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Abstract—Sampled-data modeling and analysis are applied to Switching Decision:
PWM dc—dc converters under one-cycle control or its special case, o, Switch to S, at ¢ = nT
charge control. These two control schemes are analyzed in a uni- Switch to Sy (at t = nT + dy) when [ y(r)dr = v,
fied framework. Large-signal analysis, steady-state analysis and
small-signal analysis are addressed analytically. The orbital na-
ture of the nominal periodic solution is preserved. Various transfer
functions are derived. Compared with the averaging approach, the
sampled-data approach is more accurate and systematic.
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. INTRODUCTION

AMPLED-DATA modeling and analysis are applied_ .
Fig. 1. Block diagram model for one-cycle control or charge control.
o PWM dc—dc converters under one-cycle control or

its special case, charge control. These two control schemes

are analyzed in a unified framework. Large-signal analysisampled-data analysis of converters has been a topic of inves-
steady-state analysis and small-signal analysis are addredigation for the past two decades [9]-[15], this powerful tool is
analytically. The orbital nature of the nominal periodic solutionot widely used. This paper has an aim to increase the appreci-
is preserved. Various transfer functions are derived. They aton and use of the sampled-data approach.

control-to-output voltage transfer function, control-to-inductor In this paper, the operation of continuous conduction mode
current transfer function, audio-susceptibility, and outputith constant switching frequency is considered. Other opera-
impedance. tions, like discontinuous conduction mode or variable switching

One-cycle control [1]-[3] and charge control [4]-[8] havdrequency, can be modeled and analyzed similarly.
been analyzed using the averaging approach. In the averaginghe remainder of the paper is organized as follows. In Sec-
approach, each circuit module is modekzparatelyandap- tion Il, a block diagram model is proposed for the PWM dc—dc
proximately For example, the switches are approximated ascanverter under one-cycle control or its special case, charge con-
three-terminal model. The current loop is obtained using satnel. In Sections IlI-VI, large-signal, steady-state, small-signal
pled-data dynamics and then approximated by continuous-tisred stability analysis are addressed. In Sections VIl and VIII,
dynamics. The duty cycle,discrete-timevariable, is treated as various transfer functions are derived. In Section IX, two illus-

a continuous-time variable. Then all of these approximate mddative examples are given. Conclusions are collected in Sec-
ules form a continuous-time model. Therefore, dbital na- tion X.
ture of the nominal periodic solution is lost. Instead, an equilib-
rium is obtained as the nominal solution.

In contrast, no such approximations are involved in the sam-
pled-data approach. The orbital nature of the nominal periodicThe operation of one-cycle control (or its special case, charge
solution is preserved. Also, the sampled-data approach focusestrol) can be described in terms of the block diagram model
on thesystemoperations, especially trwitchingaction. The shown in Fig. 1. The model is so general that it can be ap-
switching action is very important for the derivation of systerplied to most PWM converters, such as buck, boost, buck-boost,
dynamics. Once the switching action is accurately formulateaind Quk converters. In the diagram model;, A, € RY*Y,
the large-signal and small-signal sampled-data dynamics canthe B, € RV*!, C, By, E; € RN, andD € R are con-
easily obtained. Therefore, the advantage of the sampled-dstint matrices, wher® is the state dimension, typically given
approach is that it is more accurate and systematic. Althoulgir the number of energy storage elements in the power stage.

For exampleN = 2 for a typical buck converter anl = 4 for
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Let the switching period bé&’, which is inverse of the
switching frequencyf;. Within the cyclet € [»T, (n + 1)T),
the dynamics is switched between two stagisand.S,. Each 20(0)
stage has linear dynamics as shown in the diagram. The system
is in S; at the beginning of the cycle, and switchesSp at
t=nl +d, whenfod” y(7) dr = v,.. In this control scheme,
the duty cycleD. = d, /T is controlled by the integration
value of the signal.
The two matricesZ; and E» need not be the same. For exFig- 2. Typical periodic solution”() in state space.
ample, they can differ if the equivalent series resistance (ESR)
R. # 0. When they differ, the output voltage is discontinuoudn Fig. 1. This approach is more accurate than the averaging
Let E denoteE:, E; or (E1 + E»)/2, depending on which sam- approach, where the dynamics of each circuit module is
pled output voltage is of interest. approximatedseparately
Since the block diagram model in Figekactlydescribes the
operation of one-cycle control or its special case, charge contridf, STEADY-STATE ANALYSIS: FINDING A PERIODIC SOLUTION
the sampled-data dynamics derived from this model is expectedrhe nominal solution of a dc—dc converter ispariodic

tp be accurate. The derivation is discussed in the following S&frbit, not an equilibrium point as depicted in the averaging
tions. approach. Let the nominal (set-point) output voltagé/ber.
A periodic orbitz°(¢) in Fig. 1 corresponds to a fixed point
lll. NONLINEAR LARGE-SIGNAL DYNAMICS #°(0) in the sampled-data dynamics (1). Let the fixed point

Consider the cycle € [nT, (n + 1)T). Let the sampled sig- P€(n; Vs, dn, vrn) = (2°(0), Vi, d, V;.), whered/T is the
nalsz, = x(nT) andv,, = v,(nT). Generally in the PWM steady-state duty cycle. Then this fixed point satisfies
dc—dc converter, the switching frequency is sufficiently high o o
that the variations in; andw, within the cycle are small and @ (0) = f (x (0), Vs, d)

can be neglected. Take andw, to be constant within the cycle Eﬂ?o(o) =Vser
and denote them as,, andv,,,, respectively. The notation,,, g (xo(()), Vs, d, V,,) =0. 2)
instead ofv, ., is used for brevity. This notation applies to other
variables. From (2), one sees that the feedback loop, denoted by the
From the operation in Fig. 1, the large-signal sampled-daganstraint equation, affects the fixed point. THe- 2 nonlinear
dynamics of the power stage is equations [see (2)] itV + 2 unknowns £°(0), d andV,.] can
be solved by Newton’s method. After obtaining the steady-state
Tnt1 = f(Tn, Von, dn) valuesz(0), d andV;., a periodic solutionr’(#) is obtained
= tz(T—dn) ’ eAlta:O(O)
dy, t
. <6A‘ do g —l—/ ehe daBlvs,,) +/ eM(t=9) doBV,, forte [0, d)
0 0
i, 20(t) = § A2t=d0(g) A3)
29 o Bovsn, L
+/0 etk +/ eA2(t=9) 4y B,V,, fort e [d, T)
d
Von = Ein { 2%(t mod T), fort > T.
A typical periodic solutionz®(¢) is shown Fig. 2. In the
dy figure, the dashed arrows denote the time derivative¢f) at
9(@n, Vs, dn, vrn) = / y(T) dr — vpm t = d~ andd* [which arez°(d~) = A;2°(d) + B,V; and
0 #0(dt) = Ay2°(d) + B,V respectively]. These abbreviated
_ n notations are used in the next section to simplify the linearized
A dynamics.
AT " Ao
| <‘3 In +/0 ¢ daBl”Sﬂ) dr V. ANALYTICAL SMALL -SIGNAL DYNAMICS
+ Dugd,, — vy = 0. (1) Assume a fixed point  (x,, Vsn, dn, Vrn)
= (2%(0), Vi, d, V;.) exists. Use the notatiok> to denote
It is a closed-loop dynamics: a power stagg.; = evaluation at this fixed point and use a h& denote small
f(zn, von, d,) with a feedback loop determined byperturbations [e.9%, = z, — z°(0)]. The system (1) has the
9(Zny Vsn, dny ven) = 0. It is also a constrained non-linearized (small-signal) dynamics
linear discrete-time dynamics. The constraint equation . . . .
(T, Vsn, dns Urn) = 0 determines the switching instas . Tpy1 R PLy + Dolsn + 1l

The dynamics is derivedirectly from the switching operation Von = Eip 4)
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where® € RV*Y andl,, I, € RV*! are as follows: VI. ORBITAL STABILITY AND STABILIZABILITY
The relevant stability notion is asymptoticbital stability,

& — af of <ﬁ>_1 99 not asymp?otic stability of an equilibrium point.as ericted in
dx, 0d, \dd, Iz, the averaging approach. In the power electronics literature, the
¢ PWM dc—dc converter is generally said to be either stable or
of af [ og\ "' g unstable, without mentioning orbital stabiliper se The defi-
Ly = v, Od, <@) van nition of asymptotic orbital stability is given as follows.
&

Definition 1 (see, e.g., [16]):Denote byy the closed orbit
generated by the periodic solutiefi(t). Thenz°(¢) is asymp-
totically orbitally stable if there is & such that

oo _0f (99N 0y
" 8d, \8d, Oy

af _ AT ot dist [2(0), 7] < 6 = thjgo dist [z(¢), 7] =0

dxp,
¢ where disfz, ~] is defined as the smallest distance between the

af = AT (30(47) - 5O(dT)) point » and any point ony.

ddp |y The orbital stability is related to the set of eigenvalue® of
The periodic solution:*(¢) is asymptotically orbitally stable
8_ zcxo(d) + DV, = yo(d) if all of the eigenvalues of® are inside the unit circle of the
ddn |, complex plane [16].
dg d The reference signal, is used as a control variable. The
| = C / e dr question whether the power stage can be stabilized by usiisg
o 0 answered by the following theorem. The answer is yes because

of Ao(T—d) d o T—d o the stated assumption in the theorem is generally satisfied.
=c / ™% doBy + / ¢™?? doB; Theorem 1: Assume that all of the eigenvalues of at least one
¢ 0 0 of A; and A, are in the open left half of the complex plane, and

4o Ao that neither matrix has any eigenvalue in the open right half of
Man | o - C/O /0 ™" do drBy + Dd the complex plane. Then the system (1) or the original contin-
uous-time system of Fig. 1 is stabilizable by using

99 | _ Proof: Let K = C [ ¢ dr. Then® + [LK =
2 PN eA2(T=d)eArd has eigenvalues inside the unit circle under
the stated assumption [17]. Therefore, a discrete-time control
Therefore law v,, = Kz, can stabilize the system (1) or the original
continuous-time system of Fig. 1. O

P = CA2 (T—d)

d
VII. CONTROL-TO-OUTPUT VOLTAGE AND
A Avd _ 0p =y 00+ Ayr 0
<e = (#°(dT) —a(d ))C/O e drfy (d)> CONTROL-TO-INDUCTOR CURRENT TRANSFERFUNCTIONS

(5) From (4), the control-to-output voltage transfer function is

d
r, = Az(T—d)/ Ao 15 B
5 e A (& 0 D1 = E(ZI — ‘I))_l]-_‘r- (8)

T—d
+ / 27 do B,
0

— T (30(d™) — 2°(dT))

Let E; € RY*Y be chosen such thd;z = 4, (inductor
current). Then the control-to-inductor current transfer function
is

e / ’ / i e do dr By + Dd y°(d) (6) e L
o Jo ‘ Tie(z) = = Ef(zI —®)7T,.. 9)

o,(2)

~—~
N

_ A (T—d) (5003 _ 20/ 1+ 0
Iy =c (8°(d") —a"(d™) /4" (). () Given a transfer function im domain, sayl’(z), its effective

frequency response [18] iB(e?“?"), which is valid in the fre-

, 0 : : : ]
Once the fixed pointz“(0), V5, d, V,.) is obtained as in Sec quency rangéw| < x/T.

tion 1V, the matricesd, I, andT",. are readily obtained from
(5)-(7).

The small-signal dynamics (4) is obtaindicectlyandexactly ViIl. A UDIO-SUSCEPTIBILITY AND QUTPUT IMPEDANCE
from the linearization of the large-signal dynamics (1). This ap- Audio-susceptibility and output impedance are expressed in
proach is more systematic and accurate than the averagingtepms of transfer functions (frequency responses). They give in-
proach, where the small-signal dynamics is sometimes obtairfetmation on the effect of (source or load) disturbances at var-
approximatelffrom graphical analysis. ious frequencies on the output voltage.
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The audio-susceptibility is derived directly from the lin-
earized sampled-data model, (4). Itis

7,02 = %) _ gl ey,

~

50 (10)

To calculate the output impedance, add a fictitious currel
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Magnitude (dB)

2

sourcei, (as perturbation) in parallel with the load. Then the

state equations in Fig. 1 are replaced by
(11)
(12)

Sll T = Al.’L' + Blvs + Bilio
SQZ T = AQ.Z‘ + BQUS + Bigio

WhereBil, By € RN*L,
Sincet, is used as perturbation, the nominal value o 0.

Phase

-50

100+

-150

-200
10

? 10*

Frequency (rad/sec)

Similar to the derivation in Section V, the new linearized sam-

pled-data dynamics is

-/i'n+l ~ (I)-/i'n + Fsﬁsn + Frﬁrn + Fiion

Fig. 3. Audio-susceptibility of Example 2.

1

rz}on :E-/i'n (13) Bl = z B2 = |:0:|

0
wherei,,, is the sampled perturbed output current and 0

-1 C=1[0 0] D=1
r,_9f _9f (99 RR R
o Oion Oy \ Oy EIZEQZ[}H;% R+R |
99 i AT i
" Big, ‘ , o From (5), the matrixp = ¢+ has eigenvalues &t94 +
@ Vans oy Vs Gon )=(20(0), Vi, d, V-, 0) 0.2674, which are inside the unit circle, and the system is asymp-

d T—d
= 6A2 (T=d) / CAIU dOBﬂ + / CAzo dUBiQ
0 0

_ eAz(de) (.To(di) _ .To(d+))

B ¢ " Ao . 0
<C/0 /0 e dodrB;; + Dd y(d). (14)

So the output impedance is

(15)

T, (2) = fj"(z) = E(z] — ®)7'T}.

IX. ILLUSTRATIVE EXAMPLES

Example 1 (Buck Converter Under One-Cycle Contro},” ¥
The power stage parameters of the buck converter are

[1]):
Vs = 10V, switching frequencyf, = 1/T = 30 kHz,
L = 0.48 mH, C = 30 uF (with ESRR. = 0 ), and load

totically stable. It is reasonable because here v, is a feed-
forward without state feedback.

Example 2—(Buck Converter Under Charge Control,
[4]): The power stage parameters of the buck converter are
V, = 12V, switching frequencyf, = 90 kHz, . = 37.5 uH,

C = 380 pF (with ESRR,. = 20 m2), and loadR = 3.375 Q2.
The duty cycleD, is 0.42, thenl = 0.427 = 4.67 x 10~%. The
switch current during the ON stag® , which equals the in-
ductor currenty,, is integrated through a charging capacitance
CT = 733 nF.

Let the stater = (ir, ve)’. In terms of the block diagram
modelin Fig. 1, one has the same system matrices as in Example
1 except here the matricés= [1/Cr, 0] andD = 0. Different
from Example 1, here the system has state feedback. Solving
2) givesz®(0) = (1.06, 5.04), z°(d) = (1.93, 5.04), and
9.51. The eigenvalues cb calculated from (5) are 0.22
and 0.98. Therefore the system is asymptotically stable.

The audio-susceptibility is shown in Fig. 3. The control-to-

R = 25 €. Let the steady-state duty cycl@, be 0.64, then output voltage and control-to-inductor current transfer functions
the switching instani = 0.64T = 2.13 x 10-5. The voltage &€ shown in Figs. 4 and 5, respectively, and they are com-

across the diode during the ON stagig, which equalsV;, is pared with the those of the averaged model in [4]. The magni-
integrated. The, = V, d = 2.13 x 104, tude responses are similar, but the phase responses are different

Let the stater = (ir, ve)' € R2*!, wherei, is the inductor at high frequency. From the control-to-output voltage transfer

current anduc: is the capacitor voltage. In terms of the blockunctions, the sampled-data model has ggin margin 53.1 dB
diagram model in Fig. 1, one has (452); the average model 126.2 dB(4 x 10°).

Many approaches exist to verify the validity of power stage

—RE. —R models. One common approach involves using a dynamic ana-

A — A, — (R+R)L (R+R.)L lyzer to determine which model gives a frequency response most

LT R -1 in agreement with experimental data. Here another approach is
(R+R.)C (R+R,)C used. Since thexact closed-looptability can be determined
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Phase (deg); Magnitude (dB)

-100

-150

~200

il
10 10*

Frequency (rad/sec)

Fig. 4. Control-to-output voltage transfer function (solid line: sampled-da

model; dashed line: averaged model in [4]).

case, charge control. These two control schemes have been an-
alyzed in a unified framework. Large-signal, steady-state and
small-signal analysis have been addressed analytically. The or-
bital nature of the nominal periodic solution has been preserved.
Various transfer functions have been derived.

In the sampled-data approach, the system dynamics is derived
directly andexactlyfrom discrete switching operations. For ex-
ample, the switching operation of one-cycle control is exactly
modeled by Fig. 1 and its sampled-dynamics is exactly (1). In
the averaging approach, however, each circuit module is mod-
eledseparatelyandapproximately Therefore, the sampled-data
approach is more systematic and accurate than the averaging ap-
proach.

The sampled-data approach is generally believed to be nu-
merical intensive and is not widely used. However, the only nu-
merical intensive procedure in the sampled-data approach is to
fhd the fixed-point by solving (2). The remaining analysis is
eased by thanalytical form of the dynamic models. For ex-
ample, once the fixed-point is obtained, the matri¢e$’,,, and
I,. can be obtained from (5)—(7). Then the linearized dynamics
and various transfer functions are then easily obtained. The sam-
pled-data modeling and analysis can be applied systematically
to dc—dc converters under various configurations [15], including
voltage mode control, current mode control, and hysteretic con-

g
3
£
g
2
g
k-3
.

(1]

N . ' ! [2]

200 L
10° 10° 10* 10° 10° [3]

Frequency (rad/sec)

Fig. 5. Control-to-inductor current transfer function (solid line: sampled-data (4]
model; dashed line: averaged model in [4]). [5]

as shown in [19], [20], the true gain margin can also be deter—[6]

mined. Therefore, gain margin will be used to verify the validity
of power stage models. [7]
Generally the controller for a PWM converter uses dynamic 8]
feedback, with an integrator enclosed. For simplicity, the fol-
lowing static feedback is used; = g(Vr — v,), whereg is a

feedback gain antty = Ez°(0) + V,./g = 5.03 + 9.51/g =~ [
5.03. (To ensure the duty cycle is fixed at 0.42 is varied
according tog. However, it is close to 5.03.) The true gain (10]

margin, determined bgxactclosed-loop analysis [19], [20], is
exactly 53.1 dB. It is the same as predicted by the sampled-datai]
model. [Forg > 452 (53.1 dB), one eigenvalue @ is less
than—1, and a period-doubling bifurcation occurs.] Therefore[12]
in this example, the sampled-data model has better prediction of
closed-loop instability than the averaged model in [4]. (3]

[14]
X. CONCLUSIONS

Sampled-data modeling and analysis have been applied {(1)5]
PWM dc—dc converters under one-cycle control or its specighe]

trol. It is hoped that this work will help to facilitate further ap-
plications of the sampled-data approach in power electronics.
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