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Abstract—Sampled-data modeling and analysis are applied to
PWM dc–dc converters under one-cycle control or its special case,
charge control. These two control schemes are analyzed in a uni-
fied framework. Large-signal analysis, steady-state analysis and
small-signal analysis are addressed analytically. The orbital na-
ture of the nominal periodic solution is preserved. Various transfer
functions are derived. Compared with the averaging approach, the
sampled-data approach is more accurate and systematic.

Index Terms—Charge control, dc–dc converter, one-cycle con-
trol, orbital stability, sampled-data modeling.

I. INTRODUCTION

SAMPLED-DATA modeling and analysis are applied
to PWM dc–dc converters under one-cycle control or

its special case, charge control. These two control schemes
are analyzed in a unified framework. Large-signal analysis,
steady-state analysis and small-signal analysis are addressed
analytically. The orbital nature of the nominal periodic solution
is preserved. Various transfer functions are derived. They are
control-to-output voltage transfer function, control-to-inductor
current transfer function, audio-susceptibility, and output
impedance.

One-cycle control [1]–[3] and charge control [4]–[8] have
been analyzed using the averaging approach. In the averaging
approach, each circuit module is modeledseparatelyandap-
proximately. For example, the switches are approximated as a
three-terminal model. The current loop is obtained using sam-
pled-data dynamics and then approximated by continuous-time
dynamics. The duty cycle, adiscrete-timevariable, is treated as
a continuous-time variable. Then all of these approximate mod-
ules form a continuous-time model. Therefore, theorbital na-
ture of the nominal periodic solution is lost. Instead, an equilib-
rium is obtained as the nominal solution.

In contrast, no such approximations are involved in the sam-
pled-data approach. The orbital nature of the nominal periodic
solution is preserved. Also, the sampled-data approach focuses
on thesystemoperations, especially theswitchingaction. The
switching action is very important for the derivation of system
dynamics. Once the switching action is accurately formulated,
the large-signal and small-signal sampled-data dynamics can be
easily obtained. Therefore, the advantage of the sampled-data
approach is that it is more accurate and systematic. Although

Manuscript received May 27, 1999; revised January 5, 2001. Recommended
by Associate Editor K. Smedley.

The author is with the Logic Library Department, Taiwan Semicon-
ductor Manufacturing Company, Hsinchu, Taiwan 300, R.O.C. (e-mail:
chungchiehfang@yahoo.com).

Publisher Item Identifier S 0885-8993(01)04030-3.

Fig. 1. Block diagram model for one-cycle control or charge control.

sampled-data analysis of converters has been a topic of inves-
tigation for the past two decades [9]–[15], this powerful tool is
not widely used. This paper has an aim to increase the appreci-
ation and use of the sampled-data approach.

In this paper, the operation of continuous conduction mode
with constant switching frequency is considered. Other opera-
tions, like discontinuous conduction mode or variable switching
frequency, can be modeled and analyzed similarly.

The remainder of the paper is organized as follows. In Sec-
tion II, a block diagram model is proposed for the PWM dc–dc
converter under one-cycle control or its special case, charge con-
trol. In Sections III–VI, large-signal, steady-state, small-signal
and stability analysis are addressed. In Sections VII and VIII,
various transfer functions are derived. In Section IX, two illus-
trative examples are given. Conclusions are collected in Sec-
tion X.

II. EXACT BLOCK DIAGRAM MODEL

The operation of one-cycle control (or its special case, charge
control) can be described in terms of the block diagram model
shown in Fig. 1. The model is so general that it can be ap-
plied to most PWM converters, such as buck, boost, buck–boost,
and Ćuk converters. In the diagram model, , ,

, , and are con-
stant matrices, where is the state dimension, typically given
by the number of energy storage elements in the power stage.
For example, for a typical buck converter and for
a Ćuk converter. Also in the diagram, is the source voltage,
is the output voltage, is the state,
is a combination of state feedback and feedforward from ,
and is a reference signal, which controls switching actions as
described next.
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Let the switching period be , which is inverse of the
switching frequency . Within the cycle ,
the dynamics is switched between two stages,and . Each
stage has linear dynamics as shown in the diagram. The system
is in at the beginning of the cycle, and switches to at

when . In this control scheme,
the duty cycle is controlled by the integration
value of the signal .

The two matrices and need not be the same. For ex-
ample, they can differ if the equivalent series resistance (ESR)

. When they differ, the output voltage is discontinuous.
Let denote , or , depending on which sam-
pled output voltage is of interest.

Since the block diagram model in Fig. 1exactlydescribes the
operation of one-cycle control or its special case, charge control,
the sampled-data dynamics derived from this model is expected
to be accurate. The derivation is discussed in the following sec-
tions.

III. N ONLINEAR LARGE-SIGNAL DYNAMICS

Consider the cycle . Let the sampled sig-
nals and . Generally in the PWM
dc–dc converter, the switching frequency is sufficiently high
that the variations in and within the cycle are small and
can be neglected. Take and to be constant within the cycle
and denote them as and , respectively. The notation
instead of is used for brevity. This notation applies to other
variables.

From the operation in Fig. 1, the large-signal sampled-data
dynamics of the power stage is

(1)

It is a closed-loop dynamics: a power stage
with a feedback loop determined by

. It is also a constrained non-
linear discrete-time dynamics. The constraint equation

determines the switching instant .
The dynamics is deriveddirectly from the switching operation

Fig. 2. Typical periodic solutionx (t) in state space.

in Fig. 1. This approach is more accurate than the averaging
approach, where the dynamics of each circuit module is
approximatedseparately.

IV. STEADY-STATE ANALYSIS: FINDING A PERIODIC SOLUTION

The nominal solution of a dc–dc converter is aperiodic
orbit, not an equilibrium point as depicted in the averaging
approach. Let the nominal (set-point) output voltage be .
A periodic orbit in Fig. 1 corresponds to a fixed point

in the sampled-data dynamics (1). Let the fixed point
be , where is the
steady-state duty cycle. Then this fixed point satisfies

(2)

From (2), one sees that the feedback loop, denoted by the
constraint equation, affects the fixed point. The nonlinear
equations [see (2)] in unknowns [ , and ] can
be solved by Newton’s method. After obtaining the steady-state
values , and , a periodic solution is obtained

for

for

for .

(3)

A typical periodic solution is shown Fig. 2. In the
figure, the dashed arrows denote the time derivative of at

and [which are and
respectively]. These abbreviated

notations are used in the next section to simplify the linearized
dynamics.

V. ANALYTICAL SMALL -SIGNAL DYNAMICS

Assume a fixed point
exists. Use the notation to denote

evaluation at this fixed point and use a hatto denote small
perturbations [e.g., ]. The system (1) has the
linearized (small-signal) dynamics

(4)
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where and are as follows:

Therefore

(5)

(6)

(7)

Once the fixed point is obtained as in Sec-
tion IV, the matrices and are readily obtained from
(5)–(7).

The small-signal dynamics (4) is obtaineddirectlyandexactly
from the linearization of the large-signal dynamics (1). This ap-
proach is more systematic and accurate than the averaging ap-
proach, where the small-signal dynamics is sometimes obtained
approximatelyfrom graphical analysis.

VI. ORBITAL STABILITY AND STABILIZABILITY

The relevant stability notion is asymptoticorbital stability,
not asymptotic stability of an equilibrium point as depicted in
the averaging approach. In the power electronics literature, the
PWM dc–dc converter is generally said to be either stable or
unstable, without mentioning orbital stabilityper se. The defi-
nition of asymptotic orbital stability is given as follows.

Definition 1 (see, e.g., [16]):Denote by the closed orbit
generated by the periodic solution . Then is asymp-
totically orbitally stable if there is a such that

where dist is defined as the smallest distance between the
point and any point on .

The orbital stability is related to the set of eigenvalues of.
The periodic solution is asymptotically orbitally stable
if all of the eigenvalues of are inside the unit circle of the
complex plane [16].

The reference signal is used as a control variable. The
question whether the power stage can be stabilized by usingis
answered by the following theorem. The answer is yes because
the stated assumption in the theorem is generally satisfied.

Theorem 1: Assume that all of the eigenvalues of at least one
of and are in the open left half of the complex plane, and
that neither matrix has any eigenvalue in the open right half of
the complex plane. Then the system (1) or the original contin-
uous-time system of Fig. 1 is stabilizable by using.

Proof: Let . Then
has eigenvalues inside the unit circle under

the stated assumption [17]. Therefore, a discrete-time control
law can stabilize the system (1) or the original
continuous-time system of Fig. 1.

VII. CONTROL-TO-OUTPUT VOLTAGE AND

CONTROL-TO-INDUCTORCURRENT TRANSFERFUNCTIONS

From (4), the control-to-output voltage transfer function is

(8)

Let be chosen such that (inductor
current). Then the control-to-inductor current transfer function
is

(9)

Given a transfer function in domain, say , its effective
frequency response [18] is , which is valid in the fre-
quency range .

VIII. A UDIO-SUSCEPTIBILITY AND OUTPUT IMPEDANCE

Audio-susceptibility and output impedance are expressed in
terms of transfer functions (frequency responses). They give in-
formation on the effect of (source or load) disturbances at var-
ious frequencies on the output voltage.
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The audio-susceptibility is derived directly from the lin-
earized sampled-data model, (4). It is

(10)

To calculate the output impedance, add a fictitious current
source (as perturbation) in parallel with the load. Then the
state equations in Fig. 1 are replaced by

(11)

(12)

where .
Since is used as perturbation, the nominal value ofis 0.

Similar to the derivation in Section V, the new linearized sam-
pled-data dynamics is

(13)

where is the sampled perturbed output current and

(14)

So the output impedance is

(15)

IX. I LLUSTRATIVE EXAMPLES

Example 1 (Buck Converter Under One-Cycle Control,
[1]): The power stage parameters of the buck converter are

V, switching frequency kHz,
mH, F (with ESR ), and load
. Let the steady-state duty cycle be 0.64, then

the switching instant . The voltage
across the diode during the ON stage, which equals , is
integrated. Then .

Let the state , where is the inductor
current and is the capacitor voltage. In terms of the block
diagram model in Fig. 1, one has

Fig. 3. Audio-susceptibility of Example 2.

From (5), the matrix has eigenvalues at
, which are inside the unit circle, and the system is asymp-

totically stable. It is reasonable because here is a feed-
forward without state feedback.

Example 2—(Buck Converter Under Charge Control,
[4]): The power stage parameters of the buck converter are

V, switching frequency kHz, H,
F (with ESR m ), and load .

The duty cycle is 0.42, then . The
switch current during the ON stage , which equals the in-
ductor current , is integrated through a charging capacitance

nF.
Let the state . In terms of the block diagram

model in Fig. 1, one has the same system matrices as in Example
1 except here the matrices and . Different
from Example 1, here the system has state feedback. Solving
(2) gives , , and

. The eigenvalues of calculated from (5) are 0.22
and 0.98. Therefore the system is asymptotically stable.

The audio-susceptibility is shown in Fig. 3. The control-to-
output voltage and control-to-inductor current transfer functions
are shown in Figs. 4 and 5, respectively, and they are com-
pared with the those of the averaged model in [4]. The magni-
tude responses are similar, but the phase responses are different
at high frequency. From the control-to-output voltage transfer
functions, the sampled-data model has gain margin 53.1 dB
(452); the average model 126.2 dB ( ).

Many approaches exist to verify the validity of power stage
models. One common approach involves using a dynamic ana-
lyzer to determine which model gives a frequency response most
in agreement with experimental data. Here another approach is
used. Since theexact closed-loopstability can be determined
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Fig. 4. Control-to-output voltage transfer function (solid line: sampled-data
model; dashed line: averaged model in [4]).

Fig. 5. Control-to-inductor current transfer function (solid line: sampled-data
model; dashed line: averaged model in [4]).

as shown in [19], [20], the true gain margin can also be deter-
mined. Therefore, gain margin will be used to verify the validity
of power stage models.

Generally the controller for a PWM converter uses dynamic
feedback, with an integrator enclosed. For simplicity, the fol-
lowing static feedback is used: , where is a
feedback gain and

. (To ensure the duty cycle is fixed at 0.42, is varied
according to . However, it is close to 5.03.) The true gain
margin, determined byexactclosed-loop analysis [19], [20], is
exactly 53.1 dB. It is the same as predicted by the sampled-data
model. [For (53.1 dB), one eigenvalue of is less
than 1, and a period-doubling bifurcation occurs.] Therefore
in this example, the sampled-data model has better prediction of
closed-loop instability than the averaged model in [4].

X. CONCLUSIONS

Sampled-data modeling and analysis have been applied to
PWM dc–dc converters under one-cycle control or its special

case, charge control. These two control schemes have been an-
alyzed in a unified framework. Large-signal, steady-state and
small-signal analysis have been addressed analytically. The or-
bital nature of the nominal periodic solution has been preserved.
Various transfer functions have been derived.

In the sampled-data approach, the system dynamics is derived
directlyandexactlyfrom discrete switching operations. For ex-
ample, the switching operation of one-cycle control is exactly
modeled by Fig. 1 and its sampled-dynamics is exactly (1). In
the averaging approach, however, each circuit module is mod-
eledseparatelyandapproximately. Therefore, the sampled-data
approach is more systematic and accurate than the averaging ap-
proach.

The sampled-data approach is generally believed to be nu-
merical intensive and is not widely used. However, the only nu-
merical intensive procedure in the sampled-data approach is to
find the fixed-point by solving (2). The remaining analysis is
eased by theanalytical form of the dynamic models. For ex-
ample, once the fixed-point is obtained, the matrices , and

can be obtained from (5)–(7). Then the linearized dynamics
and various transfer functions are then easily obtained. The sam-
pled-data modeling and analysis can be applied systematically
to dc–dc converters under various configurations [15], including
voltage mode control, current mode control, and hysteretic con-
trol. It is hoped that this work will help to facilitate further ap-
plications of the sampled-data approach in power electronics.
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