaneously, within one cycle. There-
fore, the One-Cycle Controlled converter is equivalent to a control-
lable voltage source with an output filter. However, in practice, the
switches, the transistors, and the diodes are not ideal switches and the
integration is not instantaneous. Therefore, the accuracy of One-Cycle
Control is greatly dependent upon the circuit design. The experimen-
tal circuits of a buck converter and a Ćuk converter in this work show
a very close match between the measurements and the theoretical pre-
dictions. The dynamic behavior of the Ćuk converter with One-Cycle
Control, for both the large-signal and the small-signal case, is ana-
lyzed. The Switching Flow-Graph model shows that the One-Cycle
Control Ćuk converter is not globally stable. However, imposing a
limitation on the duty-ratio Dmin ≤ d ≤ Dmax prevents the converter
from becoming unstable while operating in the previously unstable
regions. As a result, the system is globally stable and behaves like
a second-order linear system. However, the system transient takes
longer then one cycle if the it has to pass the Dmax or Dmin limited
regions.

The One-Cycle Control concept is straightforward and its imple-
mentation circuits are simple; yet it provides excellent control of
switching converters.
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