
Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 229

THIS DRAFT SPECIFICATION DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE USB-IF AND
USB 2.0 PROMOTERS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN
THIS DRAFT SPECIFICATION. THE PROVISION OF THIS DRAFT SPECIFICATION TO YOU
DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS. THIS DOCUMENT IS AN
INTERMEDIATE DRAFT AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

Note on USB 2.0 Bit Rate: This specification draft calls out a data rate of 480Mb/s. This is the target rate
for which the Electrical Working Group is designing and prototyping; this rate needs to be confirmed with
completed validation of prototype IC’s operating on test boards.

Chapter 11
Hub Specification

This chapter describes the architectural requirements for the USB hub. It contains a description of the two
principal sub-blocks: the Hub Repeater and the Hub Controller. The chapter also describes the hub's
operation for error recovery, reset, and suspend/resume. The second half of the chapter defines hub request
behavior and hub descriptors.

The hub specification supplies sufficient additional information to permit an implementer to design a hub
that conforms to the USB specification.

11.1 Overview
Hubs provide the electrical interface between USB devices and the host. Hubs are directly responsible for
supporting many of the attributes that make USB user friendly and hide its complexity from the user. Listed
below are the major aspects of USB functionality that hubs must support:
• Connectivity behavior

• Power management

• Device connect/disconnect detection

• Bus fault detection and recovery

• Full-High-, full- and low-speed device support.

A hub consists of twothree components: the Hub Repeater and the Hub Controller.Repeater, the Hub
Controller and the Transaction Translator. The Hub Repeater is responsible for connectivity setup and tear-
down. It also supports exception handling, such as bus fault detection and recovery and connect/disconnect
detect. The Hub Controller provides the mechanism for host-to-hub communication. Hub-specific status
and control commands permit the host to configure a hub and to monitor and control its individual
downstream ports. The Transaction Translator responds to special high-speed transactions and translates
them to full/low-speed transactions with full/low-speed devices attached on downstream facing ports.

11.1.1 Hub Architecture
Figure 11-1 shows a hub and the locations of its upstream and downstream ports. A hub consists of a Hub
Repeater section andsection, a Hub Controller section and a Transaction Translator section. The Hub
Repeater is responsible for managing connectivity on a per-packet basis, while thebasis. The Hub Controller
provides status and control and permits host access to the hub.

Universal Serial Bus Specification Revision 2.0 (0.79)

230 USB-IF Member Confidential

hub. The Transaction Translator takes high-speed split-transactions and translates them to full/low-speed
transactions when the hub is operating at high-speed and has full/low-speed devices attached. The
operating speed of a device attached on a downstream facing port determines whether the routing logic
connects a port to the transaction translator or hub repeater sections.

Port 1 Port 2 Port N
...

Downstream Ports

Port 0
Upstream Port

Hub
Controller

Downstream Port
State Machine(s)

Hub
State

Machine

Hub
Repeater

Upstream Port State Machine

 Routing Logic

Transaction
Translator

Figure 11-1. Hub Architecture

When a hub upstream facing port is attached to an electrical environment that is operating at full/low speed,
the hub’s high-speed funcationality is disallowed. This means that the hub will only operate at full/low
speed and the transaction translator and high-speed repeater will not operate. In this electrical environment,
the hub repeater must operate as a full/low-speed repeater. The routing logic always connects ports to the
hub repeater.

When the hub upstream facing port is attached to an electrical environment that is operating at high-speed,
the full/low-speed hub repeater is not operational. In this electrical environment when a high-speed device
is attached on downstream facing port, the routing logic will connect the port to the hub repeater and the
hub repeater must operate as a high-speed repeater. When a full/low-speed device is attached on a
downstream facing port, the routing logic must connect the port to the transaction translator.

11.1.2 Hub Connectivity
Hubs display differing connectivity behavior, depending on whether they are propagating packet traffic or
resume signaling, or are in the Idle state.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 231

11.1.2.1 Packet Signaling Connectivity
The Hub Repeater contains one port that must always connect in the upstream direction (referred to as the
upstream port) and one or more downstream ports. Upstream connectivity is defined as being towards the
host, and downstream connectivity is defined as being towards a device. Figure 11-2 shows the packet
signaling connectivity behavior for hubs in the upstream and downstream directions. A hub also has an Idle
state, during which the hub makes no connectivity. When in the Idle state, all of the hub’s ports are in the
receive mode waiting for the start of the next packet.

Downstream
Connectivity

Downstream
Ports

Upstream
Port

Upstream
Connectivity

Idle
(No Connectivity)

Enabled Port

Port not Enabled

Figure 11-2. Hub Signaling Connectivity

If a downstream hub port is enabled (i.e., in a state where it can propagate signaling through the hub) and
the hub detects a Start-of-Packet (SOP) on that port, connectivity is established in an upstream direction to
the upstream port of that hub, but not to any other downstream ports. This means that when a device or a
hub transmits a packet upstream, only those hubs in line between the transmitting device and the host will
see the packet. Refer to Section 11.8.3 for optional behavior when a hub detects simultaneous upstream
signaling on more than one port.

In the downstream direction, hubs operate in a broadcast mode. When a hub detects an SOP on its
upstream port, it establishes connectivity to all enabled downstream ports. If a port is not enabled, it does
not propagate packet signaling downstream.

Universal Serial Bus Specification Revision 2.0 (0.79)

232 USB-IF Member Confidential

11.1.2.2 Resume Connectivity
Hubs exhibit different connectivity behaviors for upstream- and downstream-directed resume signaling. A
hub that is suspended reflects resume signaling from its upstream port to all of its enabled downstream
ports. Figure 11-3 illustrates hub upstream and downstream resume connectivity.

Downstream Connectivity
 Upstream Connectivity

Downstream
Ports

Upstream
Port

Upstream
Port

Source of resume
signaling

Enabled Port

Disabled or
Suspended
Port

Enabled or
Suspended
Port

Figure 11-3. Resume Connectivity

If a hub is suspended and detects resume signaling from a selectively suspended or an enabled downstream
port, the hub reflects that signaling upstream and to all of its enabled downstream ports, including the port
that initiated the resume sequence. Resume signaling is not reflected to disabled or suspended ports. A
detailed discussion of resume connectivity appears in Section 11.9.

11.1.2.3 Hub Fault Recovery Mechanisms
Hubs are the essential USB component for establishing connectivity between the host and other devices. It
is vital that any connectivity faults, especially those that might result in a deadlock, be detected and
prevented from occurring. Hubs need to handle connectivity faults only when they are in the repeater mode.

Hubs must also be able to detect and recover from lost or corrupted packets that are addressed to the Hub
Controller. Because the Hub Controller is, in fact, another USB device, it must adhere to the same timeout
rules as other USB devices, as described in Chapter 8.

11.2 Hub Frame Timer
<<Update for microframes>>

Each hub has a frame timer whose timing is derived from the hub’s local clock and is synchronized to the
host frame period by the host-generated Start-of-Frame (SOF). The frame timer provides timing references
that are used to allow the hub to detect a babbling device and prevent the hub from being disabled by the
upstream hub. The hub frame timer must track the host frame period and be capable of remaining
synchronized with the host even if two consecutive SOF tokens are missed by the hub.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 233

The frame timer must lock to the host’s frame timing for worst case tolerances and offsets between the host
and hub. The offsets have to accommodate the hub oscillator tolerance (≤ 500ppm) and accuracy
(≤ 2500ppm) as well as the host’s allowed frame tolerance of ≤ 500ppm. The range of the hub frame timer
is:

12,000 * 1±(hub accuracy + hub tolerance + host tolerance)

The host tolerance is allowed to be ±500ppm, meaning that a frame time is between 0.9995ms and
1.0005ms, absolute. If the hub’s oscillator is at the limits of its accuracy and tolerance, it can be running at
between 11,964,000Hz and 12,036,000Hz. If the host is generating an SOF every 1.0005ms and the hub is
running at 12,036,000Hz, then the hub’s frame timer will count 12,042 times between each SOF. If the host
is generating an SOF every 0.9995ms and the hub is running at 11,964,000Hz, then the hub’s frame timer
will count 11,958 times between each SOF. If the hub accuracy and tolerance are both zero, the hub frame
timer range is ±6 bit times.

11.2.1 Frame Timer Synchronization
A hub’s frame timer is clocked by the hub’s clock source and is synchronized to SOF packets that are
derived from the host’s frame timer. After a reset or resume, the hub’s frame timer is not synchronized.
Whenever the hub receives two consecutive SOF packets, its frame timer should be synchronized.
Synchronized is synonymous with lock(ed). A example for a method of constructing a timer that properly
synchronizes is as follows.

The hub maintains three timer values: frame timer (down counter), current frame (up counter), and next
frame (register). After a reset or resume, a flag is set to indicate that the frame timer is not synchronized.

When the first SOF token is detected, the current frame timer resets and starts counting once per hub bit
time. On the next SOF, if the timer has not rolled over, the value in the current frame timer is loaded into
the next frame register and into the frame timer. The current frame timer is reset to zero and continues to
count and the flag is set to indicate that the frame timer is locked. If the current frame timer has rolled over
(exceeded 12,043 – a test at 16,383 is adequate), then an SOF was missed and the frame timer and next
frame values are not loaded and the flag indicating that the timer is not synchronized remains set.

Whenever the frame timer counts down to zero, the current value of the next frame register is loaded into
the frame timer. When an SOF is detected, and the current frame timer has not rolled over, the value of the
current frame timer is loaded into the frame timer and the next frame registers. The current frame timer is
then reset to zero and continues to count. If the current frame timer has rolled over, then the value in the
next frame register is loaded into the frame timer. This process can cause the frame timer to be updated
twice in a single frame: once when the frame timer reaches zero and once when the SOF is detected.

The synchronization circuit described above depends on successfully decoding an SOF packet identifier
(PID). This means that the frame timer will be synchronized to a time that is at least 16 bit times into the
frame. Each implementation will take some time to react to the SOF decode and set the appropriate
timer/counter values. (This reaction time is implementation-dependent but is assumed to be less than four
full-speed bit times.) Subsequent sections describe the actions that are controlled by the frame timer. These
actions are defined at the EOF1, EOF2, and EOF points, which should nominally be the same points in time
throughout the bus. EOF1 and EOF2 are defined in later sections. These sections assume that the hub’s
frame timer will count to zero at the end of the frame (EOF). The circuitry described above will have the
frame timer counting to zero 16-20 bit times after the start of a frame (or end of previous frame). The
timings and bit offsets in the later sections should be advanced to account for this offset (add 16-20 bit
times to the EOF1 and EOF2 points.)

The frame timer provides a indication to the hub Repeater state machine to indicate that the frame timer has
synchronized to SOF and that the frame timer is capable of generating the EOF1 and EOF2 timing points.
This signal is important after a global resume because of the possibility that a device may have been
detached and a different speed device attached while the host was generating a long resume (several
seconds) and the disconnect cannot be detected. A different speed device will bias D+ and D- to appear
like a K on the hub which would then be treated as an SOP and, unless inhibited, this SOP would propagate

Universal Serial Bus Specification Revision 2.0 (0.79)

234 USB-IF Member Confidential

though the resumed hubs. Since the hubs would not have seen any SOF’s at this point, the hubs would not
be synchronized and, thus, unable to generate the EOF1 and EOF2 timing points. The only recovery from
this would be for the host to reset and re-enumerate the section of the bus containing the changed device.
This scenario is prevented by inhibiting any downstream port from establishing connectivity until the hub is
locked after a resume.

11.2.2 EOF1 and EOF2 Timing Points
The EOF1 and EOF2 are timing points that are derived from the hub’s frame timer. These timing points are
used to ensure that devices and hubs do not interfere with the proper transmission of the SOF packet from
the host. These timing points have meaning only when the frame timer has been synchronized to the SOF.

The host and hub frame markers, while all synchronized to the host’s SOF, are subject to certain skews that
dictate the placement of the EOF points. Figure 11-4 illustrates critical End-of-Frame (EOF) timing points.
Table 11-1 summarizes the host and hub EOF timing points.

304050 20 10 0

Bit times

EOF2 rangeEOF1 range

SOF

EOF2EOF1

Figure 11-4. EOF Timing Points

At the EOF2 point, any port that has upstream connectivity will be disabled as a babbler. Hubs prevent
becoming disabled by sending an End-of-Packet (EOP) to the upstream hub before that hub reaches its
EOF2 point (i.e., at EOF1).

Note: a hub is permitted to send the EOP if upstream connectivity is not established at EOF1 time. A hub
must send the EOP if connectivity is established from any downstream port at the EOF1 point.

The EOF2 point is defined to occur at least one bit time before the first bit of the SYNC for an SOP. The
period allowed for an EOP is four full-speed bit times (the upstream port on a hub is always full-speed.)

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different frame timers on different hubs
and the host. The total accumulated skew can be as large as ±9 bit times. This is composed of ±1 bit times
per frame of quantization error and ±1 bit per frame of wander. The quantization error occurs when the hub
times the interval between SOFs and arrives at a value that is off by a fraction of a bit time but, due to
quantization, is rounded to a full bit. Frame wander occurs when the host's frame timer is adjusted by the
USB System Software so that the value sampled by the hub in a previous frame differs from the frame
interval being used by the host. These values accumulate over multiple frames because SOF packets can be
lost and the hub cannot resynchronize its frame timer. This specification allows for the loss of two
consecutive SOFs. During this interval the quantization error accumulates to ±3 bit times and the wander
accumulates to ±1 ± 2 ± 3 = ±6 for a total of ±9 bit times of accumulated skew in three frames. This skew
timing affects the placement of the EOF1 and EOF2 points as follows.

Note: although the USB System Software is not allowed to cause the frame interval to change more than
one bit time every six frames, the hub skew timing assumes that the frame interval can change one bit time
per frame. This cannot be reduced because it would create interoperability problems with hubs designed to
previous versions of this specification.

A hub must reach its EOF2 point one bit time before the end of the frame. In order to ensure this, a 9-bit
time guard-band must be added so that the EOF2 point is set to occur when the hub's local frame timer

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 235

reaches 10. A hub must complete its EOP before the hub to which it is attached reaches its EOF2 point. A
hub may reach its EOF2 point nine bit times before bit time 10 (at bit time 19 before the SOF). To ensure
that the EOP is completed by bit time 19, it must start before bit time 23. To ensure that the hub starts at bit
time 23 with respect to another hub, a hub must set its EOF1 point nine bit times ahead of bit time 23 (at bit
time 32). If a hub sets its timer to generate an EOP at bit time 32, that EOP may start as much as 9 bit times
early (at bit time 41).

Table 11-1. Hub and Host EOF Timing Points

Description

Nominal
Number of
Bits from
Start of SOF

Notes

EOF1 32 End-of-Frame point #1

EOF2 10 End-of-Frame point #2

11.3 Host Behavior at End-of-Frame
<<Update for microframes>>

It is the responsibility of the USB host controller (the host) to not provoke a response from a device if the
response would cause the device to be sending a packet at the EOF2 point. Furthermore, because a hub will
terminate an upstream directed packet when the hub reaches its EOF1 point, the host should not start a
transaction if a response from the device (data or handshake) would be pending or in process when a hub
reaches its EOF1 point. The implications of these limitations are described in the following sections.

In defining the timing points below, the last bit interval in a frame is designated as bit time zero. Bit times
in a frame that occur before the last have values that increase the further they are from bit time zero (earlier
bit times have higher numbers). These bit time designations are used for convenience only and are not
intended to imply a particular implementation. The only requirement of an implementation is that the
relative bit time values be preserved.

11.3.1 Latest Host Packet
Hubs are allowed to send an EOP on their upstream ports at the EOF1 point if there is no downstream-
directed traffic in progress at that time. To prevent potential contention, the host is not allowed to start a
packet if connectivity will not be established on all connections before a hub reaches its EOF1 point. This
means that the host must not start a packet after bit time 42.

Note: although there is as much as a six-bit time delay between the time the host starts a packet and all
connections are established, this time need not be added to the packet start time as this phase delay exists
for the SOF packet as well, causing all hub frame timers to be phase delayed with respect to the host by the
propagation delay. There is only one bit time of phase delay between any two adjacent hubs and this has
been accounted for in the skew calculations.

11.3.2 Packet Nullification
If a device is sending a packet (data or handshake) when a hub in the device’s upstream path reaches its
EOF1 point, the hub will send a full-speed EOP. Any packet that is truncated by a hub must be discarded.

A host implementation may discard any packet that is being received at bit time 41. Alternatively, a host
implementation may attempt to maximize bus utilization by accepting a packet if the packet is predicted to
start at or before bit time 41.

Universal Serial Bus Specification Revision 2.0 (0.79)

236 USB-IF Member Confidential

11.3.3 Transaction Completion Prediction
A device can send two types of packets: data and handshake. A handshake packet is always exactly 16 bit
times long (sync byte plus PID byte.) The time from the end of a packet from the host until the first bit of
the handshake must be seen at the host is 17 bit times. This gives a total allocation of 35 bit times from the
end of data packet from the root (start of EOP) until it is predicted that the handshake will be completed
(start of EOP) from the device. Therefore, if the host is sending a data packet for which the device can
return a handshake (anything other than an isochronous packet), then if the host completes the data packet
and starts sending EOP before bit time 76, then the host can predict that the device will complete the
handshake and start the EOP for the handshake on or before bit time 41. For a low-speed device, the 36 bit
times from start of EOP from root to start of EOP from the device are low-speed bit times, which convert 1
to eight into full-speed bit times. Therefore, if the host completes the low-speed data packet by bit time
329, then the low-speed device can be predicted to complete the handshake before bit time 41

Note: if the host cannot accept a full-speed EOP as a valid end of a low-speed packet, then the low-speed
EOP will need to complete before bit time 41, which will add 13 full-speed bit times to the low-speed
handshake time.

As the host approaches the end of the frame, it must ensure that it does not require a device to send a
handshake if that handshake can’t be completed before bit time 41. The host expects to receive a handshake
after any valid, non-isochronous data packet. Therefore, if the host is sending a non-isochronous data
packet when it reaches bit time 76 (329 for low-speed), then the host should start an abnormal termination
sequence to ensure that the device will not try to respond. This abnormal termination sequence consists of 7
consecutive bits of 1 followed by an EOP. The abnormal termination sequence is sent at the speed of the
current packet.

If the host is preparing to send an IN token, it may not send the token if the predicted packet from the
device would not complete by bit time 41. The maximum valid length of the response from the device is
known by the host and should be used in the prediction calculation. For a full-speed packet, the maximum
interval between the start of the IN token and the end of a data packet is:

token_length + (packet_length + header + CRC) * 7/6 + 18

Where token_length is 34 bit times, packet_length is the maximum number of data bits in the packet,
header is eight bits of sync and eight bits of PID, and CRC is 16 bits. The 7/6 multiplier accounts for the
absolute worst case bit-stuff on the packet and the 18 extra bits allow for worst case turn-around delay. For
a low-speed device, the same calculation applies but the result must be multiplied by 8 to convert to full-
speed bit times and an additional 20 full-speed bit times must be added to account for the low-speed prefix.
This gives the maximum number of bit times between the start of the IN token and the end of the data
packet, so the token cannot be sent if this number of bit times does not exist before the earliest EOF1 point
(bit time 41). (E.g., take the results of the above calculation and add 41. If the number of bits left in the
frame is less than this value, the token may not be sent.)

The host is allowed to use a more conservative algorithm than the one given above for deciding whether or
not to start a transaction. The calculation might also include the time required for the host to send the
handshake when one is required, as there is no benefit in starting a transfer if the handshake cannot be
completed.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 237

11.4 Internal Port
<<Update for high-speed>>

The internal port is the connection between the Hub Controller and the Hub Repeater. Besides conveying
the serial data to/from the Hub Controller, the internal port is the source of certain resume signals. Figure
11-5 illustrates the internal port state machine; Table 11-2 defines the internal port signals and events.

Inactive

GResume

Fsus

!Rx_Suspend

Resume_Event

Rx_Suspend

Suspend Delay

EOI

! = Logical NOT

Figure 11-5. Internal Port State Machine

Table 11-2. Internal Port Signal/Event Definitions

Signal/Event Name Event/Signal
Source

Description

EOI Internal End of timed interval

Rx_Suspend Receiver Receiver is in the Suspend state

Resume_Event Hub Controller A resume condition exists in the Hub Controller

11.4.1 Inactive
This state is entered whenever the Receiver is not in the Suspend state.

11.4.2 Suspend Delay
This state is entered from the Inactive state when the Receiver transitions to the Suspend state.

This is a timed state with a 2ms interval.

11.4.3 Full Suspend (Fsus)
This state is entered when the Suspend Delay interval expires.

Universal Serial Bus Specification Revision 2.0 (0.79)

238 USB-IF Member Confidential

11.4.4 Generate Resume (GResume)
This state is entered from the Fsus state when a resume condition exists in the Hub Controller. A resume
condition exists if the C_PORT_SUSPEND bit is set in any port or if the hub is enabled as a wakeup source
and any bit is set in a Port Change field or the Hub Change field (as described in Table 11-15 and Table
11-10, respectively).

In this state, the internal port generates signaling to emulate an SOP_FD to the Hub Repeater.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 239

11.5 Downstream Ports
<<Update for high-speed>>

The following sections provide a functional description of a state machine that exhibits the correct behavior
for a downstream port on a hub.

Figure 11-6 is an illustration of the downstream port state machine. The events and signals are defined in
Table 11-3. Each of the states is described in Section 11.5.1. In the diagram below, some of the entry
conditions into states are shown without origin. These conditions have multiple origin states and the
individual transitions lines are not shown so that the diagram can be simplified. The description of the
entered state indicates from which states the transition is applicable.

Universal Serial Bus Specification Revision 2.0 (0.79)

240 USB-IF Member Confidential

Rx_Suspend & (SE0 # K)

Rx_Suspend & (SE0 # K)

The hub is not configured.

Disconnected: Port does not propagate
any traffic in either direction. The port is
in HiZ. Port is timing length of J/K (2.5µs
to 2ms).

Disabled: Port cannot propagate any
traffic. The port is in HiZ.

Resetting: Drive SE0 through the port for
10ms.

Enabled: Port can propagate both
upstream and downstream traffic.

Transmit: Port propagates downstream
directed traffic.

Suspended: No traffic is propagated
downstream or upstream.

Resuming: Drive 'K' for 20ms.

Resetting

Enabled

Transmit

Suspended

Resuming

SendEOP

Port_Error

SetPortFeature(PORT_RESET)

Rptr_Exit_WFEOPFU

Rptr_Enter_WFEOPFU
Rx_Resume

SetPortFeature(PORT_SUSPEND)

(!Rx_Suspend & K) #
ClearPortFeature(PORT_SUSPEND)

EOI

Port Outputs in States

SendEOP: Low-speed EOP is sent (2 low-
speed bit times of SE0 followed by 1 low-
speed bit time of 'J').

Powered_off: Port (or gang) requires
explicit request to transition.

EOI

= Logical OR

& = Logical AND

! = Logical NOT

LS & SOF

Restart_S

SetPortFeature(PORT_DISABLE)

ClearPortFeature(PORT_POWER) #
SetConfiguration(non-zero) #

Power_Source_Off #
Over-current

Disconnected

Powered-off

SetPortFeature(PORT_POWER)

EOI

Disabled

Not
Configured

SetConfiguration(non-zero)

Configuration = 0

Disconnect_Detect

Restart_S and Restart_E: Port enters one
of these states to wait for clocks to restart.
Delay interval is implementation-
dependent but cannot be more than 10ms.

K

EOI

EOI

Restart_E
K

EOI

Figure 11-6. Downstream Hub Port State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 241

Table 11-3. Downstream Hub Port Signal/Event Definitions

Signal/Event Name Event/Signal
Source

Description

Power_source_off Implementation-
dependent

Power to the port not available due to over-current or
termination of source power (e.g., external power removed)

Over-current Hub Controller Over-current condition exists on the hub or the port

EOI Internal End of a timed interval or sequence

SE0 Internal SE0 received on port

Disconnect_Detect Internal Long SE0 detected on port (See Section 11.5.2)

LS Hub Controller Low-speed device attached to this port

SOF Hub Controller SOF token received

J Internal ‘J’ received on port

K Internal ‘K’ received on port

Rx_Resume Receiver Upstream Receiver in Resume state

Rx_Suspend Receiver Upstream Receiver in Suspend state

Rptr_Exit_WFEOPFU Hub Repeater Hub Repeater exits the WFEOPFU state

Rptr_Enter_WFEOPFU Hub Repeater Hub Repeater enters the WFEOPFU state

Port_Error Internal Error condition detected (see Section 11.8.1)

Configuration = 0 Hub Controller Hub controller's configuration value is zero

11.5.1 Downstream Port State Descriptions

11.5.1.1 Not Configured
A port transitions to and remains in this state whenever the value of the hub configuration is zero. While
the port is in this state, the hub will drive an SE0 on the port (this behavior is optional on root hubs). No
other active signaling takes place on the port when it is in this state.

Universal Serial Bus Specification Revision 2.0 (0.79)

242 USB-IF Member Confidential

11.5.1.2 Powered-off
This state is supported for all hubs.

A port transitions to this state in any of the following situations:

• From any state except Not Configured when the hub receives a ClearPortFeature(PORT_POWER)
request for this port

• From any state when the hub receives a SetConfiguration() request with a configuration value other
than zero

• From any state except Not Configured when power is lost to the port or an over-current condition
exists.

A port will enter this state due to an over-current condition on another port if that over-current condition
may have caused the power supplied to this port to drop below specified limits for port power (see Section
7.2.1.2.1 and Section 7.2.4.1).

If a hub was configured while the hub was self-powered, then if external power is lost the hub must place all
ports in the Powered-off state. If the hub is configured while bus powered, then the hub need not change
port status if the hub switched to externally applied power. However, if external power is subsequently lost,
the hub must place ports in the Powered-off state.

In this state, the port's differential and single-ended transmitters and receivers are disabled.

Control of power to the port is covered in Section 11.11.

11.5.1.3 Disconnected
A port transitions to this state in any of the following situations:

• from the Powered-off state when the hub receives a SetPortFeature(PORT_POWER) request

• from any state except the Not Configured and Powered-off states when the port's disconnect timer times
out

• from the Restart_S or Restart_E state at the end of the restart interval.

 In the Disconnected state, the port's differential transmitter and receiver are disabled and only connection
detection is possible.

This is a timed state. While in this state, the timer is reset as long as the port’s signal lines are in the SE0
state. If another signaling state is detected, the timer starts. Unless the hub is suspended with clocks
stopped, this timer's duration is 2.5µs to 2ms.

If the hub is suspended with its remote wakeup feature enabled then on a transition from the SE0 state on a
Disconnected port the hub will start its clocks and time this event. The hub must be able to start its clocks
and time this event within 12ms of the transition. If a hub does not have its remote wakeup feature enabled,
then transitions on a port that is in the Disconnected state are ignored until the hub is resumed.

11.5.1.4 Disabled
A port transitions to this state in any of the following situations:

• From the Disconnected state when the timer expires indicating a connection is detected on the port

• From any but the Powered-off, Disconnected, or SenseSE0 states on receipt of a
ClearPortFeature(PORT_ENABLE) request

• From the Enabled state when an error condition is detected on the port

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 243

A port in the Disabled state will not propagate signaling in either the upstream or the downstream direction.
While in this state, the duration of any SE0 received on the port is timed.

11.5.1.5 Resetting
Unless it is in the Powered-off or Disconnected states, a port transitions to the Resetting state upon receipt
of a SetPortFeature(PORT_RESET) request. The hub drives SE0 on the port during this timed interval.
The duration of the Resetting state is nominally 10ms to 20ms (10ms is preferred).

11.5.1.6 Enabled
A port transitions to this state in any of the following situations:

• At the end of the Resetting state

• From the Transmit state when the Hub Repeater exits the WFEOPFU state

• From the Suspended state if the upstream Receiver is in the Suspend state when a 'K' is detected on the
port

• At the end of the SendEOP state.

While in this state, the output of the port's differential receiver is available to the Hub Repeater so that 'J'-to-
'K' transitions can establish upstream connectivity.

11.5.1.7 Transmit
For full- and low-speed ports this state is entered in either of the following situations:

• from the Enabled state if the upstream Receiver is in the Resume state

• immediately from the Restart_S or Restart_E state if a 'K' is detected on the port.

For a full-speed port, this state is entered from the Enabled state on the transition of the Hub Repeater to the
WFEOPFU state. While in this state, the port will transmit the data that is received on the upstream port.

For a low-speed port, this state is entered from the Enabled state if a full-speed PRE PID is received on the
upstream port. While in this state, the port will retransmit the data that is received on the upstream port
(after proper inversion).

11.5.1.8 Suspended
A port enters the Suspended state from the Enabled state when it receives a
SetPortFeature(PORT_SUSPEND) request. While a port is in the Suspended state, the port's differential
transmitter is disabled.

An implementation is allowed to have a SE0 ‘noise’ filter for a port that is in the suspended state. This
filter can time the length of SE0 and, if the length of the SE0 is shorter than 2.5µs, the port may remain in
this state. However, this filter may not be used if the hub is suspended and the clocks are stopped. Rather,
if the hub is suspended with its clocks stopped, a transition to SE0 on a suspended port must cause the port
to immediately transition to the Restart_S state. This is to insure that the attached device is not reset and
placed at the default address without having the hub disable the port.

11.5.1.9 Resuming
A port enters this state from the Suspended state in either of the following situations:

• If a 'K' is detected on the port and the Receiver is not in the Suspend state

• When a ClearPortFeature(PORT_SUSPEND) request is received.

Universal Serial Bus Specification Revision 2.0 (0.79)

244 USB-IF Member Confidential

This is a timed state with a nominal duration of 20ms (the interval may be longer under the conditions
described in the note below). While in this state, the hub drives a 'K' on the port.

Note: a single timer is allowed to be used to time both the Resetting interval and the Resuming interval and
that timer may be shared among multiple ports. When shared, the timer is reset when a port enters the
Resuming state or the Resetting state. If shared, it may not be shared among more than ten ports as the
cumulative delay could exceed the amount of time required to replace a device and a disconnect could be
missed.

11.5.1.10 SendEOP
This state is entered from the Resuming state if the 20ms timer expires. It is also entered from the Enabled
state when an SOF (or other FS token) is received and a low-speed devices is attached to this port. In this
state, the hub will send a low-speed EOP (two low-speed bits times of SE0 followed by one low-speed bit
times of J). At the end of the EOP, the state ends.

Since the transmitted EOP should be of fixed length, the SendEOP timer, if shared, should not be reset. If
the hub implementation shares the SendEOP timing circuits between ports, then the Resuming state should
not end until an SOF (or other FS token) has been received (see Section 11.8.4.1 for Keep-alive generation
rules).

11.5.1.11 Restart_S/Restart_E
A port enters the Restart_S state from the Suspended state or enters the Restart_E state from the Enabled
state when an SE0 or 'K' is seen at the port and the Receiver is in the Suspended state.

These states are needed to ensure that a transient SE0, which may be seen at the start of resume signaling,
does not cause the port to be disabled.

In these states, the port continuously monitors the bus state and exits to the Transmit state immediately on
seeing the K state. In this case, the port completes its transition to the Transmit state within 100µs after
entering the Restart_S or Restart_E state. If the bus state is not 'K', the port transitions to the Disconnected
state. This transition should happen within 10ms of entering the Restart_S or Restart_E state.

11.5.2 Disconnect Detect Timer
Each port is required to have a disconnect timer. This timer is used to constantly monitor the ports single-
ended receivers to detect a disconnect event. The reason for constant monitoring is that a noise event on the
bus can cause the attached device to detect a reset condition on the bus after 2.5µs of SE0 on the bus. If the
hub does not place the port in the disconnect state before the device resets, then the device can be at in the
Default Address state with the port enabled. This can cause systems errors that are very difficult to isolate
and correct.

This timer should be reset whenever the D+ and D- lines on the port are not in the SE0 state or when the port
is not in the Enabled, Suspended, or Disabled states. This timer may have a timeout that is a short as
1.994µs (2.0µs - 3000ppm) but should not be longer than 2.508µs (+3000 ppm). When this timer expires, it
generates the Disconnect_Detect signal to the port state machine.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 245

11.6 Upstream Port
<<Update for high-speed>>

The upstream port has four components: transmitter, transmitter state machine, receiver and receiver state
machine. The transmitter and its state machine are the Transmitter, while the receiver and its state machine
are the Receiver. Both the transmitter and receiver have differential and single-ended components. The
differential transmitter and receiver can send/receive 'J' or 'K' to/from the bus while the single-ended
components are used to send/receive SE0, suspend, and resume signaling. In this section, when it is
necessary to differentiate the signals sent/received by the differential component of the transmitter/receiver
from those of the single-ended components, DJ and DK will be used to denote the differential signal and SJ,
SK and SE0 will be used for the single-ended signals.

It is assumed that the differential transmitter and receiver are turned off during suspend to minimize power
consumption. The single-ended components are left on at all times, as they will take minimal power.

11.6.1 Receiver
The receiver state machine is responsible for monitoring the signaling state of the upstream connection to
detect long-term signaling events such as bus reset, resume, and suspend. Figure 11-7 illustrates the state
transition diagram. Table 11-4 defines the signals and events referenced in Figure 11-7.

J

K

Tx_resume # K

POR

Tx_active

EOI

EOI

SE0

EOI

Bus_Reset

ReceivingSE0

Resume

ReceivingK

ReceivingJ

Suspend

State Machine Exports:
Rx_Bus_Reset(Bus_Reset)
Rx_Suspend(Suspend)
Rx_Resume(Resume)

= Logical OR

Figure 11-7. Upstream Port Receiver State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

246 USB-IF Member Confidential

Table 11-4. Upstream Hub Port Receiver Signal/Event Definitions

Signal/Event
Name

Event/Signal
Source

Description

Tx_active Transmitter Transmitter in the Active state

J Internal Receiving a 'J' (IDLE) on the upstream port

EOI Internal End of timed interval

K Internal Receiving a 'K' on the upstream port

Tx_resume Transmitter Transmitter is in the Sresume state

SE0 Internal Receiving an SE0 on the upstream port

POR Implementation-
dependent

Power_On_Reset

11.6.1.1 ReceivingJ
This state is entered from any state except the Suspend state if the receiver detects an SJ (or Idle) condition
on the bus or while the Transmitter is in the Active state.

This is a timed state with an interval of 3ms. The timer is reset each time this state is entered.

The timer only advances if the Transmitter is in the Inactive state.

11.6.1.2 Suspend
This state is entered if the 3ms timer expires in the ReceivingJ state. When the Receiver enters this state,
the Hub Controller starts a 2ms timer. If that timer expires while the Receiver is still in this state, then the
Hub Controller is suspended. When the Hub Controller is suspended, it may generate resume signaling.

11.6.1.3 ReceivingK
This state is entered from any state except the Resume state when the receiver detects an SK condition on
the bus and the Hub Repeater is in the WFSOP or WFSOPFU state. This is a timed state with a duration of
2.5µs to 100µs. The timer is reset each time this state starts.

11.6.1.4 Resume
This state is entered from the ReceivingK state when the timer expires.

This state is also entered from the Suspend state while the Transmitter is in the Sresume state or if there is a
transition to the K state on the upstream port.

If the hub enters this state when its timing reference is not available, the hub may remain in this state until
the hub’s timing reference becomes stable. If this state is being held pending stabilization of the hub’s
clock, the Receiver should provide a K to the repeater for propagation to the downstream ports. When
clocks are stable, the Receiver should repeat the incoming signals.

Note: constraints on hub behavior after reset require that the hub be able to start clocks and get them stable
in less than 10ms.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 247

11.6.1.5 ReceivingSE0
This state is entered from any state except Bus_Reset when the receiver detects an SE0 condition and the
Hub Repeater is in the WFSOP or WFSOPFU state. This is a timed state. The minimum interval for this
state is 2.5µs. The maximum depends on the hub but this interval must timeout early enough such that if the
width of the SE0 on the upstream port is only 10ms, the Receiver will enter the Bus_Reset state with
sufficient time remaining in the 10ms interval for the hub to complete its reset processing. Furthermore, if
the hub is suspended when the Receiver enters this state, the hub must be able to start its clocks, time this
interval, and complete its reset processing within 10ms. It is preferred that this interval be as long as
possible given the constraints listed here. This will provide for the maximum immunity to noise on the
upstream port and reduce the probability that the device will reset in the presence of noise before the
upstream hub disables the port.

The timer is reset each time this state starts.

11.6.1.6 Bus_Reset
This state is entered from the ReceivingSE0 state when the timer expires. As long as the port continues to
receive SE0, the Receiver will remain in this state.

This state is also entered while power-on-reset (POR) is being generated by the hub’s local circuitry. The
state machine cannot exit this state while POR is active.

11.6.2 Transmitter
This state machine is used to monitor the upstream port while the Hub Repeater has connectivity in the
upstream direction. The purpose of this monitoring activity is to prevent propagation of erroneous
indications in the upstream direction. In particular, this machine prevents babble and disconnect events on
the downstream ports of this hub from propagating and causing this hub to be disabled or disconnected by
the hub to which it is attached. Figure 11-8 is the transmitter state transition diagram. Table 11-5 defines
the signals and events referenced in Figure 11-8.

Inactive

Active

RepeatingSE0

SendJ

GEOPTU

Sresume EOI

EOI

Rx_Suspend &
Rptr_WFEOP

Rx_Bus_Reset

Rptr_WFEOP &
!Rx_Suspend

SE0sent

EOI # J

EOF1

EOI

K

State Machine Exports:
Tx_Active(Active)
Tx_Resume(Sresume)

= Logical OR

& = Logical AND

! = Logical NOT

EOF1

Figure 11-8. Upstream Hub Port Transmitter State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

248 USB-IF Member Confidential

Table 11-5. Upstream Hub Port Transmit Signal/Event Definitions

Signal/Event
Name

Event/Signal
Source

Description

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state

EOF1 Frame Timer Hub frame time has reached the EOF1 point or is between
EOF1 and the end of the frame

J Internal Transmitter transitions to sending a 'J' and transmits a 'J'

Rptr_WFEOP Hub Repeater Hub Repeater is in the WFOEP state

K Internal Transmitter transmits a 'K'

SE0sent Internal At least one bit time of SE0 has been sent through the
transmitter

Rx_Suspend Receiver Receiver is in Suspend state

EOI Internal End of timed interval

11.6.2.1 Inactive
This state is entered at the end of the SendJ state or while the Receiver is in the Bus_Reset state. This state
is also entered at the end of the Sresume state. While the transmitter is in this state, both the differential and
single-ended transmit circuits are disabled and placed in their high-impedance state.

11.6.2.2 Active
This state is entered from the Inactive state when the Hub Repeater transitions to the WFEOP state. This
state is entered from the RepeatingSE0 state if the first transition after the SE0 is not to the J state. In this
state, the data from a downstream port is repeated and transmitted on the upstream port.

11.6.2.3 RepeatingSE0
The port enters this state from the Active state when one bit time of SE0 has been sent on the upstream port.
While in this state, the transmitter is still active and downstream signaling is repeated on the port. This is a
timed state with a duration of 23 full-speed bit times.

11.6.2.4 SendJ
The port enters this state from the RepeatingSE0 state if either the bit timer reaches 23 or the repeated
signaling changes from SE0 to 'J'. This state is also entered at the end of the GEOPTU state. This state
lasts for one full-speed bit time. During this state, the hub drives an SJ on the port.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 249

11.6.2.5 Generate End of Packet Towards Upstream Port (GEOPTU)
The port enters this state from the Active or RepeatingSEO state if the frame timer reaches the EOF1 point.

In this state, the port transmits SE0 for two full-speed bit times.

11.6.2.6 Send Resume (Sresume)
The port enters this state from the Inactive state if the Receiver is in the Suspend state and the Hub Repeater
transitions to the WFEOP state. This indicates that a downstream device (or the port to the Hub Controller)
has generated resume signaling, causing upstream connectivity to be established.

On entering this state, the hub will restart clocks if they had been turned off during the Suspend state.
While in this state, the Transmitter will drive a 'K' on the upstream port. While the Transmitter is in this
state, the Receiver is held in the Resume state. While in the Resume state, all downstream ports that are in
the Enable state are placed in the Transmit state and the resume on this port is transmitted to those
downstream ports.

The port stays in this state for at least 1ms but for no more than 15ms.

Universal Serial Bus Specification Revision 2.0 (0.79)

250 USB-IF Member Confidential

11.7 Hub Repeater
<<Update for high-speed>>

The Hub Repeater provides the following functions:

• Sets up and tears down connectivity on packet boundaries

• Ensures orderly entry into and out of the Suspend state, including proper handling of remote wakeups

The state machine in Figure 11-9 shows the states and transitions needed to implement the Hub Repeater.
Table 11-6 defines the Hub Repeater signals and events. The following sections describe the states and the
transitions.

Several of the state transitions below will occur when an EOP is detected. When such a transition is
indicated, the transition does not occur until after the hub has repeated the SE0-to-'J' transition and has
driven 'J' for at least one bit time (bit time is determined by the speed of the port.)

Some of the transitions are triggered by an SOP. Transitions of this type occur as soon as the hub detects
the 'J'-to-'K' transition, ensuring that the initial edge of the SYNC field is preserved.

EOF2

EOF1

Rx_Suspend

Rx_Bus_Reset

WFSOPFU

SOP_FU

SOP_FD

WFEOP

WFSOP

WFEOPFU
Rx_Resume

SOP_FU UEOP & Lock

State Machine Exports:
Rptr_WFEOP(WFEOP)
Rptr_WFSOPFU(WFSOPFU)
Rptr_Enter_WFEOPFU
Rptr_Exit_WFEOPFU

UEOP & !Lock

= Logical OR

& = Logical AND

! = Logical NOT

DEOP

Figure 11-9. Hub Repeater State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 251

Table 11-6. Hub Repeater Signal/Event Definitions

Signal/Event
Name

Event/Signal
Source

Description

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state

UEOP Internal EOP received from the upstream port

DEOP Internal Generated when the Transmitter enters the SendJ state

EOF1 Frame Timer Frame timer is at the EOF1 point or between EOF1 and End-of-
Frame

EOF2 Frame Timer Frame timer is at the EOF2 point or between EOF2 and End-of-
Frame

Lock Frame Timer Frame timer is locked

Rx_Suspend Receiver Receiver is in the Suspend state

Rx_Resume Receiver Receiver is in the Resume state

SOP_FD Internal SOP received from downstream port or Hub Controller.
Generated on the transition from the Idle to K state on a port.

SOP_FU Internal SOP received from upstream port. Generated on the transition
from the Idle to K state on the upstream port.

11.7.1 Wait for Start of Packet from Upstream Port (WFSOPFU)
This state is entered in either of the following situations:

• From any other state when the upstream Receiver is in the Bus_Reset state

• From the WFSOP state if the frame timer is at or has passed the EOF1 point

• From the WFEOP state at the EOF2 point.

• From the WFEOPFU if the frame timer is not synchronized (locked) when an EOP is received on the
upstream port.

In this state, the hub is waiting for an SOP on the upstream port and transitions on downstream ports are
ignored by the Hub Repeater. While the Hub Repeater is in this state, connectivity is not established.

This state is used during the End-of-Frame (past the EOF1 point) to ensure that the hub will be able to
receive the SOF when it is sent by the host.

11.7.2 Wait for End of Packet from Upstream Port (WFEOPFU)
The hub enters this state if the hub is in the WFSOP or WFSOPFU state and an SOP is detected on the
upstream port. The hub also enters this state from the WFSOP, WFSOPFU, or WFEOP states when the
Receiver enters the Resume state.

While in this state, connectivity is established from the upstream port to all enabled downstream ports.
Downstream ports that are in the Enabled state are placed in the Transmit state on the transition to this state.

Universal Serial Bus Specification Revision 2.0 (0.79)

252 USB-IF Member Confidential

11.7.3 Wait for Start of Packet (WFSOP)
This state is entered in any of the following situations:

• From the WFEOPstate when an EOP is detected from the downstream port

• From the WFEOPFU state if the frame timer is synchronized (locked) when an EOP is received from
upstream

• From the WFSOPFU or WFEOPFU states when the upstream Receiver transitions to the Suspend state.

A hub in this state is waiting for an SOP on the upstream port or any downstream port that is in the Enabled
state. While the Hub Repeater is in this state, connectivity is not established.

11.7.4 Wait for End of Packet (WFEOP)
This state is entered from the WFSOP state when an SOP is received from a downstream port in the
Enabled state.

In this state, the hub has connectivity established in the upstream direction and the signaling received on an
enabled downstream port is repeated and driven on the upstream port. The upstream Transmitter is placed
in the Active state on the transition to this state.

If the Hub Repeater is in this state when the EOF2 point is reached, the downstream port for which
connectivity is established is disabled as a babble port.

Note: the Transmitter will send an EOP at EOF1 but the Hub Repeater stays in this state until the device
sends an EOP or the EOF2 point is reached.

11.8 Bus State Evaluation
<<Update for high-speed>>

A hub is required to evaluate the state of the connection on a port in order to make appropriate port state
transitions. This section describes the appropriate times and means for several of these evaluations.

11.8.1 Port Error
A Port Error can occurs on a port that is in the Enabled state. A Port Error condition exists when::

• The hub is in the WFEOP state with connectivity established upstream from the port when the frame
timer reaches the EOF2 point.

• At the EOF2 point the Hub Repeater is in the WFSOPFU state and there is other than an Idle/J state on
the port.

If upstream-directed connectivity is established when the frame timer reaches the EOF1 point, the upstream
Transmitter will generate a full-speed EOP to prevent the hub from being disabled by the upstream hub.
The connected port is then disabled if it has not ended the packet and returned to the Idle state before the
frame timer reaches the EOF2 point.

11.8.2 Speed Detection
The speed of an attached device is determined by the placement of a pull-up resistor on the device (see
Section 7.1.5). When a device is attached, the hub is expected to detect the speed of the device by sensing
the Bus Idle state. Due to connect and start-up transients, the hub may not be able to reliably determine the
speed of the device until the transients have ended. The USB System Software is required to "debounce"
the connection and provide a delay between the time a connection is detected and the device is used (see
Section 7.1.7.1). At the end of the debounce interval, the device is expected to have placed its upstream

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 253

port in the Idle state and be able to react to reset signaling. The USB System Software must send a
SetPortFeature(PORT_RESET) request to the port to enable the port and make the attached device ready
for use. This provides a convenient time for the hub to evaluate the speed of the device attached to the port.
Speed detection can be done at the beginning of the port reset as the port leaves the Disabled state or at the
end of the port reset between the end of the Resetting state and the start of the Enabled state.

If an implementation chooses to do speed evaluation on entry to the Resetting state from the Disabled state,
it will set the PORT_LOW_SPEED status according to the condition of the D+ and D- lines at that time.
(Note: if both D+ and D- are high at this time, the hub may stay in the Disabled state and set the
C_PORT_ENABLE bit to indicate that the hub could not determine the speed of the device. Otherwise the
hub should assume that the device is low-speed.) This determines the speed of the device and the Idle/J
state for the port. The hub will then drive an SE0 for the duration of the Resetting state timer. At the end of
the Resetting state, the hub will drive the lines to the J state that is appropriate for the speed of the attached
device and transition to the Enabled state.

Note: because the SendEOP state also exits to the Enabled state, an implementation might exit the
Resetting state to the SendEOP state without driving the 'J' and then let the SendEOP circuit complete the
operation.

If an implementation chooses to do speed evaluation on exit from the Resetting state, then it will need an
additional state called the Speed_eval state. At the end of the Resetting state, the hub will float the D+ and
D- lines and allow the lines to settle to the Idle state appropriate for the attached device. At the end of the
Speed_eval state, the hub will set the PORT_LOW_SPEED status as appropriate. The Speed_eval state
must last for at least 2.5µs but no longer than 1ms. It is possible that the port will detect a disconnect
condition during the speed evaluation. If so, the port transitions to the Disconnected state and will not enter
the Enabled state.

11.8.3 Collision
If the Hub Repeater is in the WFEOP state and an SOP is detected on another enabled port, a Collision
condition exists. There are two allowed behaviors for the hub in this instance.

The first, and preferred, behavior is to ‘garble’ the message so that the host can detect the problem. The
hub garbles the message by transmitting a 'K' on the upstream port. This 'K' should persist until packet
traffic from all downstream ports ends. The hub should use the last EOP to terminate the garbled packet.
babble detection is enabled during this garbled message.

A second behavior is to block the second packet and, when the first message ends, return the hub to the
WFSOPFU or WFSOP state as appropriate. If the second stream is still active, the hub may reestablish
connectivity upstream. This method is not preferred, as it does not convey the problem to the host.
Additionally, if the second stream causes the hub to reestablish upstream connectivity as the host is trying to
establish downstream connectivity, additional packets can be lost and the host cannot properly associate the
problem.

11.8.4 Full- versus Low-speed Behavior
The upstream connection of a hub must always be a full-speed connection. All downstream ports of a hub
that are attached to USB connectors must be able to support both full-speed and low-speed devices. When
low-speed data is sent or received through a hub's upstream connection, the signaling is full-speed even
though the bit times are low-speed.

Full-speed signaling must not be transmitted to low-speed ports.

If a port is detected to be attached to a low-speed device, the hub port’s output buffers are configured to
operate at the slow slew rate (75-300ns), and the port will not propagate downstream-directed packets
unless they are prefaced with a PRE PID. When a hub receives a PRE PID, it must enable the drivers on
the enabled, low-speed ports within four bit times of receiving the last bit of the PID.

Universal Serial Bus Specification Revision 2.0 (0.79)

254 USB-IF Member Confidential

Note: when the driver is turned on, the upstream port will be in the 'J' state and the downstream ports
should be driven to the same state.

Low-speed data follows the PID and is propagated to both low and full-speed devices. Hubs continue to
propagate downstream signaling to all enabled ports until a downstream EOP is detected, at which time all
output drivers are turned off.

Full-speed devices will not misinterpret low-speed traffic because no low-speed data pattern can generate a
valid full-speed PID.

When a low-speed device transmits, it does not preface its data packet with a PRE PID. Hubs will
propagate upstream-directed packets of any speed using full-speed signaling polarity and edge rates.

For both upstream and downstream low-speed data, the hub is responsible for inverting the polarity of the
data before transmitting to/from a low-speed port.

Although a low-speed device will send a low-speed EOP to properly terminate a packet, a hub may truncate
a low-speed packet at the EOF1 point with a full-speed EOP. Thus, hubs must always be able to tear down
connectivity in response to a full-speed EOP regardless of the data rate of the packet.

Because of the slow transitions on low-speed ports, when the D+ and D- signal lines are switching between
the 'J' and 'K', they may both be below 2.0V for a period of time that is longer than a full-speed bit time. A
hub must ensure that these slow transitions do not result in termination of connectivity and must not result in
an SE0 being sent upstream.

11.8.4.1 Low-speed Keep-alive
All hub ports to which low-speed devices are connected must generate a low-speed keep-alive strobe,
generated at the beginning of the frame, which consists of a valid low-speed EOP (described in Section
7.1.13.2). The strobe must be generated at least once in each frame in which an SOF is received from the
host. This strobe is used to prevent low-speed devices from suspending if there is no other low-speed traffic
on the bus. The hub can generate the keep-alive on any valid full-speed token packet. The following rules
for generation of a low-speed keep-alive must be adhered to:

• A keep-alive must minimally be derived from each SOF. It is recommended that a keep-alive be
generated on any valid full-speed token.

• The keep-alive must start by the eighth bit after the PID of the full-speed token.

11.9 Suspend and Resume
<<Update for high-speed>>

Hubs must support suspend and resume both as a USB device and in terms of propagating suspend and
resume signaling. Hubs support both global and selective suspend and resume. Global and selective
suspend are defined in Section 7.1.7.4. Global suspend/resume refers to the entire bus being suspended or
resumed without affecting any hub’s downstream port states; selective suspend/resume refers to a
downstream port of a hub being suspended or resumed without affecting the hub state. Global
suspend/resume is implemented through the root port(s) at the host. Selective suspend/resume is
implemented via requests to a hub. Device-initiated resume is called remote-wakeup (see Section 7.1.7.5).

Figure 11-10 shows the timing relationships for an example remote-wakeup sequence. This example
illustrates a device initiating resume signaling through a suspended hub (‘B’) to an awake hub (‘A’). Hub
‘A’ in this example times and completes the resume sequence and is the "Controlling Hub". The timings
and events are defined in Section 7.1.7.5.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 255

Device
Remote
Wakeup

Device

Function
Hub Port

Enabled DS
Hub Ports

Hub
Upstream
Port

Controlling Hub
suspended DS
Port

Idle (‘J’)

Everything
below Hub ‘A’
in Suspend
state

Bus driving

Bus Idle or
driven at other end

Device

Hub ‘B’

Resume (‘K’)

Device Drives Resume
[1ms, 15ms]

Idle (‘J’) Resume (‘K’)

Hub ‘B’ Drives Resume (US and DS)
[1ms, 15ms]

Hub ‘B’ Reflects Resume (US and DS)
100µs

Idle (‘J’) Resume (‘K’)

Controlling Hub Reflects Resume
(DS) 100µs

Hub ‘A’
(Controlling Hub)

Controlling Hub Drives Resume (DS)
20ms (nominal)

Controlling Hub
sends EOP ending
resume

Idle (‘J’)

Idle (‘J’)

t0 t1 t2 t3 t4 t5

Figure 11-10. Example Remote-Wakeup Resume Signaling

Here is an explanation of what happens at each tn:

t0 Suspended device initiates remote-wakeup by driving a 'K' on the data lines.

t1 Suspended hub ‘B’ detects the ‘K’ on its downstream port, wakes up enough within 100µs to reflect
the resume upstream and down through all enabled ports.

t2 Hub ‘A’ is not suspended (implication is that the port at which ‘B’ is attached is selectively
suspended), detects the ‘K’ on the selectively suspended port where ‘B’ is attached, and reflects the
resume signal back to ‘B’ within 100µs.

t3 Device ceases driving ‘K’ upstream.

t4 Hub ‘B’ ceases driving ‘K’ upstream and down all enabled ports and begins repeating upstream
signaling to all enabled downstream ports.

t5 Hub ‘A’ completes resume sequence, after appropriate timing interval, by driving a low-speed EOP
downstream.

The hub reflection time is much smaller than the minimum duration a USB device will drive resume
upstream. This relationship guarantees that resume will be propagated upstream and downstream without
any gaps.

11.10 Hub Reset Behavior
<<Update for high-speed>>

The following sections describe hub reset behavior and its interactions with resume, attach detect, and
power-on.

11.10.1 Hub Receiving Reset on Upstream Port
Reset signaling to a hub is defined only in the downstream direction, which is at the hub's upstream port. A

Universal Serial Bus Specification Revision 2.0 (0.79)

256 USB-IF Member Confidential

hub may start its reset sequence if it detects 2.5µs or more of continuous SE0 signaling and must complete
its reset sequence by the end of the reset signaling.

Note: the 2.5µs lower limit is set by a need to prevent low-speed EOP strobes from being interpreted as
reset.

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed
its reset sequence by the end of reset signaling.

After completion of the reset sequence, a hub is in the following state:

• Hub Controller default address is 0

• Hub status change bits are set to zero

• Hub Repeater is in the WFSOPFU state

• Transmitter is in the Inactive state

• Downstream ports are in the Not Configured state and SE0 driven on all downstream ports.

11.11 Hub Port Power Control
Self-powered hubs may have power switches that control delivery of power downstream ports but it is not
required. Bus-powered hubs are required to have power switches. A hub with power switches can switch
power to all ports as a group/gang, to each port individually, or have an arbitrary number of gangs of one or
more ports .

A hub indicates whether or not it supports power switching by the setting of the Logical Power Switching
Mode field in wHubCharacteristics.If a hub supports per-port power switching, then the power to a port is
turned on when a SetPortFeature(PORT_POWER) request is received for the port. Port power is turned off
when the port is in the Powered-off or Not Configured states. If a hub supports ganged power switching,
then the power to all ports in a gang is turned on when any port in a gang receives a
SetPortFeature(PORT_POWER) request. The power to a gang is not turned off unless all ports in a gang
are in the Powered-off or Not Configured states. Note, the power to a port is not turned on by a
SetPortFeature(PORT_POWER) if both C_HUB_LOCAL_POWER and Local Power Status (in
wHubStatus) are set to 1B at the time when the request is executed and the PORT_POWER feature would
be turned on.

Although a self-powered hub is not required to implement power switching, the hub must support the
Powered-off state for all ports. Additionally, the hub must implement the PortPwrCtrlMask (all bits set to
1b) even though the hub has no power switches that can be controlled by the USB System Software.

Note: to ensure compatibility with previous versions of USB software, hubs must implement the Logical
Power Switching Mode field in wHubCharacteristics. This is because some versions of SW will not use
the SetPortFeature() request if the hub indicates in wHubCharacteristics that the port does not support port
power switching. Otherwise, the Logical Power Switching Mode field in wHubCharacteristics would have
become redundant as of this version of the specification.

The setting of the Logical Power Switching Mode for hubs with no power switches should reflect the
manner in which over-current is reported. For example, if the hub reports over-current conditions on a per-
port basis, then the Logical Power Switching Mode should be set to indicate that power switching is
controlled on a per-port basis.

For a hub with no power switches, bPwrOn2PwrGood should be set to zero.

11.11.1 Multiple Gangs
A hub may implement any number of power and/or over-current gangs. A hub that implements more than
one over-current and/or power switching gang must set both the Logical Power Switching Mode and the

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 257

Over-current Reporting Mode to indicate that power switching and over-current reporting are on a per port
basis (these fields are in wHubCharacteristics.) Also, all bits in PortPwrCtrlMask must be set to 1b.

When an over-current condition occurs on an over-current protection device, the over-current is signaled on
all ports that are protected by that device. When the over-current is signaled, all the ports in the group are
placed in the Powered-off state, and the C_PORT_OVER-CURRENT field is set to 1B on all the ports.
When port status is read from any port in the group, the PORT_OVER-CURRENT field will be set to 1b as
long as the over-current condition exists. The C_PORT_OVER-CURRENT field must be cleared in each
port individually.

When multiple ports share a power switch, setting PORT_POWER on any port in the group will cause the
power to all ports in the group to turn on. It will not, however, cause the other ports in that group to leave
the Powered-off state. When all the ports in a group are in the Powered-off state or the hub is not
configured, the power to the ports is turned off.

If a hub implements both power switching and over-current, it is not necessary for the over-current groups
to be the same as the power switching groups.

If an over-current condition occurs and power switches are present, then all power switches associated with
an over-current protection circuit must be turned off. If multiple over-current protection devices are
associate with a single power switch then that switch will be turned off when any of the over-current
protection circuits indicates an over-current condition.

11.12 Hub I/O Buffer Requirements
<<Update for high-speed>>

All hub ports must be able to detect and generate all the bus signaling states described in Table 7-1. This
requires that hub be able to independently drive and monitor the D+ and D- outputs on each of its ports.
Each hub port must have single-ended receivers and transmitters on the D+ and D- lines as well as a
differential receiver and transmitter. Details on voltage levels and drive requirements appear in Chapter 7.

11.12.1 Pull-up and Pull-down Resistors
Hubs, and the devices to which they connect, use a combination of pull-up and pull-down resistors to
control D+ and D- in the absence of their being actively driven. These resistors establish voltage levels
used to signal connect and disconnect and maintain the data lines at their idle values when not being
actively driven. Each hub downstream port requires a pull-down resistor (Rpd) on each data line; the hub
upstream port requires a pull-up resistor (Rpu) on its D+ line. Values for Rpu and Rpd appear in Chapter 7.

11.12.2 Edge Rate Control
Downstream hub ports must support transmission and reception of both low-speed and full-speed edge
rates. The respective signaling specifications are given in Chapter 7. Edge rate on a downstream port must
be selectable, based upon whether a downstream device was detected as being full-speed or low-speed. The
hub upstream port always uses full-speed signaling, and its output buffers always operate with full-speed
edge rates and signal polarities.

11.13 Hub Controller
The Hub Controller is logically organized as shown in Figure 11-11.

Universal Serial Bus Specification Revision 2.0 (0.79)

258 USB-IF Member Confidential

Port 1 Port N

Port 3Port 2

Status Change
Endpoint

ENDPOINT 0:
Configuration
Information

UPSTREAM CONNECTION

Figure 11-11. Example Hub Controller Organization

11.13.1 Endpoint Organization
The Hub Class defines one additional endpoint beyond Default Control Pipe, which is required for all
devices:hubs: the Status Change endpoint. The host system receives port and hub status change
notifications through the Status Change endpoint. The Status Change endpoint is an interrupt endpoint. If
no hub or port status change bits are set, then the hub returns an NAK when the Status Change endpoint is
polled. When a status change bit is set, the hub responds with data, as shown in Section 11.13.4, indicating
the entity (hub or port) with a change bit set. The USB System Software can use this data to determine
which status registers to access in order to determine the exact cause of the status change interrupt.

11.13.2 Hub Information Architecture and Operation
Figure 11-12 shows how status, status change, and control information relate to device states. Hub
descriptors and Hub/Port Status and Control are accessible through the Default Control Pipe. The Hub
descriptors may be read at any time. When a hub detects a change on a port or when the hub changes its
own state, the Status Change endpoint transfers data to the host in the form specified in Section 11.13.4.

Hub or port status change bits can be set because of hardware or software events. When set, these bits
remain set until cleared directly by the USB System Software through a ClearPortFeature() request or by a
hub reset. While a change bit is set, the hub continues to report a status change when polled until all change
bits have been cleared by the USB System Software.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 259

Status Information
(static)

Change Information
(due to hardware

events)

Control Information
(change device state)

H
os

t S
of

tw
ar

e
(e

.g
.,

H
ub

D
riv

er
)

Change Device
State

Software Device
Control

All Status
Changes

Device Control

Hardware Events

Hardware Events

Figure 11-12. Relationship of Status, Status Change, and Control Information to Device States

The USB System Software uses the interrupt pipe associated with the Status Change endpoint to detect
changes in hub and port status.

Universal Serial Bus Specification Revision 2.0 (0.79)

260 USB-IF Member Confidential

11.13.3 Port Change Information Processing
Hubs report a port's status through port commands on a per-port basis. The USB System Software
acknowledges a port change by clearing the change state corresponding to the status change reported by the
hub. The acknowledgment clears the change state for that port so future data transfers to the Status Change
endpoint do not report the previous event. This allows the process to repeat for further changes (see Figure
11-13.)

Begin

System Software requests Interrupt Pipe notification for Status Change Information

Change Data
Available ?

Hub NAKs
status change

IN token

No

Yes

Interrupt Pipe returns Hub and Port Status Change Bitmap

Interrupt Pipe notification retired

System Software reads Hub or Port status (for affected ports)

System Software processes accumulated change information

Any Changed
State?

No

Yes • Accumulate change information
• System Software clears

corresponding change state

Re-initialize Interrupt Pipe for Status Change endpoint

Return to
beginning

Figure 11-13. Port Status Handling Method

11.13.4 Hub and Port Status Change Bitmap
The Hub and Port Status Change Bitmap, shown in Figure 11-14, indicates whether the hub or a port has
experienced a status change. This bitmap also indicates which port(s) have had a change in status. The hub
returns this value on the Status Change endpoint. Hubs report this value in byte-increments. That is, if a
hub has six ports, it returns a byte quantity and reports a zero in the invalid port number field locations. the
USB System Software is aware of the number of ports on a hub (this is reported in the hub descriptor) and

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 261

decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub status in
bit zero of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte. Hubs report only as
many bits as there are ports on the hub, subject to the byte-granularity requirement (i.e., round up to the
nearest byte).

012N

Port 1 change detected
Hub change detected

Port N change detected

Port 2 change detected

Figure 11-14. Hub and Port Status Change Bitmap

Any time the Status Change endpoint is polled by the host controller and any of the Status Changed bits are
non-zero, the Hub and Port Status Change Bitmap is returned. Figure 11-15 shows an example creation
mechanism for hub and port change bits.

Per-Port Logic

Logical OR

Change
Detect Logic

Change
Information

Hub and Port Status Change Bitmap

Port N

N

Example

Figure 11-15. Example Hub and Port Change Bit Sampling

11.13.5 Over-current Reporting and Recovery
USB devices must be designed to meet applicable safety standards. Usually, this will mean that a self-
powered hub implement current limiting on its downstream ports. If an over-current condition occurs, it
causes a status and state change in one or more ports. This change is reported to the USB System Software
so that it can take corrective action.

Universal Serial Bus Specification Revision 2.0 (0.79)

262 USB-IF Member Confidential

A hub may be designed to report over-current as either a port or a hub event. The hub descriptor field
wHubCharacteristics is used to indicate the reporting capabilities of a particular hub (see Section 11.23.2).
The over-current status bit in the hub or port status field indicates the state of the over-current detection
when the status is returned. The over-current status change bit in the Hub or Port Change field indicates if
the over-current status has changed.

When a hub experiences an over-current condition, it must place all affected ports in the Powered-off state.
If a hub has per-port power switching and per-port current limiting, an over-current on one port may still
cause the power on another port to fall below specified minimums. In this case, the affected port is placed
in the Powered-off state and C_PORT_OVER_CURRENT is set for the port, but
PORT_OVER_CURRENT is not set. If the hub has over-current detection on a hub basis, then an over-
current condition on the hub will cause all ports to enter the Powered-off state. However, in this case,
neither C_PORT_OVER_CURRENT nor PORT_OVER_CURRENT is set for the affected ports.

Host recovery actions for an over-current event should include the following:

1. Host gets change notification from hub with over-current event.

2. Host extracts appropriate hub or port change information (depending on the information in the
change bitmap).

3. Host waits for over-current status bit to be cleared to 0.

4. Host cycles power on to all of the necessary ports (e.g., issues a SetPortFeature(PORT_POWER)
request for each port).

5. Host re-enumerates all affected ports.

11.13.6 High Speed Enumeration Handling
The hub device class commands are used to manipulate its downstream port state. When a device is
attached, the device attach event is detected by the hub and reported on the status change interrupt. The
host will accept the status change report and request a SetPortFeature(PORT_RESET) on the port. As part
of the bus reset sequence, a speed detect is performed by the hub’s port hardware. If the attached device is
high speed, the port is connected to the high-speed repeater. The Get_Status(PORT) request invoked by the
host will return a “not PORT_LOW_SPEED and PORT_HIGH_SPEED” indication.

If the attached device is not high speed (e.g. the high speed detect fails), the port is routed to the transaction
translator(TT) of the hub (or hub port). The Get_Status(PORT) will report “PORT_LOW_SPEED” or “not
PORT_LOW_SPEED and not PORT_HIGH_SPEED” for low- or full-speed respectively.

When the device is detached from the port, the port reports the status change through the status change
endpoint and the port will be reconnected to the high-speed repeater. Then the process is ready to be
repeated on the next device attach detect.

11.14 Hub Configuration
Hubs are configured through the standard USB device configuration commands. A hub that is not
configured behaves like any other device that is not configured with respect to power requirements and
addressing. If a hub implements power switching, no power is provided to the downstream ports while the
hub is not configured. Configuring a hub enables the Status Change endpoint. The USB System Software
may then issue commands to the hub to switch port power on and off at appropriate times.

The USB System Software examines hub descriptor information to determine the hub’s characteristics. By
examining the hub’s characteristics, the USB System Software ensures that illegal power topologies are not
allowed by not powering on the hub’s ports if doing so would violate the USB power topology. The device
status and configuration information can be used to determine whether the hub should be used as a bus or
self-powered device. Table 11-7 summarizes the information and how it can be used to determine the
current power requirements of the hub.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 263

Table 11-7. Hub Power Operating Mode Summary

Configuration Descriptor

MaxPower
bmAttributes

(Self Powered)

Hub
Device Status
(Self Power)

Explanation

0 0 N/A N/A
This is an illegal set of information.

0 1 0 N/A
A device which is only self-powered, but does
not have local power cannot connect to the Bus
and communicate.

Table 11-7. Hub Power Operating Mode Summary (Continued)

Configuration Descriptor

MaxPower
bmAttributes

(Self Powered)

Hub
Device Status
(Self Power)

Explanation

0 1 1 Self-powered only hub and local power supply is
good. Hub status also indicates local power
good, see Section 11.16.2.5. Hub functionality is
valid anywhere depth restriction is not violated.

0 1 1 Self-powered only hub and local power supply is
good. Hub status also indicates local power
good, see Section 11.24.2.6. Hub functionality is
valid anywhere depth restriction is not violated.

> 0 0 N/A Bus-powered only hub. Downstream ports may
not be powered unless allowed in current
topology. Hub device status reporting Self
Powered is meaningless in combination of a
zeroed bmAttributes.Self-Powered.

> 0 1 0 This hub is capable of both self- and bus-
powered operating modes. It is currently only
available as a bus-powered hub.

> 0 1 1 This hub is capable of both self- and bus-
powered operating modes. It is currently
available as a self-powered hub.

A self-powered hub has a local power supply, but may optionally draw one unit load from its upstream
connection. This allows the interface to function when local power is not available (see Section 7.2.1.2).
When local power is removed (either a hub-wide over-current condition or local supply is off), a hub of this
type remains in the Configured state but transitions all ports (whether removable or non-removable) to the
Powered-off state. While local power is off, all port status and change information read as zero and all
SetPortFeature() requests are ignored (request is treated as a no-operation). The hub will use the Status
Change endpoint to notify the USB System Software of the hub event (see Section 11.24.2.6 for details on
hub status).

The MaxPower field in the configuration descriptor is used to report to the system the maximum power the
hub will draw from VBUS when the configuration is selected. For bus-powered hubs, the reported value

Universal Serial Bus Specification Revision 2.0 (0.79)

264 USB-IF Member Confidential

must not include the power for any of external downstream ports. The external devices attaching to the hub
will report their individual power requirements.

A compound device may power both the hub electronics and the permanently attached devices from VBUS.
The entire load may be reported in the hubs' configuration descriptor with the permanently attached devices
each reporting self-powered, with zero MaxPower in their respective configuration descriptors.

11.15 Transaction Translator
A hub has a special responsibility when it is operating in high-speed and has full/low-speed devices
connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling
environment from the full/low-speed signaling environment. This function is performed by the Transaction
Translator (TT) portion of the hub.

This section defines the required behavior of the transaction translator.

11.15.1 Overview
Figure 11-16 shows an overview of the Transaction Translator. The TT has buffers and tracks transaction
state for the four USB transfer types. The high-speed handler accepts high-speed start-split transactions or
responds to high-speed complete-split transactions. The high-speed handler places the start-split
transactions in local buffers for the full/low-speed handler’s use.

The buffered start-split transactions provide the full/low speed handler with the information that allows it to
issue corresponding full/low speed transactions to full/low speed devices attached on downstream facing
ports. The full/low speed handler buffers the results of these full/low speed transactions so that they can be
returned with a corresponding complete-split transaction on high-speed.

The conversion between full/low speed transactions and corresponding high-speed split-transaction protocol
is described in Section 8.4.2.

Isoch/Int
Start-split

Isoch/Int
Comp.-split

B/C
In/Out

Full/Low-Speed Handler

High Speed Bus

B/C
In/Out

Full/Low Speed Bus

High-Speed Handler

...

Figure 11-16 Transaction Translator Overview

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 265

The high-speed handler of the TT operates independently of the full/low-speed handler. They use the local
buffers to exchange information where required.

The TT has two buffer and state tracking sections (shown in gray in Figure 11-16): periodic (for
isochronous/interrupt full/low-speed transactions) and non-periodic (for bulk/control full/low-speed
transactions). The requirements on the TT for these two buffer and state tracking sections are different.
Each will be described in turn later in this chapter.

11.15.1.1 Data Handling Between High Speed and Full/Low Speed
The host converts full/low-speed transactions to corresponding high-speed split-transactions. Low speed
Preamble(PRE) packets are never used on the high-speed bus to indicate a low-speed transaction. Instead, a
low-speed transaction is encoded in the split transaction extended token. The split transactions appear in
the host controller high-speed transaction schedule along with other high-speed transactions.

11.15.1.2 Host Controller and TT Split Transactions
The host controller uses the split transaction protocol for initiating full/low-speed transactions via the TT
and then determining the completion status of the full/low-speed transaction. This approach allows the host
controller to start a full/low-speed transaction and then continue with other high-speed activities while
avoiding having to wait for the slower transaction to proceed/complete at its speed. A high-speed split
transaction has two parts: a start-split and a complete-split. Split transactions are only used between the
host controller and a hub. No other high-speed or full/low-speed devices ever use split transactions.

When the host controller sends a start-split transaction at high-speed, the TT for that device will accept the
transaction and buffer it locally. The high-speed handler responds with an appropriate handshake to inform
the host controller that the transaction has been accepted. Not all split transactions have a handshake phase
to the start-split. The start-split transactions are kept temporarily in a TT local buffer.

The full/low-speed handler processes start-split periodic transactions in the buffer (in order) as the
downstream bus is ready for the “next” transaction. The full/low-speed handler accepts any response
information from the downstream bus (in response to the full/low-speed transaction) and accumulates them
in a local buffer for later transmission to the host controller.

At an appropriate future time, the host controller sends a high-speed complete-split transaction to retrieve
the status/data for appropriate full/low-speed transactions. The high-speed handler checks this high-speed
complete-split transaction with the response at the head of the local response buffer and responds
accordingly. The specific split transaction sequences are defined for each USB transfer type in later
sections.

11.15.1.3 Multiple Transaction Translators
A hub has two choices for organizing transaction translators. A hub can have one transaction translator for
all downstream facing ports that have full/low-speed devices attached or the hub can have one TT for each
downstream facing port. The hub must report which organization is supports in the hub class descriptor.

11.15.2 Transaction Translator Scheduling
As the high-speed handler accepts start-splits, the full/low-speed transaction information and data for OUTs
or the transaction information for INs accumulate in buffers awaiting their service on the downstream bus.
The host manages the periodic TT buffers differently than the non-periodic buffers.

11.15.2.1 TT Isochronous/Interrupt (Periodic) Buffering
Periodic transactions have strict timing requirements to meet on a full/low-speed bus (as defined by the
specific endpoint and transfer type). Therefore, transactions must move through across the high-speed bus,
through the TT, across the full/low-speed bus, back through the TT and onto the high-speed bus in a timely

Universal Serial Bus Specification Revision 2.0 (0.79)

266 USB-IF Member Confidential

fashion. The TT implements a traditional pipeline of transactions with its periodic buffers. There is
separate buffer space for start-splits and complete-splits. The host is responsible for filling and draining the
pipeline correctly. The host software manages the host controller to cause high-speed split transactions to
occur at the correct times to avoid over/under runs in the TT periodic pipeline. The host controller sends
data “just in time” for full/low-speed OUTs and retrieves response data from full/low-speed INs to ensure
that the periodic buffering required in the TT is the minimum possible. See Section 11.18 for more detailed
information.

USB strictly defines the timing requirements of periodic transfers and the isochronous transport capabilities
of the high-speed and full/low-speed buses. This allows the host to accurately predict when data for
periodic transfers must be moved on both the full/low-speed and high-speed buses, whenever a client
requests a data transfer with a full/low-speed periodic endpoint. Therefore the host can “pipeline” data
to/from the hub so that it moves in a timely manner with its target endpoint. Once the configuration of a
full/low-speed device with periodic endpoints is set, the host streams data to/from the hub to keep the
device’s endpoints operating normally.

11.15.2.2 TT Bulk/Control (Non-Periodic) Buffering
Non-periodic transactions have no timing requirements, but the TT should support the maximum full/low-
speed throughput allowed. A TT provides a few transaction buffers for bulk/control transactions. The host
and TT use simple flow control (NAK) mechanisms to manage the bulk/control non-periodic buffers. The
host issues a start-split transaction and if there is available buffer space, the TT accepts the transaction. The
full/low-speed handler uses the buffered information to issue the downstream full/low-speed transaction and
then uses the same buffer to hold any results (e.g. handshake or data or timeout). The buffer is then emptied
with a corresponding high-speed complete-split and the process continues.

11.15.2.3 Full/Low-Speed Handler Scheduling
The full/low-speed handler uses a simple, scheduled, priority scheme to service pending transactions on the
downstream bus. Each microframe, the full/low-speed handler processes any accumulated start-split
transactions in the isochronous/interrupt periodic buffers first. If there are start-split transactions pending in
the bulk/control buffer(s) and there is sufficient time left in the full/low-speed 1ms frame to complete the
transaction, the full/low-speed handler issues one of the transactions (in round robin order). Figure 11-17
shows pseudo code for the full/low-speed handler start-split transaction scheduling algorithm.

The TT also sequences the transaction state pipeline based on the high-speed microframe clock to ensure
that it doesn’t start full/low-speed transactions too early or too late. The “Advance_pipeline” procedure in
the pseudo code illustrates how the TT keeps the microframe “pipeline” advancing. This procedure is
described in more detail later in Figure 11-35.

While (1) loop
While (not end of microframe) loop

-- process next start-split transaction
If pending periodic start-split transaction then

Process full/low-speed transaction
Else if (ready bulk/control transaction) and

(fits in full/low-speed 1ms frame) then
Process one transaction

End if
End loop

Advance_Pipeline(); -- see description in Figure 11-35(below)
End loop

Figure 11-17 Example Full/Low-speed Handler Scheduling for Start-splits

<<expand, rewrite, move>> Given the strict sequencing of microframes and the derivation of the 1ms SOF
from the 0th microframe, this eliminates a need to have any timing information carried in the periodic data
stream sent to the Hub. See Section 11.18 for more information.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 267

11.16 Split Transaction Notation Information
The following sections describe the details of the transaction phases and flow sequences of split-
transactions for the different USB transfer types: bulk/control, interrupt and isochronous. Each description
also shows detailed example host and TT state machines to achieve the required transaction definitions.
Appendix <<TBD>> includes example transactions with different high-speed and full/low-speed results to
clarify the relationships between the host controller, the hub’s TT and a full/low-speed endpoint.

Low-speed is not discussed in detail since beyond the handling of PRE packets (which is defined in chapter
8), there are no packet sequencing differences between low- and full-speed.

For each transfer direction, reference figures showing the possible flow sequences for the start-split and the
complete-split portion of the split transaction are shown in Appendix <<TBD>>.

<<<<Include flow sequences in chapter or move to appendix???? Currently, in chapter, but intro text says
in appendix.>>>>

The transitions on the flow sequence figures have labels that correspond to the transitions in the host and
TT state machines. These labels are also included in the appendix examples. The three character labels are
of the form: < S | C >< T | D | H | E ><number>. S indicates that this is a start-split label. C indicates that
this is a complete-split label. T indicates token phase, D indicates data phase, H indicates handshake phase,
E indicates an error case. The number simply distinguishes different labels of the same case/phase in the
same split-transaction part.

The flow sequence figures further identify the visibility of transitions according to the legend in Figure
11-18. The flow sequences also include some indication of states required in the host or TT or actions
taken. The legend indicates how these are identified.

Bold indicates host action
Italics indicate <hub status> or <hub action>
Both visible
Hub visible
Host visible

Figure 11-18 Flow Sequence Legend

Figure 11-19 shows the legend for the state machine diagrams.

“My”
Action

“Other”
Response

Initial
State

Legend:

Figure 11-19 Legend for State Machines

The descriptions of the split-transactions for the four transfer types refer to the status of the full/low-speed
transaction. This status is used by the high-speed handler to determine its response to a complete-split
transaction. The status is only visible within a TT implementation and is used in the specification purely for
ease of explanation. The defined status values are:

• Ready – The transaction has completed on the downstream facing full/low-speed bus with the result
as follows:

• Ready/NAK – A NAK handshake was received.

• Ready /timeout or Old/t.o. – The full/low-speed transaction experienced a timeout between
phases of the transaction.

Universal Serial Bus Specification Revision 2.0 (0.79)

268 USB-IF Member Confidential

• Ready /ACK – An ACK handshake was received.

• Ready /Stall – A STALL handshake was received.

• Ready /Data – A data packet was received and the CRC check passed. (bulk/control IN)

• Ready /badcrc – A data packet should have been received, but the CRC check failed.

• Ready /last – A data packet was finished being received (isochronous/interrupt IN)

• Ready /more – A data packet was being received when the microframe clock occurred.
(isochronous/interrupt IN)

• Old – A complete-split has been received by the high-speed handler for a transaction that previously
had a “ready” status. The possible status results are the same as for the Old status.

• Pending – The transaction is waiting to be completed on the downstream facing full/low-speed bus.

The figures use “old/*”, “old/x”, “ready/*”, and “ready/x” to indicate any of the old or ready status
respectively.

11.17 Bulk/Control Transaction Translation Overview
Each TT has at least two bulk/control transaction buffers. Each buffer holds the information for a start- or
complete-split transaction and represents a single full/low-speed transaction that is awaiting transfer on the
downstream bus. The buffer is used to hold the transaction information from the start-split (and data for an
OUT) and then the status result of the full/low-speed transaction (and data for an IN). This buffer is filled
and emptied by split-transactions via the high-speed handler. It is also updated by the full/low-speed
handler while the transaction is in progress on the downstream bus.

The high-speed handler accepts a start-split transaction from the host controller for a bulk/control endpoint
whenever the high-speed handler has space in a bulk/control buffer.

The host controller attempts a start-split transaction according to its bulk/control schedule. As soon as the
high-speed handler buffer has space, it can accept the next start-split for some (possibly other) full/low-
speed endpoint.

There is no method to control what start-split transaction is accepted next by the high-speed handler.
Sequencing of start-split transactions is simply determined by available buffer space and the current state of
the host controller schedule (e.g. what the next start-split transaction is that it tries as a normal part of
processing high-speed transactions).

The host controller doesn’t segregate split transaction bulk (or control) transactions from high-speed bulk
(control) transactions when building its schedule. The host controller is required to track whether a
transaction is a normal high-speed or a split- ransaction.

The following sections describe the details of the transaction phases and flow sequences and state machines
for split-transactions used to support full/low-speed bulk and control OUT and IN transactions. There are
only minor differences between bulk and control. In the figures, some areas are shaded to indicate that they
don’t apply for control transactions.

11.17.1 Bulk/Control Split Transaction Sequences
<<<More words to explain these figures…..>>>

The state machine figures show the transitions required for high-speed split transactions for full/low-speed
bulk/control transfer types for a single endpoint. These figures must not be interpreted as showing any
particular specific timing. In particular, other high-speed or split transactions can be “interleaved” with
these transaction sequences. Specific details are described as appropriate.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 269

Figure 11-20 shows a sample code algorithm that clarifies the requirements for the sh1/sh2/sh3 transitions
for both Bulk/Control IN and OUT start-split transactions.

If all buffers are in the old buffer state:
If a buffer has the same dev/endpoint/dir as specified in the start-split

use that buffer to accept (and hold) the start-split and ACK
-- This ensures that status information for an endpoint is only
-- in a single TT buffer (otherwise response is ambiguous)

Else
use any buffer with old transaction status

Endif
Else if some buffer has the same dev/endpoint/dir as specified in the start-split:
if that buffer transaction status is pending or ready

ACK the start-split but don’t buffer the start-split
Else

use that buffer to accept (and hold) the start-split and ACK
Endif

Else if some buffer transaction status is old:
use that buffer to accept (and hold) the start-split and ACK

Else
NAK

Figure 11-20 Sample Algorithm for Start-Split and Buffer State

Figure 11- 21 shows the sequence of packets for a start-split transaction for the full/low-speed bulk OUT
transfer type. The block labeled XOUT represents an extended token packet as described in Chapter 8. It
is followed by an OUT token packet (or SETUP token packet for a control setup transaction). If the high-
speed handler times out after the XOUT or OUT token packets, and doesn’t see the following DATAx
packet, it won’t respond with a handshake as indicated by the dotted line transition labeled “se3”. This
causes the host to subsequently see a timeout (labeled “se2” and indicated with a dashed line). If the high-
speed handler receives the DATAx packet and it fails the CRC check, it takes the transition “se1” which
causes the host to timeout and take the “se2” transition.

If the high-speed handler doesn’t have space to hold the start-split, it responds with a NAK via transition
“sh3”. This will cause the host to retry this start-split at some future time based on its normal schedule.

<<Require the HC to not issue another start-split after a NAK until a complete-split completes?>>

If the high-speed handler has space for the start-split, it takes transition “sh1” and responds with an ACK.
This tells the host it must try a complete-split the next time it attempts to process a transaction for this
full/low-speed endpoint. After receiving an ACK handshake, the host must not issue a further start-split for
this endpoint until the corresponding complete-split has been completed.

If the high-speed handler already has a start-split for this full/low-speed endpoint pending, it follows
transition “sh2” and also responds with an ACK, but ignores the data. This handles the case where an ACK
handshake was smashed and missed by the host controller and now the host controller is retrying the start-
split, e.g. a high-speed handler transition of “sh1” but a host transition of “se2”.

In the host controller error cases, the host controller implements the “three strikes and you’re out”
mechanism. I.e. it increments an error count and if the error count is less than three (transition “se4”), it
will retry the transaction. If the error count is greater or equal to three (transition “se5”), it does endpoint
halt processing and doesn’t retry the transaction.

The high-speed handler has no immediate knowledge of what the host sees, so the “se2”, se3”, “se4” and
“se5” transitions show only host visibility.

This packet flow sequence showing the interactions between the host and hub is also represented by host
and high-speed handler state machine diagrams in the next section. Those state machine diagrams use the
same labels to correlate transitions between the two representations of the split-transaction rules.

Figure 11-22 shows the corresponding flow sequence for the complete-split transaction for the full/low-
speed bulk/control OUT transfer type. The notation “ready/x” or “old/x” indicates that the TT transaction
status of the split transaction is any of the ready or old states. After a full/low-speed transaction is run on
the downstream facing bus, the split transaction status is updated to reflect the result of the transaction. The

Universal Serial Bus Specification Revision 2.0 (0.79)

270 USB-IF Member Confidential

possible result status is: nak, stall, ack. The “x” means any of the NAK, ACK, STALL full/low-speed
transaction status results. Each status result reflects the handshake response from the full/low-speed
transaction.

XOUT

DATA0/1

Go to
comp. split

if err_count < 3
retry start split

Start split

Data
error

Retry
start split

timeout

same dev/ep &
ready|pending

diff dev/ep &
ready|pendingset pending

ACK NAK

se1

sd1

st1

se3

timeout

se2

Inc err
count

if err_count >= 3
endpoint halt

ACK

old

Go to
comp. split

sh1 sh2 sh3

se4 se5

OUT/SETUP

Figure 11- 21 Bulk/Control OUT Start-Split Transaction Sequence

There is no timeout response transaction status because the full/low-speed handler must perform a local
retry of a full/low-speed bulk or control transaction that times out. It locally implements a “three strikes and
you’re out” mechanism. This means that the full/low-speed transaction will resolve to one of a NAK,
STALL or ACK handshake results. If the transaction times out three times, the full/low-speed handler will
reflect this as a stall status result.

If the high-speed handler receives the complete-split extended token packet (and the token packet) and the
full/low-speed transaction has not been completed (e.g. the transaction status is “pending”), the high-speed
handler responds with a NYET handshake. This causes the host to retry the complete-split for this endpoint
some time in the future.

If the high-speed handler recieves a complete-split extended token packet (and the token packet) and finds
no local buffer with a corresponding transaction, the TT responds with a STALL to indicate a protocol
violation.

Once the full/low-speed handler has finished a full/low-speed transaction it changes the transaction status
from pending to ready and remembers the transaction result. This allows the high-speed handler to respond
to the complete-split transaction with something besides NYET. Once the high-speed handler has seen a

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 271

complete-split, it changes the transaction status from ready/x to old/x. This allows the high-speed handler
to reuse its local buffer for some other bulk/control transaction after this complete-split is finished.

If the host times out the transaction or doesn’t receive a valid handshake, it immediately retries the
complete-split before going on to any other bulk/control transactions for this high-speed handler. The
normal “three strikes” mechanism applies here also for the host.

If the host receives a STALL handshake, it performs endpoint halt processing and won’t issue any more
split-transactions for this full/low-speed endpoint until the halt condition is changed.

If the host receives an ACK, it records the results of the full/low-speed transaction and advances to the next
split transaction for this endpoint. The next transaction will be issued at some time in the future according to
normal scheduling rules.

If host receives a NAK, it will retry the start-split transaction for this endpoint at some time in the future
according to normal scheduling rules.

After the host receives a NAK, ACK or STALL handshake in response to a complete-split transaction, it
may subsequently issue a start-split transaction for the same endpoint. The host may choose to instead issue
a start-split transaction for a different endpoint that is not awaiting a complete-split response.

The shaded case shown in the figure indicates that a control setup transaction should never encounter a
NAK response since that is not allowed for full/low-speed transactions.

Complete split

XIN

Retry
comp. split

Go to next
start split

Timeout

Endpoint
halt

Retry
start split

pending old/nakold/stall old/ack

NYET STALL ACK NAK
ce3

ch2ch1

ct1

ch4ch3 ce2

if err_count < 3
retry immed.
comp. split

Inc err
count

if err_count >= 3
endpoint halt

Not applicable
for control-setup

ce4

ready/x or old/x
If status = ready/x => status = old/x

OUT/SETUP

No
match

ce1

Figure 11-22 Bulk/Control OUT Complete-Split Transaction Sequence

Figure 11-23 and Figure 11-24 shows the corresponding flow sequences for bulk/control IN split-
transactions.

Universal Serial Bus Specification Revision 2.0 (0.79)

272 USB-IF Member Confidential

XOUT

Start split

st1

Go to
comp. split

if err_count < 3
retry start split

Retry
start split

same dev/ep &
ready|pending

diff dev/ep &
ready|pendingset pending

ACK NAK
se1

sh1

timeout

Inc err
countACK

old

Go to
comp. split

sh2 sh3

se3

se2

IN

if err_count >= 3
endpoint halt

Figure 11-23 Bulk IN Start-Split Transaction Sequence

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 273

XIN

Complete split

Retry
comp. split

Go to next
start split

timeout

Data error

if err_count < 3
retry immed.
comp. split

old/data

NYETDATA0/1

Data ok,
Datax !=
toggle

Data ok,
Datax =
toggle

Retry
start split

ct1

ce1

cd1 ch1

Retry
start split

old/nak

NAK

ch2

Endpoint
halt

old/stall

STALL

ch3

Inc err
count

ce4 ch4 ch5

ce2

pending

ready/x or old/x
If status = ready/x => status = old/x

IN

No match

if err_count >= 3
endpoint halt

ce5

Figure 11-24 Bulk IN Complete-Split Transaction Sequence

11.17.2 Bulk/Control Split Transaction State Machines
The host and TT state machines for bulk/control IN and OUT split-transactions are show in the following
figures. The transitions for these state machines are labeled the same as in the flow sequence figures.

The notation of “XIN+OUT”, “XOUT+IN”, etc. in the state machines indicates the extended token and the
token packets.

Universal Serial Bus Specification Revision 2.0 (0.79)

274 USB-IF Member Confidential

XOUT+
OUT

NAK

DATAx

Inc error
count

Advance Endpoint
halt

timeout

NAK

ACK
NYET

XIN+
OUT

ACK STALL timeout

XOUT &
Err < 3

Err >= 3

st1

sd1
sh1, sh2

sh3

se2

ce2

ch3

ch4

ct1ch1

ch2,ce1

se5,ce3

se4

ce3immediate
host retry

XIN & Err < 3

Figure 11-25 Bulk/Control OUT Split Transaction Host State Machine

<<missing SETUP cases to correspond with flow sequences>>

Idle

OK DATAx,
Diff dev/endpt &
ready|pending status

Timeout
or DATAx
w/ bad CRC

OK DATAx,
Same dev/endpt &
ready|pending status

ACK,
accept data

XOUT+
OUT

Wait for
data

XIN+OUT,
pending status

NAK

NYET

ACK, don’t
accept dataOK DATAx,

old status

XIN+OUT,
old/(ack, nak, stall) status

st1

sh2

sh3

sh1

se1

ch4

ch4ch3

ch1

ch2
ce1

ch2,ce1ch3

se3

Not applicable
for control-setup

ACK|NAK|STALL

Figure 11-26 Bulk/Control OUT Split Transaction TT State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 275

XOUT+
IN

Timeout

DATAx =
toggle,
CRC OK

Advance
Inc error

count

STALL

ACK

XIN+IN

NAK

Timeout or
DATAx w/
Bad CRC

NAK

NYET

DATAx != toggle,
CRC OK

Ignore data

Inc error
count

st1

sh1,
sh2

sh3

se1

ct1
ce1

ch5

ch4

ce2 ch1

ch2

ch3,ce5

Err < 3

Err >= 3

Err < 3

Endpoint
halt

se2

se3

ce3

ce4

immed.

Err >= 3

Figure 11-27 Bulk/Control IN Split Transaction Host State Machine

Idle
XOUT+IN, old status

XIN+IN,
pending status

ACK,
accept xact

DATAx

XIN+IN,
old/data status

NYET

ACK,
ignore xact

XOUT+IN, Same
dev/endpt
& ready/x or
pending status

NAK|STALL

XIN+IN,
old/(nak, stall) status

NAK

XOUT+IN,
Diff dev/endpt &
ready|pending status

sh1

sh2

sh3

cd1
ch1

ch2

ch2 ch3
ce5

ch3

Figure 11-28 Bulk/Control IN Split Transaction TT State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

276 USB-IF Member Confidential

11.17.3 Bulk/Control Sequencing
Once the high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it
responds with an ACK split-transaction handshake. This tells the host controller to do a complete-split
transaction next time this endpoint is polled.

As soon as possible (subject to scheduling rules described previously), the full/low-speed handler does the
full/low-speed transaction and saves the handshake status (for OUT) or data/handshake status (for IN) in the
same buffer.

Some time later (according to the host controller schedule), this endpoint will be polled for the complete-
split transaction. The high-speed handler responds to the complete-split to return the full/low-speed
endpoint status for this transaction (as recorded in the buffer). If the host controller polls for the complete-
split transaction for this endpoint before the full/low-speed handler has finished processing this transaction
on the downstream bus, the high-speed handler responds with a NYET handshake. This tells the host
controller that the transaction is not yet complete. In this case, the host controller will retry the complete-
split again at some later time.

When the full/low-speed handler finally finishes the full/low-speed transaction, it saves the data/status in the
buffer to be ready for the next host controller complete-split transaction for this endpoint. At that time, the
high-speed handler responds with the indicated data/status as recorded in the buffer. The buffer transaction
status is updated from ready to old so the high-speed handler is ready for either a retry or a new start-split
transaction for this (or some other) full/low-speed endpoint.

If there is an error on the complete-split transaction, the host controller will retry the complete-split
transaction for this bulk/control endpoint “immediately” before proceeding to some other bulk/control split
transaction. The host controller may issue other periodic split-transactions or other high-speed transactions
before doing this complete-split transaction retry.

11.17.4 Bulk/Control Buffering Requirements
The TT must provide at least 2 transactions of non-periodic buffering to allow the hub to deliver maximum
full/low-speed throughput on a downstream bus when the high-speed bus is idle.

As the high-speed bus becomes busier, the throughput possible on downstream full/low-speed buses will
decrease.

A TT may provide more than 2 transactions of non-periodic buffering and this can improve throughput for
downstream buses for specific combinations of device configurations.

11.17.5 Other Bulk/Control Details
When a bulk/control split transaction fails, it can leave the TT buffer in a busy (ready) state. This buffer
state won’t allow the buffer to be reused for other bulk/control split transactions. Therefore as part of
endpoint halt processing for full/low-speed endpoints connected via a TT, the host software must use the
Clear_TT_Buffer request to the TT to ensure that the buffer is not in the busy state.

The Appendix shows examples of packet sequences for full/low-speed bulk/control transactions and their
relationship with start-splits and complete-splits in various normal and error conditions.

11.18 Periodic Split Transaction Pipelining and Buffer Management
Interrupt and isochronous transfers require that the host controller carefully schedule split transactions with
a TT for full/low-speed endpoints connected on a downstream bus. This section describes details of the TT
pipeline that affect both isochronous and interrupt transactions. Then the split-transaction rules for interrupt
and isochronous are described.

Bulk/control transactions are not scheduled with this mechanism. They are handled as described in the
previous section.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 277

11.18.1 Budgeted Full-Speed Wire Time
A microframe of time allows at most 187.5 raw bytes of signaling on a full-speed bus. For full-speed wire
budgeting purposes, this is considered 188 bytes per microframe. However, due to maximum bit stuffing of
7 bits on the wire for 6 transmitted bits (e.g. 16.667% additional bits), 188 bytes of data can take 219.33
bytes of signaling time on a full-speed bus. At most 1157 byte times can be allocated to full/low-speed
isochronous and interrupt endpoints to fit within the limit of 90%, e.g. 12Mb/s has at most 1500 bytes per
1ms frame, with 90% gives 1157 maximum periodic bytes per frame.

Figure 11-29 shows the maximum allocatable byte times in a 1ms frame and how that budgeted allocation
relates to microframes.

Y Y+1 Y+2 Y+3 Y+4 Y+5 Y+6 Y+7

Best case wire budget,
1157 bytes w/ no
bitstuffing

29188 188 188 188 188 188

220 219 219 220 219 219 34

32187.5 187.5 187.5 187.5 187.5 187.5Max wire time

Worst case wire budget,
1350 bytes w/ max
bitstuffing

Microframes

34 bytes

Figure 11-29 Full-speed wire time with budgeted minimum and maximum bit stuffing

The scheduling rules for a TT allow a full/low-speed bulk or control transaction to be “reclaimed”
whenever there are no currently pending start-splits in a microframe. This can cause the end of the periodic
allocation to be delayed some additional time.

A low-speed control transaction can delay the budgeted maximum allocation as shown in Figure 11-30. The
low-speed control transaction takes 161 bytes of time on the bus with maximum bit stuffing and protocol
overhead. The 161 bytes of time are calculated as:

1. 8 bytes of data at low-speed (64 full -peed byte times)

2. 9 bytes of low-speed protocol overhead and 4 bytes of full-speed bus turnaround timing (from
Chapter 5) giving 76 full-speed byte times

3. 2 bytes of low-speed bit stuffing from 1/6 * 8 data bytes and 3 protocol bytes that can be bit stuffed
(16 full-speed byte times)

4. 5 bytes of PRE packets (2 PREs at 2 bytes + 4 bits post-PRE idle each)

A bulk transaction can only be issued on the full/low-speed bus when the full/low-speed bus is otherwise
idle. For the bus to become idle, the start-splits issued that were assumed to take up to 220 byte times worst
case must instead have completed in 187 byte times or less (e.g. better than “best” case). This is
approximately 33 bytes less bus time compared to the previously calculated baseline bitstuffed worst case.
This means that the addition of a “reclaimed” bulk/control transaction results in a delta of 128 (=161 –
(220-187)) bytes compared to the maximally bit stuffed worst case, e.g. this extends the end of the periodic
allocation by 128 byte times.

Universal Serial Bus Specification Revision 2.0 (0.79)

278 USB-IF Member Confidential

128

Y Y+1 Y+2 Y+3 Y+4 Y+5 Y+6 Y+7

29188 188 188 188 188 188

187
Worst case budget
with ctrl reclaim

Microframes

161

Best case budget

Worst case budget 220 219 219 220 219 219 34

219 219 220 219 219 34

162 bytes

Figure 11-30 Low Speed Control Transaction Impact on schedule

This worst case budget includes a low-speed control packet artificially included in the first microframe to
account for delay effects caused by “random” bandwidth reclamation.

11.18.2 TT Microframe Pipeline
The TT implements a microframe pipeline of split transactions in support of a full/low-speed bus. Start-
split transactions are scheduled a microframe before the earliest time that their corresponding full/low-speed
transaction is expected to start. Complete-split transactions are scheduled in microframes that the full/low-
speed transaction can finish.

When a full/low-speed endpoint is attached to the bus and configured, the host schedules some time on the
full/low-speed bus at some budgeted time based on the endpoint requirements of the configured device.

The effects of bit stuffing can delay when the full/low-speed transaction actually runs. The results of other
previous full/low-speed transactions can cause the transaction to run earlier or later on the full/low-speed
bus.

This leads to the host constructing two budgets for how the full/low-speed downstream bus will actually
run: one best case budget assuming minimum bit stuffing and one worst case budget assuming maximum bit
stuffing. The host always uses the maximum data payload size for a full/low-speed endpoint in doing its
budgeting. It doesn’t attempt to schedule the actual data payloads that may be used in specific transactions
to full/low-speed endpoints.

Figure 11-31 shows an example of a new endpoint that is assigned some portion of a full/low-speed bus and
where its start and complete splits are generally scheduled. More precise rules for scheduling are presented
later. The start-split for this example transaction is scheduled in microframe Y-1, the transaction is
budgeted to run in microframe Y and the complete-split is scheduled for microframe Y+1.

Y-1 Y Y+1 Y+2 Y+3 Y+4 Y+5 Y+6 Y+7

Best case budget

Worst case budget

#1: A classic transaction budgeted
to run here on the classic bus,... #3: …has a HS complete-split transaction

scheduled in the latest possible microframe
for this transaction

HS Complete-
split

#2: …has a HS start-split scheduled
in this microframe and ...

HS
Start-split

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 279

Figure 11-31 TT Microframe Pipeline

The host must determine precisely when start- and complete- splits are scheduled to avoid overruns or
underruns in the TT.

11.18.3 Generation of Full-speed Frames
The TT must generate SOFs on the full-speed bus to establish the 1ms frame clock within the defined jitter
tolerances. The TT has its own frame clock that is synchronized to the microframe SOFs on the high-speed
bus. The SOF that reflects a change in the frame number it carries is identified as the zero-th micro-SOF.
That high-speed SOF corresponds to the full-speed SOF on the TT’s downstream facing bus. The TT must
adhere to all timing/jitter requirements of a host controller related to SOF as defined in other parts of this
specification.

The time delay from the occurrence of the high-speed SOF to the generation of the full-speed SOF by the
TT on the downstream facing bus must be less than <<TBD; 16?>> full-speed bit times.

11.18.4 Start-Split Scheduling
When the host schedules start-splits for isochronous IN or interrupt full/low-speed transactions, it
determines the earliest start for the full/low-speed transaction based on the best case schedule. It “overlays”
a microframe “template” on the 1ms frame schedule to determine in which microframe the full/low-speed
transaction can start. Then it schedules a start-split on the high-speed bus one microframe earlier. Figure
11-32 shows some example full/low-speed transactions. The first transaction in the 1ms frame would have
a start-split scheduled in microframe Y-1. Isochronous IN and interrupt IN/OUT split transactions never
require more than a single start-split transaction.

When the host is scheduling an isochronous OUT transaction, if the transaction is shorter than 188 byte
times, it is scheduled as above. If it is longer than 188 byte times, multiple start-splits are scheduled. The
first start-split is scheduled as described above. Another start-split is scheduled for each additional 188 byte
times of budgeted full/low-speed bus time required. The fourth transaction in the figure shows two start-
splits: one for the first 188 byte times of the full/low-speed transaction and the second for the remainder. At
most one start-split for a full/low-speed transaction is scheduled in each microframe. An isochronous OUT
split transaction requires multiple start-split transactions, one for each 188 bytes of data payload.

Y-1 Y Y+1 Y+2 Y+3 Y+4 Y+5 Y+6

Best case budget
Maximum allocation allowed

Start
microframes

Actual Starts

188 bytes

Isoch IN, only
one start

188 bytes
Isoch OUT, 2
starts

Figure 11-32 Start-Split Scheduling

The “pattern” of start-splits that need to be scheduled for a full/low-speed transaction can be computed once
when the endpoint is configured. Then the pattern doesn’t change unless some change occurs to the
collection of currently configured full/low-speed endpoints.

11.18.5 Complete-Split Scheduling
The host schedules complete-split transactions for a full/low-speed transaction to retrieve the results of the
transaction from the TT. Isochronous OUT transactions do not have complete-split transactions, so the host
must not schedule any.

Universal Serial Bus Specification Revision 2.0 (0.79)

280 USB-IF Member Confidential

For interrupt transactions, the host uses the best case and worst case budgets and determines the
microframes in which the full/low-speed transaction can complete. Once the microframe(s) in which the
full/low-speed transaction can finish is determined, the host schedules complete-split(s) on the high-speed
bus in the next microframe(s). Figure 11-33 shows an example of best/worst budgeted full/low-speed
transactions and their corresponding scheduled complete-splits. The first full/low-speed transaction has a
complete-split scheduled for microframe Y+1.

For isochronous IN full-speed transactions, the host also schedules multiple complete-splits when the
transaction is budgeted for multiple microframes according to the best and worst case budgets. A complete-
split transaction is scheduled by the host for each microframe that the transaction can receive data from the
full-speed bus. In the figure according to the worst case budget, the last transaction has its last complete-
split scheduled in microframe Y+8. It also has complete-splits scheduled in microframes Y+7 and Y+6. A
complete-split is also scheduled in microframe Y+5 based on the best case budget.

Y Y+1 Y+2 Y+3 Y+4 Y+5 Y+6 Y+7

Worst case
budget

161 Maximum allocation allowed
161

Isoch OUTs,
no
completions

Completion
microframes

Actual
Completions

Y+8
Best case
budget

Figure 11-33 Complete Split Scheduling

The “pattern” of complete-splits that need to be scheduled for a full/low-speed transaction can be computed
once when each endpoint is configured. Then the pattern doesn’t change unless some change occurs to the
collection of currently configured full/low-speed endpoints attached via a TT.

The approach used for long full-speed isochronous INs and interrupt INs/OUTs ensures that there is always
an opportunity for the TT to return data/results whenever it has something from the full/low-speed
transaction. Then whenever the full/low-speed handler starts the full/low-speed transaction, it simply
accumulates the results in each microframe and then returns it in response to a complete-split from the host.
The TT acts similar to an isochronous device in that it uses the microframe clock to "carve up" the full/low-
speed data to be returned to the host. The TT doesn't do any computation on how much data to return
when. It simply returns whatever data it got from full/low-speed bus in a microframe in response to the
"next" complete-split.

So in this example, the host schedules complete splits for Y+5 through Y+8. The complete-split in Y+5 is
scheduled due to the best case schedule for this transaction (as shown in Figure 11-32). The full-speed
transaction can run no earlier than the beginning of Y+4 (if the previous transactions were shorter than
budgeted). If the full-speed IN started at the very beginning of Y+4, it could generate at most
approximately 188 bytes (minus protocol overhead) of data during that microframe. Whenever the
microframe clock ticks, that amount of data will be returned to the host in response to the complete-split in
microframe Y+5. And so on.

Whenever the TT has data to return in response to a complete-split for an interrupt full/low-speed or
isochronous full-speed transaction, it uses either a DATA0/1 or MDATA PID for the data packet. If it has
completed the full-speed isochronous transaction during the microframe before the complete-split, it uses
the DATAx PID for the data packet of the complete-split transaction to indicate that this is the last data of
the full-speed transaction. A DATA0 PID is always used for isochronous transactions. For interrupt
transactions, a DATA0/1 PID is used corresponding to the full/low-speed data packet PID. If it is still
receiving data on full-speed at the microframe clock, the high-speed handler uses the MDATA PID in the
complete-split transaction to indicate to the host that more data is being received and another complete-split
transaction is required.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 281

After the full-speed transaction finishes, the high-speed handler responds with a DATAx (instead of
MDATA) for that microframe's complete-split (which would likely be in Y+7 or earlier depending on how
much full-speed data was provided by the full-speed device). When the host controller receives the DATAx
PID, it stops issuing any remaining complete-splits that might be scheduled (for example those scheduled in
Y+8 or earlier).

Now, what happens if a full/low-speed transaction isn't run on the full/low-speed bus as soon as possible,
but as late as possible? In this case, it won't start until Y+5 and therefore there can't be any data to return to
the complete split in Y+5. So when the complete-split is sent by the host, the high-speed handler searches
for a corresponding status tracking entry in the complete-split buffer and doesn't find one in the ready or old
state. The state machines and flow sequences show that in this case, the high-speed handler responds with
an NYET. The host controller will issue additional complete-splits in the next microframe(s) until the last
complete-split that was scheduled. The processing from here on is the same as before.

So the schedule is computed to ensure at most one complete-split in those microframes where the TT could
have data for the host. However, the high-speed handler simply returns whatever data it has accumulated
between microframe marks for that full/low-speed endpoint. The host simply advances its data pointer
based on the data it receives from the TT.

11.18.6 TT Transaction Tracking
Figure 11-34 shows the TT microframe pipeline of transactions. The 8 high-speed microframes that
compose a full/low-speed frame are labeled with NOW-7, NOW-6, etc. assuming the microframe “clock”
has occurred at the point in time shown by the arrow (e.g. time “NOW”).

As shown in the figure, a start-split high-speed transaction that the high-speed handler receives in
microframe NOW-7 (e.g. a start-split “B”) can run on the full/low-speed bus during microframe time NOW-
6 or NOW-5 or NOW-4. This variation in starting on the full/low-speed bus is due to bit stuffing and
bulk/control reclamation that can occur on the full/low-speed bus. Once the full/low-speed transaction
finishes, its complete-split transaction (if one is required) will run on the high-speed bus during the
microframe after the latest that the full/low-speed transaction can complete. Only full/low-speed
transactions that are budgeted early in microframe NOW-6 can have their complete-split scheduled in
microframe NOW-5 or NOW-4.

NOW-3 NOW-2 NOW-1 NOWNOW-7 NOW-6 NOW-5 NOW-4

B
A
F’, G’

C
A, B
A

D
B, C
A, B

E
B, C, D
B, C

F
C, D, E
B, C, D

G
D, E, F
C, D, E

None,
E, F, G
D, E, F

A’’
F, G
E, F, G

Start-splits
Classic transaction
Complete-splits

Figure 11-34 Microframe Pipeline

When the microframe clock for NOW occurs, the high-speed handler must mark any start-splits it received
in microframe NOW-1 as “pending” so that they can be processed on the full/low-speed bus as appropriate.
This prevents the full/low-speed transactions from running too early.

Also, the high-speed handler must change any start-split transactions that are still pending from microframe
NOW-4 to “ready/timeout”. If the transaction is in progress on the downstream facing bus, the transaction
must be aborted (in methods as defined in Chapter 8). This ensures that even if the full/low-speed bus has
encountered a babble condition on the bus (or other delay condition), the TT keeps its transaction pipeline
running on time (e.g. transactions don’t run too late). This also ensures that when the last scheduled
complete-split transaction is received by the TT, the full/low-speed transaction has been completed (either
successfully or by being aborted). <<rewrite to describe some microframes require NOW-3 for this case>>

Finally, the high-speed handler must change any complete-split transaction responses in the ready state from
microframe NOW-4 to the free state so that their space can be reused in the next microframe.

Universal Serial Bus Specification Revision 2.0 (0.79)

282 USB-IF Member Confidential

This algorithm is shown in pseudo code in Figure 11-35. This pseudo-code corresponds to the
Advance_pipeline procedure identified previously.

-- Clean up start-split state in case full/low-speed bus fell behind
while start-splits in pending state received by TT before microframe-4 loop

Set to ready/timeout response status
End loop

-- Clean up complete-split pipeline in case no complete-splits were received
While ready/x complete-split transaction states from (previous_microframe) loop

Free response transaction entry
End loop

-- Enable full/low-speed transactions received in previous microframe
While start-split transactions from (previous_microframe) loop

Set to pending status
End loop

Figure 11-35 Advance_Pipeline Pseudocode

The full/low-speed handler creates a complete-split entry whenever a full/low-speed transaction completes.
The full/low-speed handler also creates a “more data” entry for IN transactions when the microframe clock
“ticks”and a full/low-speed transaction is in progress. A complete-split entry for a completed full/low-
speed IN transaction (with no errors) will use a DATAx PID for the split-transaction response data packet.
A complete-split entry for a “more data” entry will use the MDATA PID for the split-transaction response
data packet.

11.18.7 TT Complete-Split Transaction State Searching
A host is required to issue complete-split transactions for a set of full/low-speed endpoints in the same order
as the start-splits were issued for this TT. However, errors on start- or complete-splits can cause the high-
speed handler to receive a complete-split transaction that doesn’t “match” the expected next transaction
according to the TT’s transaction pipeline.

The TT has a pipeline of complete-split transaction state that it is expecting to use to respond to complete-
split transactions. Normally the host will issue the complete-split that the high-speed handler is expecting
next and the complete-split will correspond to the entry at the front of the complete-split pipeline.

However, when errors occur, the complete-split transaction that the high-speed handler receives might not
match the entry at the front of the complete-split pipeline. This can happen for example, when a start-split
is damaged on the high-speed bus and the high-speed handler doesn’t receive it successfully. Or the high-
speed handler might have a match, but the matching entry is located after the state for other expected
complete-splits that the high-speed handler didn’t receive (due to complete-split errors on the high-speed
bus).

The high-speed handler is required to respond to a complete-split transaction with the results of a full/low-
speed transaction that it has completed. This means that the high-speed handler must search to find the
correct state tracking entry among several possible complete-split response entries. This searching takes
time.

The split-transaction protocol is defined to allow the high-speed handler to timeout the first high-speed
complete-split transaction while it is searching for the correct response. This allows the high-speed handler
time to complete its search and respond correctly to the next (retried) complete-split.

The following interrupt and isochronous flow sequence figures show these cases with the transitions labeled
“Search not complete in time” and “No split response found”.

11.19 Approximate TT Buffer Space Required
A transaction translator requires buffer and state tracking space for its periodic and non-periodic portions.

The periodic TT pipeline requires less than:

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 283

• 752 bytes for the start-split stage

• 2x 188 bytes for the complete-split stage

• 16x 4x transaction status (<4 bytes for each transaction) for start-split stage

• 16x 2x transaction status (<4 bytes for each transaction) for complete-split stage

There are at most 4 microframes of buffering required for the start-split stage of the pipeline. At most 2
microframes of buffering for the complete-split stage of the pipeline. There are at most 16 full-speed
(minimum sized) transactions possible in any microframe.

The non-periodic portion of the TT requires at least:

• 2x (64 data + 4 transaction status) bytes

Different implementations may require more or less buffering and state tracking space.

11.20 Interrupt Transaction Translation Overview
The flow sequence and state machine figures show the transitions required for high-speed split transactions
for full/low-speed interrupt transfer types for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, other high-speed or full/low-speed transactions may
be “interleaved” with these transaction sequences. Specific details are described as appropriate.

In contrast to bulk/control processing, the full/low-speed handler must not do local retry processing on the
full/low-speed bus in response to a timeout for full/low-speed interrupt transactions.

11.20.1.1 Interrupt Split Transaction Sequences
The interrupt IN and OUT flow sequence figures use the same notation and have descriptions similar to the
bulk/control figures.

Universal Serial Bus Specification Revision 2.0 (0.79)

284 USB-IF Member Confidential

XOUT

DATA0/1

Go to
comp. split

Start split

timeout

Data errorCRC OK,
Advance for next start

sd1

sh1

se1

st1

se2

OUT

Figure 11-36 Interrupt OUT Start-Split Transaction Sequence

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 285

if err_count < 3
retry immed.
comp. split

XIN

Complete split

Go to next
start split

Timeout

Endpoint
halt

Retry
start split

if err_count < 3
retry start split

old/stall old/ack old/nak old/t.o

STALL ACK NAK

ct1

ch1 ch2 ch3 ch5ch4

ce3

ce1

ERR

Inc err
count

if err_count >= 3
endpoint halt

Inc err
count

ce4 ce5 ce6

ce2

Search responses to find
endpoint

No split response found

Search not complete in time

OUT

NYET

Last Not last
ch6
Next
comp. split

ce7

Figure 11-37 Interrupt OUT Complete-Split Transaction Sequence

Universal Serial Bus Specification Revision 2.0 (0.79)

286 USB-IF Member Confidential

XOUT

Go to
comp. split

Start split

Advance for next start

st1

IN

Figure 11-38 Interrupt IN Start-Split Transaction Sequence

Next
comp. split

Complete split

XIN

Retry
start split

old/nakold/ldata

NAK

timeout

Data
error

ct1

ce1

ch4

Endpoint
halt

STALL

old/stall
ch2cd1 ch1

DATA0/1

if err_count < 3
retry immed.
comp. split

if err_count >= 3
endpoint halt

Inc err count

old/t.o

ch3

ce7 ce8

Data ok,
Datax !=
toggle

Retry
start split

ch8

Go to next
start split

Data ok,
Datax =
toggle

ch7

ce6

ERR

if err_count < 3
retry start split

if err_count >= 3
endpoint halt

Inc err
count

ce9

ce2

ce5

Search responses to find
endpoint

No split response foundSearch not complete in time

IN

ce3

NYET

Last Not last
ch6

MDATA

old/mdata
cd2

Search not complete in time

Data okData
error

Next
comp.
splitce4

ch5

old/badcrc

Figure 11-39 Interrupt IN Complete-Split Transaction Sequence

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 287

11.20.1.2 Interrupt Split Transaction State Machines

XOUT+
OUTDATAx

Advance

NAK

XIN+
OUT

ACK

STALL

Inc error
count

ERR &
Err < 3

Err >= 3

timeout

st1
sd1

sh1

ct1
ch1

ch2

ch3

ce1

Endpoint
halt

ce6
immediate
host retry

Err < 3

ce3
ce4,
ce5ERR

ce2

NYET & last ce7

NYET &
not last

ch6

Figure 11-40 Interrupt OUT Split Transaction Host State Machine

Idle

Timeout
or DATAx
w/ bad CRC

Accept data

XOUT+OUT

Wait for
data

DATAx w/
CRC OK,
status = pending

NYET|NAK|ACK|
STALL|ERR

XIN+OUT,
set ready -> old
not found| old/(nak, ack, stall, t.o.) status

st1

sh1

se2

ch2ch3 ch4ch5 ch1

se1

ch2ch3

ch4ch1

ce1
XIN+OUT,
Response search
not done

Timeoutch5

Figure 11-41 Interrupt OUT Split transaction TT State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

288 USB-IF Member Confidential

XOUT+IN

DATAx =
toggle,
CRC OKInc error

count

STALL

XIN+IN

MDATA+err or
Timeout or
DATAx w/
Bad CRC

NAK

DATAx !=
toggle,
CRC OK

st1

ce1

ch1

ch7

ch8

ce5

Advance

Ignore data

ct1

ch2

Immed.
Err < 3

Err >= 3

Endpoint
haltce7

ce8

Inc error
count

ERRce2

Err < 3
ce6

ce9

Err >= 3
NYET &
lastce7

NYET & not last
ch6

ce4

Partial
Advance

MDATA+
ok

ch5

Figure 11-42 Interrupt IN Split Transaction Host State Machine

Idle

XOUT+IN

Accept xact

DATAx

XIN+IN,
old/last_data status

NAK|STALL

XIN+IN,
old/(nak, stall) status

cd1

st1

ch1

ch2

ch2

XIN+IN,
not found | old/t.o. status

ERR|NYET

ch3ch4

ce1
XIN+IN, Response
search not done

Timeout

ch1

ch3 ch4

MDATA
XIN+IN,
old/more_data status

cd2

Figure 11-43 Interrupt IN Split Transaction TT State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 289

11.20.2 Interrupt OUT Sequencing
Interrupt OUT split transactions are scheduled by the host controller as normal high-speed transactions with
the start- and complete- splits scheduled as described previously.

When there are several full/low-speed transactions allocated for a given microframe, they are saved by the
high-speed handler in order in the start-split pipeline stage until the end of the microframe. At the end of
the microframe, these transactions are ready to be issued by the full/low-speed handler on the full/low-speed
bus in the order they were received.

In a following microframe (as described previously), the full/low-speed handler issues the transactions, that
had been saved in the start-split pipeline stage, on the downstream facing full/low-speed bus. Some
transactions could be leftover from an older microframe since the high-speed schedule was built assuming
best case bit stuffing and the full/low-speed transactions could be operating according to the worst case
budget. As the full/low-speed handler issues downstream transactions, it saves the results in the periodic
complete-split pipeline stage and advances to the next transaction in the start-split pipeline.

In a following microframe (as described previously), the host controller issues its high-speed complete-split
transaction. If the transaction status in the complete-split pipeline indicates that this endpoint has a
completed status, the high-speed handler responds with the indicated status.

If the full/low-speed bus is running according to the worst case budget, the high-speed handler can receive
the complete-split before the full-speed handler has started the transaction on the downstream facing bus. In
this case, the high-speed handler responds with a NYET handshake to indicate that there is no information
ready yet for this complete-split.

If the high-speed handler receives the complete-split and it has no status matching for the endpoint indicated
by the complete split, it also responds with a NYET handshake. When the host issues the last scheduled
complete-split for this endpoint for this frame, it must interpret the NYET as an error condition. This
stimulates the normal “three strikes” error handling. If there have been more than three errors, the host halts
this endpoint. If there have been less than three errors, the host continues processing the scheduled
transactions of this endpoint (e.g. a start-split will be issued as the next transaction for this endpoint at the
next scheduled time for this endpoint).

The start-split transaction for an interrupt OUT transaction must not include the CRC16 field for the full
speed data packet, e.g. there is only a single CRC16 field in the start-split transaction. The TT high-speed
handler must check the CRC on the start-split and ignore the start-split if there is a failure in the CRC check.
The TT full-speed handler must locally generate the CRC16 value for the full-speed data packet. If the first
start-split has a CRC check failure, the full-speed transaction must not be started on the downstream bus.

<<figures for above>>

<<<words about other and error cases??>>>

11.20.3 Interrupt IN Sequencing
When the high-speed handler receives an interrupt start-split transaction, it saves the packet in the start-split
pipeline stage. In this fashion, it accumulates some number of start-split transactions for a following
microframe.

At the beginning of a following microframe (as described previously), these transactions are ready to be
issued by the full/low-speed handler on the downstream full/low-speed bus in the order they were received.
The full/low-speed handler saves the results in the complete-split pipeline stage. The full/low-speed handler
responds to the full/low-speed transaction with an appropriate handshake.

During a following microframe, the host controller issues a high-speed complete-split transaction to retrieve
the data/handshake from the high-speed handler. The host may schedule one or two complete-split
transactions based on the best/worst schedules. The TT will return whatever data it has received during a
microframe. If the full/low-speed transaction spans a microframe, the TT will require two complete-splits

Universal Serial Bus Specification Revision 2.0 (0.79)

290 USB-IF Member Confidential

(in two subsequent microframes) to return all the data for the full/low-speed transaction. The operation of
the TT for interrupt IN is similar to isochronous IN (as described above).

The high-speed handler matches the complete-split transaction with the correct entry in the complete-split
pipeline stage and advances the pipeline appropriately. If the token and response match, the high-speed
handler responds with data/status. If the complete-split transaction is for the next entry in the complete-split
pipeline, the high-speed handler advances the complete-split pipeline (e.g. frees the current response
information). The host controller is required to issue the complete-split transactions in the same order as
the original start-split transactions.

If the complete-split matches the current entry in the complete-split pipeline, the high-speed handler
responds with that information. This is the case when the host controller didn’t get the first response to the
complete-split and retries the complete-split transaction. In such a case, the host controller is required to
retry immediately before proceeding to the next periodic split transaction for this endpoint.

If the first entry doesn’t match, the high-speed handler also needs to check if the complete-transaction
matches the other entries in the complete-split pipeline. This approach handles the case where the host
controller was unsuccessful in issuing a complete-split transaction to the high-speed handler and has done
endpoint halt processing for that previous endpoint. This leaves a “stale” entry in the complete-split
pipeline.

The high-speed handler can also receive a complete-split before it has started a full/low-speed transaction.
If there is not an entry in the complete-split pipeline, the high-speed handler responds with a NYET
handshake to inform the host that it has no status information. When the host issues the last scheduled
complete-split for this endpoint for this frame, it must interpret the NYET as an error condition. This
stimulates the normal “three strikes” error handling. If there have been more than three errors, the host halts
this endpoint. If there have been less than three errors, the host continues processing the scheduled
transactions of this endpoint (e.g. a start-split will be issued as the next transaction for this endpoint at the
next scheduled time for this endpoint).

The high-speed handler can timeout its first high-speed complete-split transaction while it is searching for a
match. However, the high-speed handler must respond correctly to the subsequent complete-split
transaction. If the high-speed handler didn’t respond correctly for an interrupt IN after it had acknowledged
the full/low-speed transaction, the endpoint software and the device would lose data synchronization and
more catastrophic errors could occur.

The complete-split transaction for an interrupt IN transaction must not include the CRC16 field for the full
speed data packet (e.g. only a high-speed CRC16 field is used in split-transactions). The TT must not pass
the full-speed value received from the device and instead only use a high-speed CRC16 on the last
complete-split transaction. If the full-speed handler detects a failed CRC check, it uses an ERR handshake
response to reflect that error to the high-speed host controller. The host controller must check the CRC16
on each returned complete-split. A CRC failure (or ERR handshake) on any (partial) complete-split is
reflected as a CRC failure on the total full-speed transaction.

<<figures for above>>

<<describe more error cases?>>

11.21 Isochronous Transaction Translation Overview
Isochronous split transactions are handled by the host by scheduling start- and complete-split transactions as
described previously. Split IN transactions have two or more schedule entries. One entry for the start-split
transaction in the microframe before the earliest the full-speed transaction can occur. One entry for the last
complete-split in the microframe after the latest expected data that can occur on the full-speed bus (similar
to interrupt IN scheduling).

Furthermore, isochronous transactions are split into microframe sized pieces, e.g. a 300 byte full-speed
transaction is budgeted up to 3 high-speed split transactions to move data to/from the TT. This allows any
alignment of the data on microframes.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 291

Isochronous OUT transactions don’t have complete-split transactions. They must only have start-split
transaction(s).

The host controller must preserve the same order for the complete-split transactions (as for the start-split
transactions) for IN handling.

Isochronous INs have start- and complete- split transactions. The “first” high-speed split transaction for a
full-speed endpoint is always a start-split transaction and the second (and others as required) is always a
complete-split no matter what the high-speed handler responds.

The full/low-speed handler recombines OUT data in its local buffers to recreate the single full-speed data
transaction and handle the microframe error cases. The full/low-speed handler splits IN response data on
microframe boundaries.

Microframe buffers always advance no matter what the interactions with the host controller or the full-speed
handler.

11.21.1 Isochronous Split Transaction Sequences
The flow sequence and state machine figures show the transitions required for high-speed split transactions
for full-speed isochronous transfer types for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, other high-speed or full-speed transactions may be
“interleaved” with these transaction sequences. Specific details are described as appropriate.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full-
speed bus in response to a timeout for isochronous transactions.

Universal Serial Bus Specification Revision 2.0 (0.79)

292 USB-IF Member Confidential

XOUT-all

DATA0

Go to next
(partial) start

Start split

timeout

st2

sd1 se1

CRC OK,
Advance for next start

XOUT-begin XOUT-mid XOUT-end

st1 st3 st4

If all of
payload

If beginning
of payload

If middle
of payload

If last
of payload

bad CRC,
Advance for next start

se2sh1

OUT

Figure 11-44 Isochronous OUT Start-Split Transaction Sequence

XOUT

Go to
complete split

Start split

st1

Advance for next start

IN

Figure 11-45 Isochronous IN Start-Split Transaction Sequence

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 293

In Figure 11-46, the high-speed handler returns an ERR handshake for a “transaction timeout” or CRC
check error for the full-speed transaction.

The high-speed handler returns a NYET handshake when it can’t find a matching entry in the complete-split
pipeline stage. This handles the case where the host controller issued the first high-speed complete-split
transaction, but the full/low-speed handler had not started the transaction yet or has not yet received data
back from the full-speed device. This can be due to a delay from bit stuffing for previous full-speed
transactions.

The transition labeled “TAdvance" indicates that the host advances to the next transaction for this full-speed
endpoint.

The transition labeled “DAdvance" indicates that the host advances to the next data area of the current
transaction for the current full-speed endpoint.

ce3

if err_count < 3
retry immed.
comp. split

XIN

Complete split

old/more
timeout

Go to next
comp. split

Data ok

ERR

ct1

ce1 cd2

Record error

MDATADATA0

old/last
cd1

ch2

old/badcrc

DAdvance

old/t.o

TAdvance

Data
ok

Data
error

ch1

ce5

Search responses to find
endpoint

No split response found
Search not complete in time

cd3

if err_count >= 3

Inc err
count

ce4

Go to next
start split

IN

ce6

NYET

Last Not last

ch3

last

Not last

ce8

ch4

ce7

Figure 11-46 Isochronous IN Complete-Split Transaction Sequence

Universal Serial Bus Specification Revision 2.0 (0.79)

294 USB-IF Member Confidential

11.21.2 Isochronous Split Transaction State Machines

XOUT-x

DATAx

Advance

st1

sd1

Figure 11-47 Isochronous OUT Split Transaction Host State Machine

Idle

Timeout
or DATAx w/ bad CRC

DATAx w/
CRC OK

Accept
data

XOUT-all

Wait for
data

st1

se1

XOUT-begin

se2

XOUT-middle

XOUT-end

Wait for
first data

Wait for
last data

Wait for
more data

XOUT-middle,
XOUT-end

Record
error for

classicAccept
data

Accept
data

Accept
data

DATAx w/
CRC OK

DATAx w/
CRC OK

DATAx w/
CRC OK

XOUT-end

st2

st3

st4

sh1

sh1

sh1

sh1
st3

st4

XOUT-middle
st3 XOUT-all,

XOUT-begin
st1

st2XOUT-all,
XOUT-begin

st1
st2

st4

Figure 11-48 Isochronous OUT Split Transaction TT State Machine

<<more words…>>

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 295

XOUT+
IN

OK
MDATA

DAdvance

XIN+IN

DATAx w/ Bad CRC
or ERR
or NYET+last

st1

ct1

ce3ce5

ce6
ce1

TAdvance

OK DATA0
ch1

ch2Record
error

last XIN

Timeout

Inc error
countErr < 3

Err >= 3 ce4

Record
error

ce8

NYET+
not last

ch3

ce7

Figure 11-49 Isochronous IN Split Transaction Host State Machine

In Figure 11-49, the transition “No more scheduled XINs” should occur when the high-speed handler
responds with a DATA0 to indicate this is the last complete-split data for the full-speed transaction. If a
DATA0 response from the high-speed handler is not received, this indicates an error and must be so
recorded by the host controller. <<Add to flow sequence?>>

Idle

XOUT+IN

Accept xact

DATA0

XIN+IN, status
old/last_data

XIN+IN, status
badcrc or
old/t.oce3

cd1

ce2 st1

ERR

MDATA

cd2
XIN+IN, status
old/more_data

ce7

XIN+IN, Response
search not done

Timeout

NYET

cd3

XIN+IN,
status
not found

Figure 11-50 Isochronous IN Split Transaction TT State Machine

Universal Serial Bus Specification Revision 2.0 (0.79)

296 USB-IF Member Confidential

<<<more words>>>

11.21.3 Isochronous OUT Sequencing
The host controller and TT must ensure that errors that can occur in split transactions of an isochronous
full-speed transaction translate into a detectable error. For isochronous OUT split transactions, once the
high-speed handler has received an “XOUT-begin”extended token packet, the high-speed handler must
ensure that a start-split transaction is received each and every microframe until the end of the full-speed data
payload. The host indicates the end of the long isochronous OUT split transaction sequence by sending an
XOUT-end extended token packet. If a microframe passes without the high-speed handler receiving a start-
split for this full-speed endpoint, it must ensure that the full-speed handler will force a CRC/bitstuff error on
the full-speed transaction.

The start-split transaction for an isochronous OUT transaction must not include the CRC16 field for the full
speed data packet. The TT high-speed handler must check the CRC on the start-split and indicate to the
full-speed handler if there is a failure in the CRC check. Additional start-split transactions for the same
endpoint in the same frame must be ignored after a CRC check fails. The TT full-speed handler must
locally generate the CRC16 value for the full-speed data packet. If the transaction has been indicated as
having a CRC failure, the full-speed handler uses the defined mechanism for forcing a downstream
corrupted packet. If the first start-split has a CRC check failure, the full-speed transaction must not be
started on the downstream bus.

<<figures for above>>

<<words>>

11.21.4 Isochronous IN Sequencing
The complete-split transaction for an isochronous IN transaction must not include the CRC16 field for the
full speed data packet (e.g. only a high-speed CRC16 field is used in split-transactions). The TT must not
pass the full-speed value received from the device and instead only use a high-speed CRC16 on the last
complete-split transaction. If the full-speed handler detects a failed CRC check, it uses an ERR handshake
response to reflect that error to the high-speed host controller. The host controller must check the CRC16
on each returned complete-split. A CRC failure (or ERR handshake) on any (partial) complete-split is
reflected by the host controller as a CRC failure on the total full-speed transaction.

<<figures for above>>

<<words>>

11.22 TT Error Handling
The TT has the same requirements for handling errors as a host controller or hub. In particular:

• If the TT is receiving a packet at EOF of the downstream facing bus, it must disable the downstream
facing port that is currently transmitting.

• If the TT is transmitting a packet at EOF of the downstream facing bus, it must force a CRC/bitstuff
error and stop transmitting.

• If the TT is going to transmit a non-periodic full/low-speed transaction, it must determine that there is
sufficient time remaining before EOF to complete the transaction. This determination is based on
normal sequencing of the packets in the transaction. Since the TT has no information about data
payload size for INs, it must use the maximum allowed size in its determination. Periodic transactions
don’t’ need to be included in this test since the periodic pipeline is maintained separately.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 297

11.23 Descriptors
Hub descriptors are derived from the general USB device framework. Hub descriptors define a hub device
and the ports on that hub. The host accesses hub descriptors through the hub’s default pipe.

The USB specification (refer to Chapter 9) defines the following descriptors:

• Device

• Configuration

• Interface

• Endpoint

• String (optional).

The hub class defines additional descriptors (refer to Section 11.23.2). In addition, vendor-specific
descriptors are allowed in the USB device framework. Hubs support standard USB device commands as
defined in Chapter 9.

11.23.1 Standard Descriptors
The hub class pre-defines certain fields in standard USB descriptors. Other fields are either
implementation-dependent or not applicable to this class.

Note: for the descriptors and fields shown below, the bits in a field are organized in a little-endian fashion;
that is, bit location 0 is the least significant bit and bit location 7 is the most significant bit of a byte value.

Device Descriptor

bDeviceClass = HUB_CLASSCODE (09H)

bDeviceSubClass = 0

Interface Descriptor

bNumEndpoints = 1

bInterfaceClass = HUB_CLASSCODE (09H)

 bInterfaceSubClass = 0

 bInterfaceProtocol = 0

Configuration Descriptor

MaxPower = The maximum amount of bus power the hub will consume in this
configuration

Endpoint Descriptor (for Status Change Endpoint)

bEndpointAddress = Implementation-dependent; Bit 7: Direction = In(1)

wMaxPacketSize = Implementation-dependent

bmAttributes = Transfer Type = Interrupt (00000111B)

bInterval = FFH (Maximum allowable interval)

The hub class driver retrieves a device configuration from the USB System Software using the
GetDescriptor() device request. The only endpoint descriptor that is returned by the GetDescriptor()
request is the Status Change endpoint descriptor.

Universal Serial Bus Specification Revision 2.0 (0.79)

298 USB-IF Member Confidential

11.23.2 Class-specific Descriptors

11.23.2.1 Hub Descriptor
Table 11-8 outlines the various fields contained by the hub descriptor.

Table 11-8. Hub Descriptor

Offset Field Size Description

0 bDescLength 1 Number of bytes in this descriptor, including this byte

1 bDescriptorType 1 Descriptor Type, value: 29H for hub descriptor

2 bNbrPorts 1 Number of downstream ports that this hub supports

3 wHubCharacteristics D1...D0: Logical Power Switching Mode
 00: Ganged power switching (all ports’ power at
 once)
 01: Individual port power switching
 1X: Reserved. Used only on 1.0 compliant hubs

 that implement no power switching.

D2: Identifies a Compound Device
 0: Hub is not part of a compound device
 1: Hub is part of a compound device

D4...D3: Over-current Protection Mode
 00: Global Over-current Protection. The hub

 reports over-current as a summation of all
 ports’ current draw, without a breakdown of
 individual port over-current status.

 01: Individual Port Over-current Protection. The
 hub reports over-current on a per-port basis.
 Each port has an over-current indicator.

 1X: No Over-current Protection. This option is
 allowed only for bus-powered hubs that do not
 implement over-current protection.

D15...D5: Reserved

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 299

Offset Field Size Description

3 wHubCharacteristics D1...D0: Logical Power Switching Mode
 00: Ganged power switching (all ports’ power at
 once)
 01: Individual port power switching
 1X: Reserved. Used only on 1.0 compliant hubs

 that implement no power switching.

D2: Identifies a Compound Device
 0: Hub is not part of a compound device
 1: Hub is part of a compound device

D4...D3: Over-current Protection Mode
 00: Global Over-current Protection. The hub

 reports over-current as a summation of all
 ports’ current draw, without a breakdown of
 individual port over-current status.

 01: Individual Port Over-current Protection. The
 hub reports over-current on a per-port basis.
 Each port has an over-current indicator.

 1X: No Over-current Protection. This option is
 allowed only for bus-powered hubs that do not
 implement over-current protection.

D5: Transaction Translator(TT) Organization
 0: Hub has one TT for all downstream facing

ports
 1: Hub has one TT per downstream facing port

D7...D6: TT Think TIme
00: TT requires at most 8 FS bit times of inter

transaction gap on a full/low-speed
downstream bus

 01: TT requires at most 16 FS bit times
 10: TT requires at most 24 FS bit times
 11: TT requires at most 32 FS bit times

D15...D8: Reserved

5 bPwrOn2PwrGood 1 Time (in 2ms intervals) from the time the power-on
sequence begins on a port until power is good on that
port. The USB System Software uses this value to
determine how long to wait before accessing a
powered-on port.

6 bHubContrCurrent 1 Maximum current requirements of the Hub Controller
electronics in mA.

Universal Serial Bus Specification Revision 2.0 (0.79)

300 USB-IF Member Confidential

Table 11-8. Hub Descriptor (Continued)

Offset Field Size Description

7 DeviceRemovable Variable,
depending

on
number of
ports on

hub

Indicates if a port has a removable device attached.
This field is reported on byte-granularity. Within a
byte, if no port exists for a given location, the field
representing the port characteristics returns 0.

Bit value definition:
0B - Device is removable
1B - Device is non-removable

This is a bitmap corresponding to the individual ports
on the hub:

Bit 0: Reserved for future use
Bit 1: Port 1
Bit 2: Port 2
....
Bit n: Port n (implementation-dependent, up to a

 maximum of 255 ports).

Variable PortPwrCtrlMask Variable,
depending

on
number of
ports on

hub

This field exists for reasons of compatibility with
software written for 1.0 compliant devices. All bits in
this field should be set to 1B. This field has one bit for
each port on the hub with additional pad bits, if
necessary, to make the number of bits in the field an
integer multiple of 8.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 301

11.24 Requests

11.24.1 Standard Requests
Hubs have tighter constraints on request processing timing than specified in Section 9.2.6 for standard
devices because they are crucial to the 'time to availability' of all devices attached to USB. The worst case
request timing requirements are listed below (apply to both Standard and Hub Class requests):.

1. Completion time for requests with no data stage: 50 ms

2. Completion times for standard requests with data stage(s)
Time from setup packet to first data stage: 50 ms
Time between each subsequent data stage: 50 ms
Time between last data stage and status stage: 50 ms

 As hubs play such a crucial role in bus enumeration, it is recommended that hubs average response times
be less than 5ms for all requests.

Table 11-9 outlines the various standard device requests.

Table 11-9. Hub Responses to Standard Device Requests

bRequest Hub Response

CLEAR_FEATURE Standard

GET_CONFIGURATION Standard

GET_DESCRIPTOR Standard

GET_INTERFACE Undefined. Hubs are allowed to support only one interface

GET_STATUS Standard

SET_ADDRESS Standard

SET_CONFIGURATION Standard

SET_DESCRIPTOR Optional

SET_FEATURE Standard

SET_INTERFACE Undefined. Hubs are allowed to support only one interface

SYNCH_FRAME Undefined. Hubs are not allowed to have isochronous
endpoints

Optional requests that are not implemented shall return a STALL in the Data stage or Status stage of the
request.

Universal Serial Bus Specification Revision 2.0 (0.79)

302 USB-IF Member Confidential

11.24.2 Class-specific Requests
The hub class defines requests to which hubs respond, as outlined in Table 11-10. Table 11-11 defines the
hub class request codes. All requests in the table below except for GetBusState() and SetHubDescriptor()
are mandatory.

Table 11-10. Hub Class Requests

Request bmRequestType bRequest wValue wIndex wLength Data

ClearHubFeature 00100000B CLEAR_ FEATURE Feature
Selector

Zero Zero None

ClearPortFeature 00100011B CLEAR_ FEATURE Feature
Selector

Port Zero None

ClearTTBuffer 00100011B CLEAR_TT_BUFFER Dev_Addr,
EP_Num

TT_id Zero None

GetBusState 10100011B GET_ STATE Zero Port One Per-Port
Bus State

GetHubDescriptor 10100000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Language

ID

Descriptor
Length

Descriptor

GetHubStatus 10100000B GET_ STATUS Zero Zero Four Hub
Status

and
Change

Indicators

GetPortStatus 10100011B GET_ STATUS Zero Port Four Port
Status

and
Change

Indicators

SetHubDescriptor 00100000B SET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Language

ID

Descriptor
Length

Descriptor

SetHubFeature 00100000B SET_ FEATURE Feature
Selector

Zero Zero None

SetPortFeature 00100011B SET_ FEATURE Feature
Selector

Port Zero None

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 303

Table 11-11. Hub Class Request Codes

bRequest Value

GET_ STATUS 0

CLEAR_ FEATURE 1

GET_STATE 2

SET_ FEATURE 3

Reserved for future use 4-5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

Table 11-12 gives the valid feature selectors for the hub class. See Section 11.24.2.6 and Section 11.24.2.7 for
a description of the features.

Table 11-12. Hub Class Feature Selectors

Recipient Value

C_HUB_LOCAL_POWER Hub 0

C_HUB_OVER_CURRENT Hub 1

PORT_CONNECTION Port 0

PORT_ENABLE Port 1

PORT_SUSPEND Port 2

PORT_OVER_CURRENT Port 3

PORT_RESET Port 4

PORT_POWER Port 8

PORT_LOW_SPEED Port 9

C_PORT_CONNECTION Port 16

C_PORT_ENABLE Port 17

C_PORT_SUSPEND Port 18

C_PORT_OVER_CURRENT Port 19

C_PORT_RESET Port 20

PORT_TEST Port 21

Universal Serial Bus Specification Revision 2.0 (0.79)

304 USB-IF Member Confidential

11.24.2.1 Clear Hub Feature
This request resets a value reported in the hub status.

bmRequestType bRequest wValue wIndex wLength Data

00100000B CLEAR_ FEATURE Feature
Selector

Zero Zero None

Clearing a feature disables that feature; refer to Table 11-12 for the feature selector definitions that apply to
the hub as a recipient. If the feature selector is associated with a change indicator, clearing that indicator
acknowledges the change. This request format is used to clear either the C_HUB_LOCAL_POWER or
C_HUB_OVER_CURRENT features.

It is a Request Error if wValue is not a feature selector listed in Table 11-12 or if wIndex or wLength are not
as specified above.

If the hub is not configured, the hub's response to this request is undefined.

11.24.2.2 Clear Port Feature
This request resets a value reported in the port status.

bmRequestType Brequest wValue wIndex wLength Data

00100011B CLEAR_ FEATURE Feature
Selector

Port Zero None

The port number must be a valid port number for that hub, greater than zero.

Clearing a feature disables that feature or starts a process associated with the feature; refer to Table 11-12
for the feature selector definitions. If the feature selector is associated with a change indicator, clearing that
indicator acknowledges the change. This request format is used to clear the following features:

• PORT_ENABLE

• PORT_SUSPEND

• PORT_POWER

• PORT_TEST

• C_PORT_CONNECTION

• C_PORT_RESET

• C_PORT_ENABLE

• C_PORT_SUSPEND

• C_PORT_OVER_CURRENT.

Clearing the PORT_SUSPEND feature causes a host-initiated resume on the specified port. If the port is
not in the Suspended state, the hub should treat this request as a functional no-operation.

Clearing the PORT_ENABLE feature causes the port to beplaced in the Disabled state. If the port is in the
Powered-off state, the hub should treat this request as a functional no-operation.

Clearing the PORT_POWER feature causes the port to be placed in the Powered-off state and may, subject
to the constraints due to the hub’s method of power switching, result in power being removed from the port.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 305

Refer to Section 11.11 on rules for how this request is used with ports that are gang-powered.

Clearing the PORT_TEST port feature causes the port to be placed in the Disabled state. If the port is not in
the test mode, the hub should treat this request as a functional no-operation.

It is a Request Error if wValue is not a feature selector listed in Table 11-12, if wIndex specifies a port that
doesn't exist, or if wLength is not as specified above. It is not an error for this request to try to clear a
feature that is already cleared (hub should treat as a function no-operation).

If the hub is not configured, the hub's response to this request is undefined.

11.24.2.3 Clear TT Buffer
This request clears the state of a Transaction Translator(TT) bulk/control buffer after it has been left in a
busy state due to high-speed errors. After successful completion of this request, the buffer can again be
used by the TT with high-speed split-transactions for full/low- speed transactions to attached full/low-speed
devices.

bmRequestType bRequest wValue wIndex wLength Data

00100011B CLEAR_TT_BUFFER Device_Address,
Endpoint_Number

TT_id Zero None

If the hub provides TTs per port, then wIndex must specify the number of the TT that encountered the high-
speed errors (e.g. with the busy TT buffer). If the hub provides only a single TT, then wIndex must be set
to zero.

The device_address and endpoint_number of the full/low-speed endpoint that may have a busy TT buffer
must be specified in the wValue field. The specific bit fields used are shown in Table 11-13.

Table 11-13. wIndex Field for Clear_TT_Buffer

Bits Field

3..0 Endpoint Number

10..4 Device Address

14..11 Reserved, must be zero

15 Direction, 1 = IN, 0 =
OUT.

11.24.2.4 Get Bus State
This is an optional per-port diagnostic request that returns the bus state value, as sampled at the last EOF2
point.

bmRequestType bRequest wValue wIndex wLength Data

10100011B GET_ STATE Zero Port One Per-Port Bus
State

The port number must be a valid port number for that hub, greater than zero. If an invalid port number is
specified or if wValue or wLength are not as specified above, then the hub shall return a STALL in the Data
stage of the request (aborting the Status stage).

Universal Serial Bus Specification Revision 2.0 (0.79)

306 USB-IF Member Confidential

Hubs may implement an optional diagnostic aid to facilitate system debug. Hubs implement this aid
through this optional request. This diagnostic feature provides a glimpse of the USB bus state as sampled at
the last EOF2 sample point.

Hubs that implement this diagnostic feature should store the bus state at each EOF2 state in preparation for
a potential request in the following USB frame.

The data returned is bitmapped in the following manner:

Bit 0: The value of the D- signal

Bit 1: The value of the D+ signal

Bits 2-7: Reserved for future use and are reset to zero.

The hub must be able to return the bus state in the Data stage transaction within the frame in which the
request was received. If the hub does not receive ACK for the data packet, the device is not required to
return the same data packet if the host continues with the Data stage. Rather, the hub will always return the
bus state at the immediately prior EOF2 sample point along with the DATA0 PID.

Hubs that do not implement this request shall return a STALL in the Data stage of the request (aborting the
Status stage).

If the hub is not configured, the hub's response to this request is undefined.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 307

11.24.2.5 Get Hub Descriptor
This request returns the hub descriptor.

bmRequestType bRequest wValue wIndex wLength Data

10100000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero Descriptor
Length

Descriptor

The GetDescriptor() request for the hub class descriptor follows the same usage model as that of the
standard GetDescriptor() request (refer to Chapter 9). The standard hub descriptor is denoted by using the
value bDescriptorType defined in Section 11.23.2.1. All hubs are required to implement one hub
descriptor, with descriptor index zero.

If wLength is larger than the actual length of the descriptor, then only the actual length is returned. If
wLength is less than the actual length of the descriptor, then only the first wLength bytes of the descriptor
are returned; this is not considered an error even if wLength is zero.

It is a Request Error if wValue or wIndex are other than as specified above.

If the hub is not configured, the hub's response to this request is undefined.

11.24.2.6 Get Hub Status
This request returns the current hub status and the states that have changed since the previous
acknowledgment.

bmRequestType bRequest wValue wIndex wLength Data

10100000B GET_ STATUS Zero Zero Four Hub Status
and Change
Indicators

The first word of data contains wHubStatus (refer to Table 11-14). The second word of data contains
wHubChange (refer to Table 11-15).

It is a Request Error if wValue, wIndex, or wLength are other than as specified above.

If the hub is not configured, the hub's response to this request is undefined.

Universal Serial Bus Specification Revision 2.0 (0.79)

308 USB-IF Member Confidential

Table 11-14. Hub Status Field, wHubStatus

Bit Description

0 Local Power Source: This is the source of the local power supply.

This field indicates whether hub power (for other than the SIE) is being provided by an external source or
from the USB. . This field allows the USB System Software to determine the amount of power available from
a hub to downstream devices.

0 = Local power supply good
1 = Local power supply lost (inactive)

1 Over-current Indicator:

If the hub supports over-current reporting on a hub basis, this field indicates that the sum of all the ports’
current has exceeded the specified maximum and all ports have been places in the Powered-off state. If the
hub reports over-current on a per-port basis or has no over-current detection capabilities, this field is always
zero. For more details on over-current protection, see Section 7.2.1.2.1.

0 = No over-current condition currently exists
1 = A hub over-current condition exists

2-15 Reserved
These bits return 0 when read.

There are no defined feature selector values for these status bits and they can neither be set nor cleared by
the USB System Software.

Table 11-15. Hub Change Field, wHubChange

Bit Description

0 Local Power Status Change: (C_HUB_LOCAL_POWER) This field indicates that a change has
occurred in the hub’s Local Power Source field in wHubStatus.

This field is initialized to zero when the hub receives a bus reset.
0 = No change has occurred to Local Power Status
1 = Local Power Status has changed

1 Over-Current Indicator Change: (C_HUB_OVER_CURRENT) This field indicates if a change has
occurred in the Over-Current field in wHubStatus.

This field is initialized to zero when the hub receives a bus reset.
0 = No change has occurred to the Over-Current Indicator
1 = Over-Current Indicator has changed

2-15 Reserved
These bits return 0 when read.

Hubs may allow setting of these change bits with SetHubFeature() requests in order to support diagnostics.
If the hub does not support setting of these bits, it should either treat the SetHubFeature() request as a
Request Error or as a functional no-operation. When set, these bits may be cleared by a ClearHubFeature()
request. A request to set a feature that is already set or to clear a feature that is already clear has no effect
and the hub will not fail the request.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 309

11.24.2.7 Get Port Status
This request returns the current port status and the current value of the port status change bits.

bmRequestType BRequest wValue wIndex wLength Data

10100011B GET_STATUS Zero Port Four Port Status
and Change
Indicators

The port number must be a valid port number for that hub, greater than zero.

The first word of data contains wPortStatus (refer to Table 11-16). The second word of data contains
wPortChange (refer to Table 11-15).

The bit locations in the wPortStatus and wPortChange fields correspond in a one-to-one fashion where
applicable.

It is a Request Error if wValue or wLength are other than as specified above or if wIndex specifies a port
that does not exist.

If the hub is not configured, the behavior of the hub in response to this request is undefined.

Universal Serial Bus Specification Revision 2.0 (0.79)

310 USB-IF Member Confidential

11.24.2.7.1 Port Status Bits

Table 11-16. Port Status Field, wPortStatus

Bit Description
0 Current Connect Status: (PORT_CONNECTION) This field reflects whether or not a device is currently

connected to this port.
0 = No device is present
1 = A device is present on this port

1 Port Enabled/Disabled: (PORT_ENABLE) Ports can be enabled by the USB System Software only. Ports
can be disabled by either a fault condition (disconnect event or other fault condition) or by the USB System
Software.

0 = Port is disabled
1 = Port is enabled

2 Suspend: (PORT_SUSPEND) This field indicates whether or not the device on this port is suspended.
Setting this field causes the device to suspend by not propagating bus traffic downstreamThis field my be reset
by a request or by resume signaling from the device attached to the port.

0 = Not suspended
1 = Suspended or resuming

3 Over-current Indicator: (PORT_OVER_CURRENT)

If the hub reports over-current conditions on a per-port basis, this field will indicate that that the current drain on
the port exceeds the specified maximum.For more details, see Section 7.2.1.2.1.

0 = All no over-current condition exists on this port
1 = An over-current condition exists on this port.

4 Reset: (PORT_RESET) This field is set when the host wishes to reset the attached device. It remains set
until the reset signaling is turned off by the hub.

0 = Reset signaling not asserted
1 = Reset signaling asserted

5-7 Reserved
These bits return 0 when read.

8 Port Power: (PORT_POWER) This field reflects a port’s logical, power control state. Because hubs can
implement different methods of port power switching, this field may or may not represent whether power is
applied to the port. The device descriptor reports the type of power switching implemented by the hub.

0 = This port is in the Powered-off state
1 = This port is not in the Powered-off state

9 Low Speed Device Attached: (PORT_LOW_SPEED) This is relevant only if a device is attached.
 0 = Full-speed device attached to this port

1 = Low-speed device attached to this port
9 Low Speed Device Attached: (PORT_LOW_SPEED) This is relevant only if a device is attached.

 0 = Full-speed or High-speed device attached to this port (determined by bit 10)
1 = Low-speed device attached to this port

10-15 Reserved
These bits return 0 when read.

10 High Speed Device Attached: (PORT_HIGH_SPEED) This is relevant only if a device is attached.
 0 = Full-speed device attached to this port

1 = High-speed device attached to this port
11 Port Test Mode : (PORT_TEST) This field reflects the status of the port's test mode. Software uses the

SetPortFeature() and ClearPortFeature() requests to manipulate the port test mode.
 0B = This port is not in the Port Test Mode

1B = This port is in Port Test Mode.
12-15 Reserved

These bits return 0 when read.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 311

11.24.2.7.1.1 PORT_CONNECTION
When the Port Power bit is one, this bit indicates whether or not a device is attached. This field reads as
one when a device is attached; it reads as zero when no device is attached. This bit is reset to zero when the
port is in the Powered-off state or the Disconnected states. It is set to one when the port is in the Powered
state, a device attach is detected (see Section 7.1.7.1) and the port transitions from the Disconnected state to
the Disabled state.

SetPortFeature(PORT_CONNECTION) and ClearPortFeature(PORT_CONNECTION) requests shall not
be used by the USB System Software and must be treated as no-operation requests by hubs.

11.24.2.7.1.2 PORT_ENABLE
This bit is set when the port is allowed to send or receive packet data or resume signaling.

This bit may be set only as a result of a SetPortFeature(PORT_RESET) request. When the hub exits the
Resetting state or, if present, the Speed_eval state, this bit is set and bus traffic may be transmitted to the
port. This bit may be cleared as the result of any of the following:

• The port being in the Powered-off state

• Receipt of a ClearPortFeature(PORT_ENABLE) request

• Port_Error detection

• Disconnect detection

• When the port enters the Resetting state as a result of receiving the SetPortFeature(PORT_RESET)
request.

The hub response to a SetPortFeature(PORT_ENABLE) request is not specified. The preferred behavior is
that the hub respond with a Request Error. This may not be used by the USB System Software. The
ClearPortFeature(PORT_ENABLE) request is supported as specified in Section 11.5.1.4.

11.24.2.7.1.3 PORT_SUSPEND
This bit is set to one when the port is selectively suspended by the USB System Software. While this bit is
set, the hub does not propagate downstream-directed traffic to this port, but the hub will respond to resume
signaling from the port. This bit can be set only if the port’s PORT_ENABLE bit is set and the hub
receives a SetPortFeature(PORT_SUSPEND) request. This bit is cleared to zero on the transition from the
SendEOP state to the Enabled state, or on the transition from the Restart_S state to the Transmit state, or on
any event that causes the PORT_ENABLE bit to be cleared while the PORT_SUSPEND bit is set.

The SetPortFeature(PORT_SUSPEND) request may be issued by the USB System Software at any time but
will have an effect only as specified in Section 11.5.

11.24.2.7.1.4 PORT_OVER-CURRENT
This bit is set to one while an over-current condition exists on the port. This bit is cleared when an over-
current condition does not exist on the port.

If the voltage on this port is affected by an over-current condition on another port then this bit is set and
remains set until the over-current condition on the affecting port is removed. When the over-current
condition on the affecting port is removed, this bit is reset to zero if an over-current condition does not exist
on this port.

Over-current protection is required on self-powered hubs (it is optional on bus-powered hubs) as outlined in
Section 7.2.1.2.1.

Universal Serial Bus Specification Revision 2.0 (0.79)

312 USB-IF Member Confidential

The SetPortFeature(PORT_OVER_CURRENT) and ClearPortFeature(PORT_OVER_CURRENT)
requests shall not be used by the USB System Software and may be treated as no-operation requests by
hubs.

11.24.2.7.1.5 PORT_RESET
This bit is set while the port is in the Resetting state. A SetPortFeature(PORT_RESET) request will initiate
the Resetting state if the conditions in Section 11.5.1.5 are met. This bit is set to zero while the port is in
the Powered-off state.

The ClearPortFeature(PORT_RESET) request shall not be used by the USB System Software and may be
treated as a no-operation request by hubs.

11.24.2.7.1.6 PORT_POWER
This bit reflects the current power state of a port. This bit is implemented on all ports whether or not actual
port power switching devices are present.

While this bit is zero, the port is in the Powered-off state. Similarly, anything that causes this port to go to
the Power-off state will cause this bit to be set to zero.

A SetPortFeature(PORT_POWER) will set this bit to one unless both C_HUB_LOCAL_POWER and
Local Power Status (in wHubStatus) are set to one in which case the request is treated as a functional no-
operation.

This bit may be cleared under the following curcumstances:

• Hub receives a ClearPortFeature(PORT_POWER).

• An over-current condition exists on the port.

• An over-current condition on another port causes the power on this port to be shut off.

The SetPortFeature(PORT_POWER) and ClearPortFeature(PORT_POWER) requests may be issued by the
USB System Software whenever the port is not in the Not Configured state, but will have an effect only as
specified in Section 11.11.

11.24.2.7.1.7 PORT_LOW_SPEED
This bit has meaning only when the PORT_ENABLE bit is set. This bit is set to one if the attached device
is low-speed. If this bit is set to zero, the attached device is either full- or high-speed as determined by bit
10 (PORT_HIGH_SPEED, see below).

The SetPortFeature(PORT_LOW_SPEED) and ClearPortFeature(PORT_LOW_SPEED) requests shall not
be used by the USB System Software and may be treated as no-operation requests by hubs.

11.24.2.7.1.8 PORT_HIGH_SPEED
This bit has meaning only when the PORT_ENABLE bit is set and the PORT_LOW_SPEED bit is set to
zero. This bit is set to one if the attached device is high-speed. The bit is set to zero if the attached device
is full-speed.

The SetPortFeature(PORT_HIGH_SPEED) and ClearPortFeature(PORT_HIGH_SPEED) requests shall
not be used by the USB System Software and may be treated as no-operation requests by hubs.

11.24.2.7.1.9 PORT_TEST
When the Port Test Mode bit is set to a one (1B), the port is in test mode. The specific test mode is
specified in the SetPortFeature(PORT_TEST) request by the test selector. The hub provides no standard

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 313

mechanism to report the specific test mode, therefore system software must track which test selector was
used. Refer to Section 7.<<<TBD>>> for details on each test mode.

This field may only be set as a result of a SetPortFeature(PORT_TEST) request. A port PORT_TEST
request is only valid to a port that is in the Disabled state. If the port is not in the Disabled state, the hub
should respond with a request error.

This field may be cleared as a result of any of the following:

• The port being in the Powered-off state

• Receipt of a ClearPortFeature(PORT_TEST) request

11.24.2.7.2 Port Status Change Bits
Port status change bits are used to indicate changes in port status bits that are not the direct result of
requests. Port status change bits can be cleared with a ClearPortFeature() request or by a hub reset. Hubs
may allow setting of the status change bits with a SetPortFeature() request for diagnostic purposes. If a hub
does not support setting of the status change bits, it may either treat the request as a Request Error or as a
functional no-operation. Table 11-17 describes the various bits in the wPortChange field.

Table 11-17. Port Change Field, wPortChange

Bit Description
0 Connect Status Change: (C_PORT_CONNECTION) Indicates a change has occurred in the port’s Current

Connect Status. The hub device sets this field as described in Section 11.16.2.6.2.1.
 0 = No change has occurred to Current Connect status

1 = Current Connect status has changed
0 Connect Status Change: (C_PORT_CONNECTION) Indicates a change has occurred in the port’s Current

Connect Status. The hub device sets this field as described in Section 11.24.2.7.2.1.
 0 = No change has occurred to Current Connect status

1 = Current Connect status has changed
1 Port Enable/Disable Change: (C_PORT_ENABLE) This field is set to one when a port is disabled because

of a Port_Error condition (see Section 11.8.1).

2 Suspend Change: (C_PORT_SUSPEND) This field indicates a change in the host-visible suspend state of
the attached device. It indicates the device has transitioned out of the Suspend stateThis field is set only when
the entire resume process has completed. That is, the hub has ceased signaling resume on this port.

0 = No change
1 = Resume complete

3 Over-Current Indicator Change: (C_PORT_OVER_CURRENT) This field applies only to hubs that report
over-current conditions on a per-port basis (as reported in the hub descriptor).

0 = No change has occurred to Over-Current Indicator
1 = Over-Current Indicator has changed

If the hub does not report over-current on a per-port basis, then this field is always zero.
4 Reset Change: (C_PORT_RESET) This field is set when reset processing on this port is complete.

0 = No change
1 = Reset complete

5-15 Reserved
These bits return 0 when read.

11.24.2.7.2.1 C_PORT_CONNECTION
This bit is set when the PORT_CONNECTION bit changes because of an attach or detach detect event (see
Section 7.1.7.1). This bit will be cleared to zero by a ClearPortFeature(C_PORT_CONNECTION) request
or while the port is in the Powered-off state.

Universal Serial Bus Specification Revision 2.0 (0.79)

314 USB-IF Member Confidential

11.24.2.7.2.2 C_PORT_ENABLE.
This bit is set when the PORT_ENABLE bit changes from one to zero as a result of a Port Error condition
(see Section 11.8.1.). This bit is not set on any other changes to PORT_ENABLE.

This bit may be set if, on a SetPortFeature(PORT_RESET) the port stays in the Disabled state because an
invalid idle state exists on the bus (see Section 11.8.2).

This bit will be cleared by a ClearPortFeature(C_PORT_ENABLE) request or while the port is in the
Powered-off state.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 315

11.24.2.7.2.3 C_PORT_SUSPEND
This bit is set on the following transitions:

• on transition from the Resuming state to the SendEOP state

• on transition from the Restart_S state to the Transmit state.

This bit will be cleared by a ClearPortFeature(C_PORT_SUSPEND) request, or while the port is in the
Powered-off state.

11.24.2.7.2.4 C_PORT_OVER-CURRENT
This bit is set when the PORT_OVER_CURRENT bit changes from zero to one or from one to zero. This
bit is also set if the port is placed in the Powered-off state due to an over-current condition on another port.

This bit will be cleared when the port is in the Not Configured state or by a
ClearPortFeature(C_PORT_OVER-CURRENT) request.

11.24.2.7.2.5 C_PORT_RESET
This bit is set when the port transitions from the Resetting state (or, if present, the Speed_eval state) to the
Enabled state.

This bit will be cleared by a ClearPortFeature(C_PORT_RESET) request, or while the port is in the
Powered-off state.

11.24.2.8 Set Hub Descriptor
This request overwrites the hub descriptor.

bmRequestType bRequest wValue wIndex wLength Data

00100000B SET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero Descriptor
Length

Descriptor

The SetDescriptor request for the hub class descriptor follows the same usage model as that of the standard
SetDescriptor request (refer to Chapter 9). The standard hub descriptor is denoted by using the value
bDescriptorType defined in Section 11.23.2.1. All hubs are required to implement one hub descriptor, with
descriptor index zero.

This request is optional. This request writes data to a class-specific descriptor. The host provides the data
that is to be transferred to the hub during the data transfer phase of the control transaction. This request
writes the entire hub descriptor at once.

Hubs must buffer all the bytes received from this request to ensure that the entire descriptor has been
successfully transmitted from the host. Upon successful completion of the bus transfer, the hub updates the
contents of the specified descriptor.

It is a Request Error if wIndex is not zero or if wLength does not match the amount of data sent by the host.
Hubs that do not support this request respond with a STALL during the Data stage of the request.

If the hub is not configured, the hub's response to this request is undefined.

Universal Serial Bus Specification Revision 2.0 (0.79)

316 USB-IF Member Confidential

11.24.2.9 Set Hub Feature
This request sets a value reported in the hub status.

bmRequestType bRequest wValue wIndex wLength Data

00100000B SET_ FEATURE Feature
Selector

Zero Zero None

Setting a feature enables that feature; refer to Table 11-12for the feature selector definitions that apply to
the hub as recipient. Change indicators may not be acknowledged using this request.

It is a Request Error if wValue is not a feature selector listed in Table 11-12 or if wIndex or wLength are not
as specified above.

If the hub is not configured, the hub's response to this request is undefined.

11.24.2.10 Set Port Feature
This request sets a value reported in the port status.

bmRequestType bRequest wValue wIndex wLength Data

00100011B SET_ FEATURE Feature
Selector

Port Zero None

00100011B SET_ FEATURE Feature
Selector

Test
Selector

Port Zero None

The port number must be a valid port number for that hub, greater than zero. The port number is in the least
significant byte of the wIndex field. The most significant byte of wIndex is zero, except when the feature
selector is PORT_TEST.

Setting a feature enables that feature or starts a process associated with that feature; see Table 11-12 for the
feature selector definitions that apply to a port as a recipient. Change indicators may not be acknowledged
using this request. Features that can be set with this request are:

• PORT_RESET

• PORT_SUSPEND

• PORT_POWER

• PORT_TEST

• C_PORT_CONNECTION*

• C_PORT_RESET*

• C_PORT_ENABLE*

• C_PORT_SUSPEND*

• C_PORT_OVER_CURRENT*.

*denotes features that are not required to be set by this request.

Setting the PORT_SUSPEND feature causes bus traffic to cease on that port and, consequently, the device
to suspend. Setting the reset feature PORT_RESET causes the hub to signal reset on that port. When the

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 317

reset signaling is complete, the hub sets the C_PORT_RESET change indicator and immediately enables
the port. Refer to Section 11.10 for a complete discussion of host-initiated reset behavior. Also see Section
11.24.2.7.1 for further details.

When the feature selector is PORT_TEST, the most significant byte of the wIndex field is the selector
identifying the specific test mode. Table 11-18 lists the test selector definitions. Refer to Section
7.<<<TBD>>> for test details. The hub will respond with a request error if the request contains an invalid
test selector.

Table 11-18. Test Mode Selector Codes

Value Test Mode Description
0H Reserved
1H Test_SE0_NAK
2H Test_J

3H Test_K

4H Test_PRBS (Psuedo-random bit sequence)
5H Test_Force_enable

06H-3FH Reserved for Standard Test modes
40H-BFH Reserved
C0H-FFH Reserved for Vendor-Unique test modes

The hub must meet the following requirements:

• If the port is in the Powered-off state, the hub must treat a SetPortFeature(PORT_RESET) request as a
functional no-operation.

• If the port is not in the Enabled or Transmitting state, the hub must treat a
SetPortFeature(PORT_SUSPEND) request as a functional no-operation.

• If the port is not in the Powered-off state, the hub must treat a SetPortFeature(PORT_POWER) request
as a functional no-operation.

It is a Request Error if wValue is not a feature selector listed in Table 11-12, if wIndex specifies a port that
doen't exist, or if wLength is not as specified above.

If the hub is not configured, the hub's response to this request is undefined.

