ACT30

 HIGH PERFORMANCE OFF-LINE CONTROLLER

 HIGH PERFORMANCE OFF-LINE CONTROLLER ActiveSwitcher ${ }^{\text {TM }}$ IC Family

 ActiveSwitcher ${ }^{\text {TM }}$ IC Family}

FEATURES

■ Lowest Total Cost Solution
■ 0.15W Standby Power

- Emitter Drive Allows Safe NPN Flyback Use
- Hiccup Mode Short Circuit

■ Current Mode Operation

- Over-Current Protection

■ Under-voltage Protection with Auto-restart
■ Proprietary Scalable Output Driver

- Flexible Packaging Options (including TO-92)
- 6-Terminal Die Available
- 65 kHz or 100 kHz Switching Frequency

■ Selectable 0.4A to 1.2A Current Limit

APPLICATIONS

- Battery Chargers
- Power Adaptors
- Standby Power Su pplies
- Appliances

■ Universal Off-line
CONFID

For Referenceldadill package (To-92 or so For Referencel@aslyfab@t Naton.

Distribute АСТЗ 3 is a 6 -termin I medium-voltage odulation IC with many flexible packaging options for generating power to more than 10 W . One combination of internal terminals is packaged in the space-saving TO-92 package (A/B/C/D versions) for 65 kHz or 100 kHz switching frequency and with 400 mA or 800 mA current limit. The E version (SOT23-5, DIP-8 or Die) can be configured for up to 1.2A current limit.

Consuming only 0.15 W in standby, the IC features over-current, hiccup mode short circuit, and under-voltage protection mechanisms.

The ACT30 is ideal for use in high performance universal adaptors and chargers. For highest performance versus cost and smallest PCB area, use the ACT30 in combination with the ACT32 CV/CC Controller.

Figure 1. Simplified Application Circuit

亿RACTIVE
ORDERING INFORMATION

PART NUMBER	SWITCHING FREQUENCY	CURRENT LIMIT	TEMPERATURE RANGE	PACKAGE	PINS
ACT30AHT	65 kHz	400 mA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TO-92	3
ACT30BHT	65 kHz	800 mA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TO-92	3
ACT30CHT	100 kHz	400 mA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TO-92	3
ACT30DHT	100 kHz	800 mA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TO-92	3
ACT30EUC-T	SELECTABLE	ADJUSTABLE	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOT $23-5$	5
ACT30EDH	SELECTABLE	ADJUSTABLE	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	DIP-8	8
ACT30EZZ	SELECTABLE	ADJUSTABLE	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	DIE	6

PIN CONFIGURATION

PIN NUMBER			PIN NAME	PIN DESCRIPTION
T0-92	SOT23-5	DIP-8		
1	5	5	VDD	Power Supply Pin. Connect to optocoupler's emitter. Internally limited to 5.5 V max. Bypass to GND with a proper compensation network.
2	2	3	GND	Ground
3			DRV	Driver Output. Connect to emitter of the high voltage NPN or MOSFET. For ACT30A/C, DRV pin is connected to DRV1 only. For ACT30B/D, DRV pin is connected to both DRV1 and DRV2.
	4	1	DRV1	Driver Output 1. Also used as supply input during startup.
	3	2	DRV2	Driver Output 2. For TO-92, this terminal is internally wire-bonded to DRV1 for B and D versions, and left unconnected for A and C versions. For E version, this pin can be arranged with DRV1 to set current limit at any value between 400 mA and 1.2 A .
	1	4	FREQ	Frequency Select. This terminal has an internal 200k pull down resistor. Connect to VDD for 100 kHz operation. Connect to GND or leave unconnected for 65 khz operation. For TO-92 ACTA/B versions, this terminal is N / C. For $A C T 30 C / D$ versions, this terminal is internally wire-bonded to VDD.

ACT30

ABSOLUTE MAXIMUM RATINGS

(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

PARAMETER		VALUE	UNIT
VDD, FREQ Pin Voltage		-0.3 to 6	V
VDD Current		20	mA
DRV, DRV1, DRV2 Voltage		-0.3 to 18	V
Continuous DRV, DRV1, DRV2 Current		Internally limited	A
Maximum Power Dissipation	TO-92	TBD	W
	SOT23-5	TBD	
	DIP-8	TBD	
Operating Junction Temperature		-40 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature		-55 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)		300	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

($V_{D D}=4 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	SYMBOL		T CONDITIONS	MIN	TYP	MAX	UNIT
$V_{\text {DD }}$ Start Voltage	nioungotug			175	5	5.25	V
DRV1 Start Voltage					. 6	10.5	V
DRV1 Short-Circuit Dete t Threshof orvereference Only, Do Not					8		V
$V_{\text {DD }}$ Under-voltage Thres iold	Vuv	Falitisdipibute		3.17	335	3.53	V
$V_{D D}$ Clamp Voltage		¢0ım		.	8	5.75	V
Startup Supply Current	$\mathrm{l}_{\text {DSST }}$	$\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$ bef	fore V_{UV}		0.23	0.45	mA
Supply Current	I_{D}				0.7	1	mA
Switching Frequency	$\mathrm{f}_{\text {Sw }}$	ACT30A/B or FREQ $=0$		55	65	85	kHz
		ACT30C/D or $\mathrm{FREQ}=\mathrm{V}_{\mathrm{DD}}$		75	100	125	
Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{DD}}=4 \mathrm{~V}$		67	75	83	\%
Minimum Duty Cycle	$\mathrm{D}_{\text {MIN }}$	$\mathrm{V}_{\mathrm{DD}}=4.6 \mathrm{~V}$			3.5		\%
Effective Current Limit	$I_{\text {LIM }}$	$\begin{aligned} & V_{D D}=V_{U V}+ \\ & 0.1 \mathrm{~V} \end{aligned}$	ACT30A/C		400		mA
			$\begin{aligned} & \text { ACT30B/D; ACT30E } \\ & \text { with DRV1 = DRV2 } \end{aligned}$		800		
$V_{\text {DD }}$ to DRV1 Current Coefficient	$\mathrm{G}_{\text {GAIN }}$				-0.29		A/V
VDD Dynamic Impedance	R VID				9		k Ω
Driver Output 1 On-Resistance	$\mathrm{R}_{\text {DRV1 }}$	$\mathrm{I}_{\text {DRV1 }}=0.05 \mathrm{~A}$			3.6		Ω
Driver Output 2 On-Resistance	$\mathrm{R}_{\text {DRV2 }}$	$\mathrm{l}_{\text {DRV2 }}=0.05 \mathrm{~A}$			3.6		Ω
DRV1 Rise Time		1 nF load, 15Ω pull-up			30		ns
DRV1 Fall Time		1 nF load, 15Ω pull-up			20		ns
DRV1 and DRV2 Switch Off Current		Driver off, $\mathrm{V}_{\mathrm{DRV1}}=\mathrm{V}_{\text {DRV2 }}=10 \mathrm{~V}$			12	30	$\mu \mathrm{A}$

FUNCTIONAL DESCRIPTION

Figure 2 shows the Functional Block Diagram of the ACT30. The main components include switching control logic, two on-chip medium-voltage power-MOSFETs with parallel current sensor, driver, oscillator and ramp generator, current limit VC generator, error comparator, hiccup control, bias and undervoltage-lockout, and regulator circuitry.

As seen in Figure 2, there are 4 non-GND terminals. VDD is power supply terminal. DRV1 and DRV2 are linear driver outputs that can drive the emitter of an external high voltage NPN transistor or N-channel MOSFET. This emitter-drive method takes advantage of the high $\mathrm{V}_{\text {CBO }}$ of the transitor, allowing a low cost transistor such as ' $13003\left(\mathrm{~V}_{\text {CBO }}=700 \mathrm{~V}\right)$ or '13002 ($\mathrm{V}_{\text {сво }}=600 \mathrm{~V}$) to be used for a wide AC input range. The slew-rate limited driver coupled with the turn-off characteristics of an external NPN result in lower EMI. (See External Power Transistor in Application Informotion coction) Finally, FREQ terminal ; for frequency selection Cal Livelise dy th the very lov

The driver peak current is designed chavea Ladual R_{1} value-should be
 supply voltage V_{DD}, so hat lower supply voltage tiñ deay

${ }^{\ddagger}$ DRV2 terminal wire-bonded to DRV1 in ACT30B/D (TO-92)
Figure 2. Functional Block Diagram

ACT30

Figure 3. Startup Waveforms

NORMAL OPERATION

CURRENT LIMIT ADJUSTMENT

In normal operatio tho foodhal cignal from Tho pronrintary driver arrangement the secondary side is transmitted through the allows the current limit to b easily adjusted optocoupler as a cu which has dynamic resulting $V_{D D}$ voltage IC. As seen from the the Current Limit VC ent signal intcolim, Dt ethern $40<4$ and 1.2A. Tc understand this, impedance of $9 \mathrm{k} \Omega$. The the drivers have to be utilized as linear resistive
 Functional Block Diagram striqutpytswitches). The current limit can then be Generator uses the $\nabla_{D D}$ Str voltage difference with 4.15 V to generate a proportional offset at the negative input of the Error Comparator.

The drivers turn on at the beginning of each switching cycle. The current sense resistor current, which is a fraction of the transformer primary current, increases with time as the primary current increases. When the voltage accross this current sense resistor plus the oscillator ramp signal equals Error Comparator's negative input voltage, the drivers turn off. Thus, the peak DRV1 current has a negative voltage coefficent of $-0.29 \mathrm{~A} / \mathrm{V}$ and can be calculated from the following:
$I_{D R V 1 P E A K}=0.29 A / V \cdot\left(4.75 V-V_{D D}\right)$
for $\mathrm{V}_{\mathrm{DD}}<4.75 \mathrm{~V}$ and duty cycle $<50 \%$.
When the output voltage is lower than regulation, the current into VDD pin is zero and $V_{D D}$ voltage decreases. At $V_{D D}=V_{U V}=3.35 \mathrm{~V}$, the peak DRV1 current has maximum value of 400mA. calcurated through linear com ination as shown in Figure 4. For TO-92 package, the ACT30A/C are preprogrammed to 400 mA current limit and

Figure 4. Driver Output Configurations
the $A C T 30 B / D$ are preprogrammed to 800 mA current limit. For ACT30E (SOT23-5 or DIP-8) packages, both DRV1 and DRV2 terminals are provided

PULSE SKIPPING

The PFWM Switching Control Logic block operates in different modes depending on the output load current level. At light load, the V_{DD} voltage is around 4.75 V . The energy delivered by each switching cycle (with minimum on time of 500 ns) to the output causes V_{DD} to increase slightly above 4.75 V . The FPWM Switching Control Logic block is able to detect this condition and prevents the IC from switching until $V_{D D}$ is below 4.75 V again. This results in a pulse-skipping action with fixed pulse width and varying frequency, and low power consumption because the switching frequency is reduced. Typical system standby power consumption is 0.15 W .

SHORT CIRCUIT HICCUP

When the output is short circuited, the ACT30 enters hiccup mode operation. In this condition, the auxiliary supply voltage collapses. An on-chip detector compares DRV1 voltage during the off-time of each cycle to 6.8 V . If DRV1 voltage is below 6.8 V , the IC will not start the next cycle, causing both the auxiliary supply voltage and V_{DD} to reduce further. The circuit enters startup mode when $V_{D D}$ drops below 3.35 V . This hiccup behaviour continues until the short circuit is removed. In this behavior, the effective duty cycle is very low resulting in very low short circuit current.

To make sure that the IC enters hiccup mode easily, the transformer should be constructed so that there is close coupling between secondary and auxiliary, so that the auxiliary voltage is low when the output is short-circuited. This can be achieved with the primary/auxiliary/secondary sequencing from the bobbin. Refer to Design Guide section of this datasheet for optimal transformer construction ted iniques.

CONFIDENTIAL
 For Reference Only, Do Not Distribute

АСТ30

PACKAGE OUTLINE

TO-92 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILIMETERS		DIMENSION IN INCHES					
	MIN	MAX	MIN	MAX				
A	3.300	3.700	0.130	0.146				
A1	1.100	1.400	0.043	0.055				
b	0.380	0.550	0.015	0.022				
c	0.360	0.510	0.014	0.020				
D	4.400	4.700	0.173	0.185				
D1	3.430		0.135					
E	4.300	4.700	0.169	0.185				
e	1.270 TYP		0.050 TYP					
e1	2.440	2.640	0.096	0.104				
L	14.100	14.500	0.555	0.571				
D						1.600		0.063
h	0.000	0.380	0.000	0.015				

SOT23-5 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILIMETERS		DIMENSION IN INCHES			
	MIN	MAX	MIN	MAX		
	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.400	0.012	0.016		
c	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
e	0.950 TYP		0.037 TYP			
e1	1.800	2.000	0.071	0.079		
L	0.700		REF	0.028		REF
L1	0.300	0.600	0.012			

ACT30

DIP-8 PACKAGE OUTLINE AND DIMENSIONS

SYMBOL	DIMENSION IN MILIMETERS		DIMENSION IN INCHES		
	MIN	MAX	MIN	MAX	
A	3.710	4.310	0.146	0.170	
A1	0.510		0.020		
A2	3.200	3.600	0.126	0.142	
B	0.360	0.560	0.014	0.022	
B1	1.524 TYP		0.060 TYP		
C	0.204	0.360	0.008	0.014	
D	9.000	9.400	0.354	0.370	
E	6.200	6.600	0.244	0.260	
E1	7.620 TYP		0.300 TYP		
e	2.540 TYP		0.100 TYP		
L	3.000	3.600	0.118	0.142	
E2	8.200	9.400	0.323		0.370

Active Semiconductors International Corp. (ASIC) reserves the right to modify the circuitry or specifications without notice. Users should evaluate each product to make sure that it is suitable for their applications. ASIC's products are not intended or authorized for use as critical components in life-support devices or systems. ASIC does not assume any liability arising out of the use of any product or circuit described in this datasheet, nor does it convey any patent license.

