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Abstract— This paper addresses the topic of a model-free
sys- tem identification of highly nonlinear power electronics
systems from the data either through a time-domain simulation
or a hardware measurement. Especially, this system identification
method based on the black-box approach using the data gener-
ated from well-known design tools such as PSpice and MATLAB
is generally simpler and independent of type of converters. As an
application of identifying an unknown plant in power electronics
systems, a constructive black-box approach is presented which
aims at generating discrete-time small-signal linear equivalent
models for a general class of converters, which includes resonant
converters, pulsewidth modulation (PWM) converters and zero-
voltage-switched (ZVS) PWM converters. The resulting small-
signal model describes the converter as a linear time-invariant
system, and the knowledge of the identified linear system can
be applied to the switching converters for constructing feedback
controllers. The identification results are compared with the
analytical model and experimental data.

I. INTRODUCTION

SWITCHING converters are inherently nonlinear oscilla-
tory systems. A switching converter consists of linear

resistors, inductors, capacitors, as well as nonlinear magnetic
components and semiconductor switches. Especially, due to
the severe nonlinear characteristics of magnetic components
and switching devices, it is very difficult to design stable
feedback controllers using exact mathematical descriptions of
switching converters. Usually, switching converters have too
many complex nonlinear differential equations to be solved.

Therefore, it is generally not feasible to construct design
guidelines to regulate a converter in a large-signal domain.
Instead, small-signal models are commonly used to provide
dynamic information of the switching converters for control
purposes, where the converter can be linearized around a
specific operating point. Since the control issues of switching
converters can be treated very effectively by small-signal
analysis, the resulting small-signal models are very useful to
design engineers on the grounds that all of the relatively simple
techniques of linear system control theory can be applied easily
to the small-signal model. Therefore, practicing engineers may
acquire the physical insight of the given system for developing
a proper feedback controller. From this small-signal model,
important specifications such as audio susceptibility, loop
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gain, and output impedance are calculated. Additionally, these
specifications can be easily measured whenever the small-
signal model and/or the controller based on this model needs
to be verified experimentally.

For the past decades, state-space averaging is a commonly
used modeling approach for small-signal modeling of switch-
ing converters. This method was originally proposed to model
pulsewidth modulation (PWM) converters. For properly de-
signed PWM converters, the natural frequencies of each linear
circuit are much lower than the switching frequency. This
provides justification of the linear ripple assumption. Under the
assumption that the natural frequency of the converter power
stage is well below the switching frequency, the averaging
technique can provide approximate linear solutions of a non-
linear averaged state equation. Then, the small-signal model
can be derived by “persistently exciting” input signals around
a particular operating point. The obtained small-signal model
has a continuous form. The model can predict the dynamics
of PWM-type converter power stages accurately up to the
half of the switching frequency. The analysis of state-space
averaging is simplified by using a circuit averaging technique
based on three-terminal PWM switch model [1]. However, this
averaging concept does not apply for resonant converters and
multiresonant converters where the energy of state variables
is carried mainly by switching harmonics but not by the low-
frequency components as in the case of PWM-type converters.
For resonant converters and multiresonant converters, the
dynamics are often determined by the interaction between
the switching frequency and the natural resonant frequency
of the converter [2]. This interaction cannot be investigated
using averaging concept because it eliminates the switching
frequency information. In recent years, due to the specific
circuit characteristics, the zero-voltage-switched (ZVS) PWM
circuit topology has found many applications especially in
high-voltage/high-power dc to dc converters. This ZVS PWM
topology seems to be very close to the conventional PWM
topology, but its small-signal properties are found to be
significantly different from that of the PWM converter, and
its small-signal analysis is hard to be achieved by state-space
averaging because it would require solving the third-order
system composed of six system equations whose averaging
factors are implicit functions of the states [3].

Another systematic modeling method to obtain small-signal
models for switching converters is a discrete-time (D-T) or
a sampled-data modeling approach. By solving the nonlinear
state equations in the time-domain, a steady-state analysis can
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be done under given operating conditions. Perturbation of this
nonlinear equation around a specific operating point provides
the small-signal dynamics with a sample interval the same as
the switching frequency.

However, in recent years the area of modeling and analysis
of power electronics systems, owing to their inherent nonlinear
nature, has been a very difficult task in view of the lack of
adequate analysis tools at the disposal of the circuit designer
working in the field. Due to the increased speed, accuracy, and
smaller size of today’s high-performance regulators, new and
more complex converter topologies have been continuously
developed. It becomes an even more challenging task to
develop a generalized modeling tool to analyze and design
new circuit topologies.

In this paper, the topic of system identification of highly
nonlinear power electronics systems from the data either
through a time-domain simulation or a hardware measurement
is presented. Especially, this system identification method
based on the black-box approach using the data generated
from well-known design tools such as PSpice and MATLAB
is generally simpler and independent of type of converters.
As an application of identifying an unknown plant in power
electronics systems, a constructive black-box approach is
presented which aims at generating discrete-time small-signal
linear equivalent models for a general class of converters,
which includes a PWM-type boost converter, a series-resonant
converter, a multiresonant converter, and a ZVS PWM con-
verter. Also, since this approach is a model-free identification,
internal structure need not be known in advance as long as one
can obtain a satisfactory statistical distribution of the data.
This approach is also very effective to generate a reduced-
order model to represent a complex subsystem in a distributed
power system.

This paper is organized in the following way. The conven-
tional method of multivariable system identification, which
utilizes all possible observable structures of the system to
achieve a linearized model, is presented briefly in Sections II-
A and II-B. This method is used to optimally generalize over
the available input/output data around an equilibrium point.
Section III addresses the topic of the small-signal modeling
of a highly nonlinear power electronics system, which is used
to design feedback controllers. Finally, a discussion of the
simulation results and some directions for the future work are
presented in Section IV.

II. M ULTI-INPUT MULTI-OUTPUT (MIMO)
STRUCTURE DETERMINATION

A. System Identification

In his often referenced paper [4], Luenberger established
nominal structures for a multi-input multi-output (MIMO)
system. The method is based on the concept of either con-
trollability or observability indexes. For present purposes only
the observability form will be discussed. Beginning with an
assumed D-T state-space model

(1)

Fig. 1. Example of a crate diagram.

where is an vector, is an vector,
is a vector, and the matrices , and have
corresponding compatible dimensions, the observability matrix
is given by the matrix

(2)

The dimensions of are . For an observable system
must have rank and, therefore, linearly independent

rows. The Luenberger form identifies the first linearly
independent rows from the top. Theobservability indexfor
the pair is the smallest integer,, such that

(3)

Observability indexes(plural) are defined as the set of integers
, identifying the lengths of the chains of

each row of For instance, the rows generated by roware
linearly independent up to (and including) As an aid
to the discussion, the crate diagram is introduced as a means
of visualizing which linearly independent rows of are
being chosen [5]. As an example of a three-output system of
order 7, consider Fig. 1. In this case the matrix of selected
rows becomes

(4)

Note the correspondence between the partitions ofin (4)
and the units in the crate diagram of Fig. 1. Usingas a
similarity transformation matrix results in the equivalent state
space model given by

, and . This representation is in thepseudo-
observability form(POF) state-space model corresponding to
the indexes , as indicated by the number of units in
the three columns of the crate. The structure of the model
is illustrated in the and matrices described below.
The matrix has no particular structure. The matrix
contains the remaining rows of the 7 7 identity matrix
in rows 1, 2, 5, and 6. Its other rows may have arbitrary
elements. The difference between a POF and the corresponding
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Luenberger form is that Luenberger reordered the selected
rows by the columns of the crate before performing the
similarity transformation, a step which is not only unnecessary,
but counterproductive in that the resulting structure is more
complex!

(5)

The idea behind the POF’s is that the selection of
the linearly independent rows of can be done in
many ways, according to the indices ,
representing the number of units in the columns of
the crate. The indexes must, of course, sum to. Each
possibility must be checked for “admissibility,” i.e., that
the resulting rows are, in fact, linearly independent. The
admissible POF’s are then all possible structures for the
MIMO system. Investigation of the various POF’s for a
particular system quickly indicates that some forms are
better than others in terms of the condition number of the
transformation matrix . A poorly conditioned transformation
matrix typically results in a large range of parameter values
in the POF, as well as loss of numerical accuracy in
the model.

In Section II-B the deterministic identification algorithm
is reviewed [6]. The identification technique presented in
this paper, modified to accommodate noisy data, is given in
Section III.

B. Deterministic Identification

In Section II-A the POF was introduced. The key is in the
set of indexes specified for the POF in that everything related
to the system structure is determined from them. In practice
it is useful to establish an algorithm which will construct the
POF given a basic state-space model and the information of
the indexes. The reader is referred to [6] for details.

System identification from input/output data assumes that
the input signals are “persistently exciting,” i.e., that the
system is sufficiently excited to exhibit all of its modes in
the corresponding output signals. In addition, it is clear that
only the controllable and observable part of the system can
be identified from input/output data. To develop the necessary
background, consider the desired result of the identification,
namely, an order- D-T system with inputs and outputs

(6)

where is in a POF corresponding to
a set of admissible POI, . From (6) we may write

...
...

...

...
(7)

Now we let . Clearly, (7) holds for any
integer and can be rewritten as

(8)

where and are and dimensional
columns containing output and input vectors and

. The matrix is the observability matrix
of the pair , while is the lower
block triangular matrix containing along the main diagonal the

blocks . The other nonzero blocks of are the
-dimensionalMarkov parameters

for (9)

Our goal is to eliminate from (7) the terms, thereby
obtaining an expression which relates the sampled data to the
elements in .

Equation (7) can be considered to represent scalar
equations in the samples

(10)

i.e., the th component of the output vector
. It can be shown that has rows of an

identity matrix and rows that correspond to the rows of
with nonzero/nonunity elements. Furthermore, the locations of
these rows are determined by the information of the indexes
used to construct “selector matrices.” The various selector
vectors and matrices used in this development are all derivable
from the set of indexes.

Premultiplying (8) by the selector matrices and
defined in [6], we obtain, respectively,

(11)

where

with

Eliminating from (11)

(12)
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The matrix in (11) and (12) is a matrix containing
the rows of with nonzero nonunity elements, whose
locations in are specified by the selector vector .
Equation (12) may be expressed in a more concise form by

(13)

where is a matrix and
is an -dimensional vector containing and , where

. Equation (13) is referred to as the
identification identitysince it relates input/output data samples
arranged into columns and to parameters of the state
space representation , i.e., in the matrices , and .

We now consider the case where only input/output data
is available, without a given system model. The process
of creating a system model from the data is called system
identification. A deterministic D-T system identification will
be performed by calculating an observable form state-space
model from a set of input and
corresponding output data with the restriction that the input
signals are “persistently exciting.” The technique is based on
the identification identity, (13).

In order to determine and , as well as to select
an appropriate set of indexes, the following is suggested.
Concatenate the vectors and corresponding to samples

into and matrices
and , respectively, (where it is assumed that and

, yielding

(14)

where

One can quickly conclude that the input sequence used to
generate the response is “sufficiently rich” if and only if the
matrix is full rank, i.e.,

(15)

and that the set of indexes is admissible ifis of full (row)
rank, i.e., if

(16)

the condition numberof is relatively large, it might be
advisable to try another set of indexes which, through a
different set of selector vectors and matrices, could lead to a
better conditioned . Finally, the solution of (14), containing
the parameter information for , is

(17)

which reduces to if the matrix is square. Using the
natural structure described above, the POF realizationcan
be constructed from the result of (17). In the next section the
technique for system identification is explained.

Fig. 2. Boost converter (with PWM control over the switch).

III. A SMALL -SIGNAL ANALYSIS OF VARIOUS CONVERTERS

As an example of the small-signal analysis of nonlinear
dynamic systems under study, an open-loop boost converter, a
series resonant converter (SRC), and a forward multiresonant
converter (FMRC) are selected. Since the existing state-space
averaged model is quite accurate up to the half of the switching
frequency in case of the boost converter, the proposed black-
box approach can be compared and its effectiveness and
accuracy verified.

A. Open-Loop Boost Converter

Fig. 2 illustrates a typical two-state boost converter exam-
ple. Three input variables and two output variables represent
the state of the system dynamics: (the variation of input
voltage), (the variation of input current), and (the
variation of duty cycle), (the variation of output inductor
current), (the variation of output capacitor voltage). This
converter was designed to operate at a nominal duty ratio
of 0.6 with an efficiency of 70.5%. The exact discrete state-
space equation including all the nonlinearities is used for the
time-domain simulation.

As described in detail [7], the procedure is summarized as
follows

Step 1: A small range of elaborate input perturbations
around a nominal equilibrium point is injected at the inputs
of the boost converter, such as, , and , and then
the corresponding output responses are measured in physical
unit. Generally, small-signal analysis of an unknown system,
unlike the above boost converter, must be done using a circuit
simulation tool such as PSpice or the measurement data from
the hardware directly. Therefore, extracting information from
data is not a straightforward task. In addition to the decisions
required for model structure selection and generalization, the
collected data need to be handled carefully for the proposed
identification process. The levels in these raw inputs and
outputs should be matched in a consistent way. The mean
levels must be subtracted from the input and output sequences
before the estimation. The best way is to match the mean levels
corresponding to a system equilibrium.

Step 2: The second step is to determine a nominal range of
the system order with the restriction that the input signals are
“persistently exciting.” From the assumption that the order of
the system is unknown, to determine the system order from
raw data, a rank test is done. However, due to the nonlinearity
of the system with added noise, a rank test may not be reliable.
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Fig. 3. Small-signal analysis process.

Fig. 4. Magnitude: identified (solid), state-space averaging (dotted).

Step 3: The third step is to construct an ARMA model
with inputs representing both the present inputs and delayed
versions of the inputs and outputs to capture the dynamics
of the systems. The method determines an equilibrium point
to identify a linearized system about this equilibrium point.
It is a classical method of multivariable system identification
which utilizes the possible structures of the system in order to
achieve a model that optimally generalizes over the available
input/output data.

Step 4: The final step, a deterministic D-T system iden-
tification, is performed by calculating an observable form
state-space model from the identified
ARMA model. The small-signal modeling process is shown
in Fig. 3.

Using the proposed identification technique, a small-signal
analysis of the boost converter is developed as the following
ARMA model:

(18)

where , and
. From (18) it is noted that delayed inputs and outputs

contribute to the “predicted” output. Since the boost con-
verter is second order, the ARMA model of the linearized
system is expected to have

, and terms. For refer-
ence, the eigenvalues of the C-T equivalent model of (18) are

comparing with those of state-space aver-
aged model of the exact system equation, .
When duty cycle is modulated, the magnitude and the
phase of the control-to-output transfer function of the identified
model are compared against the state-space averaged model of
the system in Figs. 4 and 5, respectively. The obtained small-

Fig. 5. Phase: identified (solid), state-space averaging (dotted).

Fig. 6. Series resonant converter.

signal model is accurate up to half of the switching frequency,
i.e., 25 kHz (Nyquist frequency).

B. Series-Resonant Converter (SRC)

The small-signal analysis for an SRC based on the proposed
identification technique is discussed in this section. Among
several approaches for modeling an SRC, the well-known
state-space averaging technique does not show promising
results in modeling for resonant converters, where the energy
of the system is carried mainly by the switching frequency
harmonics (not by the low-frequency components as in the
case of PWM converters). Since the dynamics are often
determined by the interaction between the switching frequency
and the natural frequency of the resonant converter, state-
space averaging eliminates the useful information of this
interaction between both frequencies. Therefore, the previous
identification procedure was applied to the input/output data
streams of nonlinear system equations of an SRC [7]. The
identified model was compared with the analytical result to
verify the correctness of the procedure. The circuit diagram
of the SRC is shown in Fig. 6. The circuit parameters and the
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operating point are the following:

H

F

kHz

V

nF

The active switch network generates a quasi-square voltage
applied to the resonant tank. By assuming the continuous

mode of the inductor current (tank current), the SRC can be
modeled as in the following nonlinear state equations:

sgn

(19)

There are three input variables: (the variation of input
voltage), (the variation of output current), and (the
variation of switching frequency), and three output variables:

(the averaged input current), (the capacitor output
voltage), and (the output voltage) of the power stage. In this
configuration, the output voltage is regulated by modulating
the switching frequency The resulting small-signal model
of the SRC is given below as a state-space representation form

(20)

Figs. 7 and 8 show the control-to-output transfer function of
the SRC compared against the measured data. The numerical
results are in good agreement with the measured data.

C. Forward Multiresonant Converter (FMRC)

The whole circuit has six energy storage elements and the
resonant tank formed by , and is the third order.
The magnetizing inductance is denoted by. The FMRC is
controlled by varying the turn-on time of the active switch ,
and the turn-off time is fixed. The advantage of this topology

Fig. 7. Magnitude: identified (solid), measured (�).

Fig. 8. Phase: identified (solid), measured (�).

Fig. 9. Forward multiresonant converter.

is that it absorbs the major circuit parasitics such as the output
capacitance of the switching devices, the junction capacitance
of the rectifier diodes, and the leakage inductance of the
transformer. Furthermore, all of the semiconductor devices can
be operated under zero voltage switching condition with proper
design. Since several operating modes exist for this circuit with
respect to different loads and switching frequencies, therefore,
it is not feasible to obtain dc characteristics analytically.
Especially, there are two resonant frequencies for the FMRC,
corresponding to the turn-on period and the turn-off period,
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respectively. This makes the FMRC a more difficult circuit
than the other resonant converters for modeling. The FMRC
are built as the following parameters:

H

H

H

m

kHz

nF

nF

F

k

The nonlinear state equations of the FMRC are the following:

(21)

where represents the switching action of the MOSFET

MOSFET or its body diodeON

otherwise

The parasitics related with losses are defined by

conduction loss of the tank;

core loss of the transformer;

ESR of the output capacitor

With the above large-signal nonlinear model available, time
domain simulation is done with PSpice in the Appendix. There
are three input variables, , and six output variables,

, and of the power stage. To verify
the results of the analysis, an FMRC was built with the same
component values as shown above. Figs. 10 and 11 show the
control-to-output transfer function of the small-signal model of
the FMRC compared with the measured data. The identified
results of both gain and phase are close to the measured data
except near the one-half of the switching frequency, which
shows the difficulty of this problem.

The identified small-signal model of the FMRC is given be-
low as a state-space representation form
as shown, at the bottom of the page, in (22).

D. Full-Bridge Zero-Voltage-Switched
(FB-ZVS) PWM Converter

In contrary to the conventional PWM converters, the circuit
parasitics such as the output capacitances of the switching
devices and the leakage inductance of the high-frequency
transformer have beneficial effects on the converter perfor-

(22)
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Fig. 10. Magnitude: identified (solid), measured (�).

Fig. 11. Phase: identified (solid), measured (�).

mance in ZVS topology. With phase-shift control, transformer
leakage inductance and MOSFET’s junction capacitance can
be utilized to achieve zero-voltage resonant switching, which
enables high-frequency operation for improved efficiency and
reduced volume and weight. Considering the recently in-
creased attention to this ZVS topology, the small-signal anal-
ysis of this type of converter is necessary, but only a few
researchers have focused on this problem [3], [8]. This ZVS
PWM converter topology seems to be very close to the
conventional PWM converter topology, but its small-signal
properties are found to be significantly different from those of
the PWM converter, and its small-signal analysis is hard to be
achieved by state-space averaging because of the presence of
a large leakage inductance and the phase-shift control.

In this section, the small-signal analysis of the ZVS PWM
converter is achieved by the proposed identification technique
using the help of circuit simulation program such as PSpice.

The ZVS PWM converter constructed in Fig. 12 has the
following circuit parameter values [8]:

Input voltage, V

Output voltage, V

Fig. 12. The FB-ZVS PWM converter.

Fig. 13. Simulated waveforms.

Fig. 14. Experimental waveforms.

Output capacity, kW

Transformer turns ratio,

Transformer leakage inductance, H

Output filter inductor, H

Output filter capacitor, F

DC blocking capacitor, F

The results of both simulated and also experimental wave-
forms showing the ZVS effects are given in Figs. 13 and 14.

Figs. 15 and 16 show the control-to-output transfer function
of the FB-ZVS-PWM converter compared with the measure-
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Fig. 15. Magnitude: identified (solid), measured (dashed).

Fig. 16. Phase: identified (solid), measured (dashed).

ment data. The numerical results of both gain and phase
measurements are in good agreement with predictions.

IV. CONCLUSIONS

As a unified black-box modeling approach of highly nonlin-
ear power electronics systems, a novel identification technique
is proposed for modeling conventional switching converters,
resonant converters, and full-bridge ZVS converterts. In order
to get not only physical insight of system but also to have
a convenient linearized model of the given system at the
specific operating point, a small-signal modeling method is
introduced using PSpice and MATLAB along with the classical
linear identification method. A boost converter, an SRC, an
FMRC, and a ZVS PWM converter are taken as examples to
demonstrate the proposed algorithm and the result looks very
promising even though the key factor is how to persistently
excite the system for showing all kinds of characteristics to
be identified.

APPENDIX

Forward Multiresonant Converter

* Measured Outputs:
*- - - - - - - - - - - - - - - - - -
* 1) i(L)
* 2) i(Lm)
* 3) i(Lf)
* 4) VCf node (4)
* 5) VCd node (20)

EVcd (20,0) (5,6) 1
Rvcd (20,0) 1

* 6) Vo node (21)
EVo (21,0) (9,6) 1
RVo (21,0) 1

*- - - - - - - CIRCUIT DESCRIPTION...........

* Vg is an input ......................................................
Vg (1,vn) 35.2
Evn (vn,0) (vn0,0) 1
Rvn (vn0,0) 1

* This is a VCVS: change the gain to control the size of
perturbation

*Vn (vn0,0) PWL (0 1 11.3u 1 11.301u -.4 22.6u -.4 22.601u
.4 33.9u .4 33.901u -1 45.2u -1 45.201u 0 56.5 0)
*Vn (vn0,0) PWL (0 2 11.3u 2 11.301u -.2 22.6u -.2 22.601u
.2 33.9u .2 33.901u -2 45.2u -2 45.201u 0 56.5 0)
*Vn (vn0,0) PWL (0 -.3 11.3u -.3 11.301u -.9 22.6u -.9
22.601u .3 33.9u .3 33.901u .9 45.2u .9 45.201u 0 56.5 0)
*Vn (vn0,0) PWL (0 -.7 11.3u -.7 11.301u -1.1 22.6u -1.1
22.601u .7 33.9u .7 33.901u 1.1 45.2u 1.1 45.201u 0 56.5 0)
Vn (vn0,0) PWL (0 -.5 11.3u -.5 11.301u -.1 22.6u -.1
22.601u .5 33.9u .5 33.901u .1 45.2u .1 45.201u 0 56.5 0)

* In is an input .....................................................
Gn (6,8) (30,0) 0.4
Rn (30,0) 1

* This is a VCCS: Change the gain to control the size of
perturbation

*Vi (30,0) PWL (0 1 11.3u 1 11.301u -.4 22.6u -.4 22.601u .4
33.9u .4 33.901u -1 45.2u -1 45.201u 0 56.5 0)
*Vi (30,0) PWL (0 2 11.3u 2 11.301u -.2 22.6u -.2 22.601u .2
33.9u .2 33.901u -2 45.2u -2 45.201u 0 56.5 0)
*Vi (30,0) PWL (0 -.3 11.3u -.3 11.301u -.9 22.6u -.9 22.601u
.3 33.9u .3 33.901u .9 45.2u .9 45.201u 0 56.5 0)
Vi (30,0) PWL (0 -.7 11.3u -.7 11.301u -1.1 22.6u -1.1
22.601u .7 33.9u .7 33.901u 1.1 45.2u 1.1 45.201u 0 56.5 0)
*Vi (30,0) PWL (0 -.5 11.3u -.5 11.301u -.1 22.6u -.1 22.601u
.5 33.9u .5 33.901u .1 45.2u .1 45.201u 0 56.5 0)

Rs (1,2) 0.63
L (2,3) 45u ic -4.010 238 2
Lm (3,4) 139u ic 1.035 218 7
Rm (3,4) 7.3K

Cs (4,0) 48.2n ic 9.721 489 9
Diode (0,4) DIODE
Sd (4,0) (d,0) SWITCH

* ...................... Duty cycle control ..........................

Ed (sense,0) poly(2) (ramp,0) (40,0) 0 -1000 1000
Rdz (sense,d) 10
Dzener (0 ,d) ZENER

* Ramp voltage 0- 1V 11.3 usec period
Vramp (ramp,0) PULSE (0 1 0 11.298u 1n 1n 11.3u)
Rramp (ramp,0) 1

* Nominal duty cycle
Vd (40,vdn) 0.619 469
Edn (vdn ,0 ) (dn0,0) 0.1
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Rcntr (40,0) 1
Rd (dn0,0) 1

* This is a VCVS: change the gain to control the size of
perturbation

*Vdn (dn0,0) PWL (0 1 11.3u 1 11.301u -.4 22.6u -.4 22.601u
.4 33.9u .4 33.901u -1 45.2u -1 45.201u 0 56.5 0)
*Vdn (dn0,0) PWL (0 2 11.3u 2 11.301u -.2 22.6u -.2 22.601u
.2 33.9u .2 33.901u -2 45.2u -2 45.201u 0 56.5 0)
Vdn (dn0,0) PWL (0 -.3 11.3u -.3 11.301u -.9 22.6u -.9
22.601u .3 33.9u .3 33.901u .9 45.2u .9 45.201u 0 56.5 0)
*Vdn (dn0,0) PWL (0 -.7 11.3u -.7 11.301u -1.1 22.6u -1.1
22.601u .7 33.9u .7 33.901u 1.1 45.2u 1.1 45.201u 0 56.5 0)
*Vdn (dn0,0 ) PWL (0 -.5 11.3u -.5 11.301u -.1 22.6u -.1
22.601u .5 33.9u .5 33.901u .1 45.2u .1 45.201u 0 56.5 0)

* ...................... Ideal Tranformer..............................
RXFORM (4 , 6) 1MEG
FXFORM (3 , 4) VXFORM 0.5
VXFORM (5x, 5) 0
EXFORM (5x, 6) (3 , 4) 0.5

* .....................................................................
Cd (5,6) 661n ic -5.228 753 1
D1 (5,7) DIODE
D2 (6,7) DIODE
Lf (7,8) 82u ic 3.243 697 2
Rc (8,9) 206m
Cf (9,6) 34u ic 8.230 114 9
Rload (8,6) 2.8152

* SIMULATION COMMANDS

.OPTION PIVTOL 1E-99 ITL5 0 NUMDGT 8
NOECHO NOMOD
.WIDTH OUT 132
.MODEL SWITCH VSWITCH (Ron 1m Roff 1Meg Von

10 Voff 0.5)
.MODEL ZENER D (BV 10)
.MODEL DIODE D ()
.tran 11.3u 56.5u 0 0.2u UIC
.print tran v(1) v(30) v(40) i(L) i(Lm) i(Lf) v(4) v(20)
v(21)
* - - - Inputs - - - - - - - - - - - - - - - -
Outputs - - - - - - - - - - - - -
* Vg Io d Vcs Vcd Vo
.probe
.end

* Schematics Netlist
R Rs 1 2 0.63
L L 2 3 45uH IC -4.010 238 2
L Lm 3 4 139uH IC 1.035 218 7
R rm 4 3 7.3k

C Cd 5 6 661n IC=-5.228 753 1
L Lf 7 8 82uH IC 3.243 697 2
R Rload 6 8 2.8
R Rc 9 8 206m
C Cf 9 6 34u IC 8.230 114 9
D D6 5 7 Dbreak
D D7 6 7 Dbreak
R RXFORM 4 6 1Meg
V Vg 1 $N 0001 DC 35.2V
E Evn $N 0001 0 $N0002 0 1
V Vn $N 0002 0 PWL FILE
“c: user paper spice fmrc vn.dat”
R Rvn $N 0002 0 1
G G1 6 8 30 0 0.4
V V9 30 0 PWL FILE
“c: user paper spice fmrc current.dat”
R Rn 30 0 1
S S1 4 0 d 0 Sbreak-X
RS S1 d 0 1G
D D8 0 4 Dbreak
C Cs 4 0 48.2n IC 9.721 489 9
E DIFF1 $N 0003 0 VALUE V($N 0005,$N0004)
E ABM11 $N 0005 0 VALUE (V(40) 1000)
E ABM12 $N 0004 0 VALUE (V(ramp) 1000)
E E2 sense 0 $N0003 0 1
R Rdz sense d 10
R Rd $N 0006 0 1
V Vdn $N 0006 0 PWL FILE
“c: user paper spice fmrc t2.dat”
E Edn $N 0007 0 $N0006 0 0.1
V Vd 40 $N 0007 DC 0.619 469
R Rramp ramp 0 1
V Vramp ramp 0

PULSE 0 1 0 11.298u 1n 1n 11.3u
R Rcntr 40 0 1
F F1 3 4 VF F1 0.5
VF F1 5x 5 0V
E E5 5x 6 3 4 0.5
D Dzener 0 d DbreakZ
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