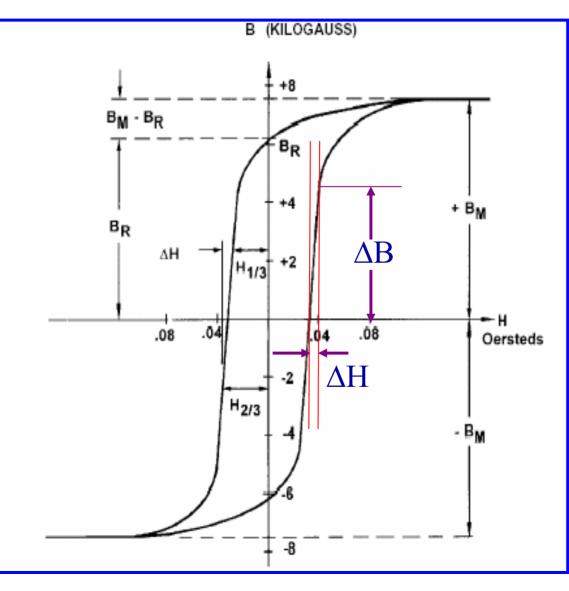

Technical Training

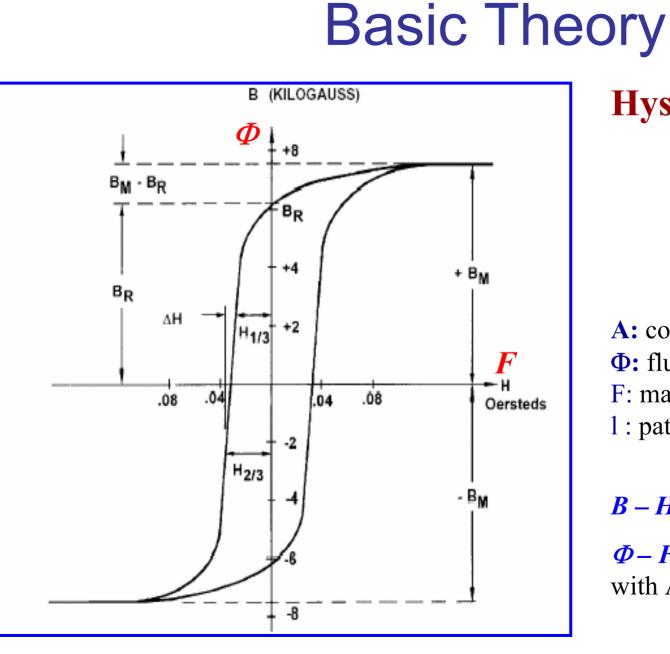
Adlsong


Hysteresis Loop

Bs: saturate magnetic flux density

Br: residual magnetic flux density

Hc: coercive force

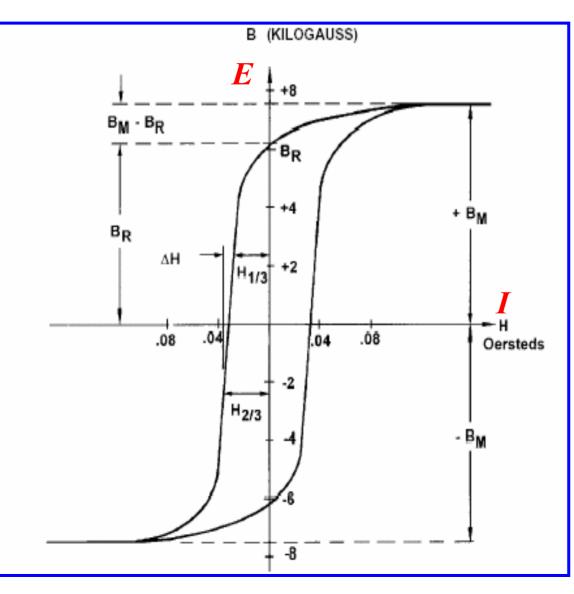


Hysteresis Loop

 $\boldsymbol{B} = \boldsymbol{\mu} \cdot \boldsymbol{H}$

B: flux density (tesla)H: field intensity (A-T/m)µ: permeability

Hysteresis Loop


X Y H B

 $\boldsymbol{F}(F = \boldsymbol{H} \cdot \boldsymbol{l}) \qquad \boldsymbol{\Phi}(\boldsymbol{\Phi} = \boldsymbol{B} \cdot \boldsymbol{A})$

A: core effective area (m²)
Φ: flux (T·m² or webers)
F: magnetic force (ampere-turns)
l : path length (m)

B - H: defining a core material

 $\Phi - F$: defining a specific core with Ae and Le

Hysteresis Loop

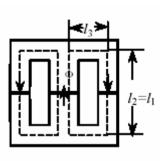
Х	Y
Н	В
I(I=Hl/N)	$E (E=Nd\Phi/dt)$

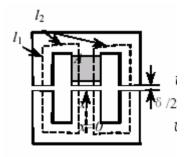
E - I: defining a specific core wound with N turns

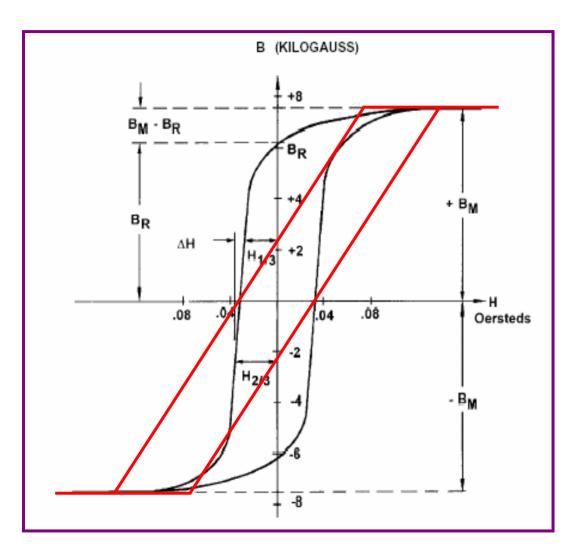
Two Important Laws

1 Ampere's Law: $F = \int H \cdot dl = \Sigma H \cdot l = N \cdot I$ I : loop current (ampere)

N : turns of windings


② Faraday's Law: $E = N d\Phi/dt$ E: induced voltage (volts)


Flux cannot change instantaneously: The time is required to move along $B(\Phi)$ and a change in energy takes palce

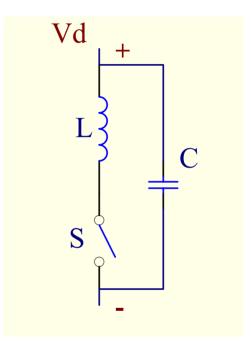

Without air gap: $W = \int Vol \cdot HdB = \int I \cdot Edt \quad (W/m^3 = 0.5 \cdot H \cdot B)$ $L = N \cdot \Phi / i = \mu_0 \cdot N^2 \cdot A / l = A_L \cdot N^2$ A_L: inductance factor

With air gap: $W = \int Vol \cdot HdB = V \cdot B^2/2\mu + Vg \cdot B^2/2\mu_0$ $L = \mu_0 N^2 A/(l/\mu_r + g) \approx \mu_0 N^2 A/g = A_L \cdot N^2$ $B = \mu_0 NI/(g+l/\mu r)$

Note: Most of the energy is stored in the gap portion $\mu >> \mu_0$, $1/\mu_r >> g$ g: air gap length l: magnetic path length μ : magnetic core permeability μ 0: space permeability μ r : relative permeability

As for the same current: Effective flux density of no air gap magnetic core is decreased compared with air gap magnetic core

Low value section of hysteresis loop is Very linearized


2.1 Three types of devices

Resistor: u/i = Ru, i can change instantaneously Inductor: $L \cdot di_L/dt = u_L$ i cannot change instantaneously Capacitor: $C \cdot du_C/dt = i_C$ u cannot change instantaneously

2.2 ZCT

$$L \cdot di_L/dt = u_C$$

 $i_L = -i_C = -C \cdot du_C/dt$
 $i_{C(0)} = 0$, $i_{L(0)} = 0$, $U_{C(0)} = Ud$

So:
$$u_C = Ud \cdot coswot$$

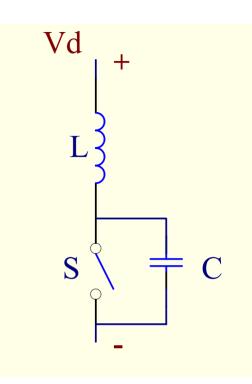
 $i_L = Ud \cdot sinwot / Zc$
 $w_0 = (1/LC)^{1/2}$
 $Zc = (L/C)^{1/2}$

Basic Theory (1) Resonant tanks: LC, L and S in series, S is off at the beginning. The resonant process is starting when S is switched on.

(2) $w_0 t = k\pi$, $i_L = 0$, ZCT when $i_L = 0$.

(3) half wave : the current cannot be reverse after $w_0 t = k\pi$ because S is off

(4) Full wave when a diode is in parallel with S –current: forward and reverse direction).


2.3 ZVT

$$L \cdot di_L/dt + u_C = U_d$$

$$i_L = i_C = C \cdot du_C/dt$$

$$i_{C(0)} = 0, u_{C(0)} = 0, U_{C(0)} = U_d$$

$$C \cdot du_C/dt = I_{L0}$$

So:

$$\begin{split} u_{C} &= Ud \cdot (1 + (1 + (Z_{0}I_{L0}/Ud)^{2})^{1/2})sin(wot-a) \\ i_{L} &= Ud \cdot sinwot / Zc \\ w_{0} &= (1/LC)^{1/2} \\ Z_{0} &= (L/C)^{1/2} \\ a &= arctg Ud/Z_{0}I_{L0} \end{split}$$

(1) Resonant tanks: LC, C and S in parallel, S is on at the beginning. The resonant process is starting when S is switched off.

(2) $w_0 t - a = 0$, $u_C > 0$; $w_0 t - a = 3/2\pi$, $u_L < 0$. ZVT when $u_C = 0$.

(3) full wave : the voltage can be reverse after $u_C = 0$ (4) half wave when a diode is in parallel with S

--the voltage is clamped by the diode.