
Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 175

THIS DRAFT SPECIFICATION DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE USB-IF AND
USB 2.0 PROMOTERS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN
THIS DRAFT SPECIFICATION. THE PROVISION OF THIS DRAFT SPECIFICATION TO YOU
DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS. THIS DOCUMENT IS AN
INTERMEDIATE DRAFT AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

Note on USB 2.0 Bit Rate: This specification draft calls out a data rate of 480Mb/s. This is the target rate
for which the Electrical Working Group is designing and prototyping; this rate needs to be confirmed with
completed validation of prototype IC’s operating on test boards.

Chapter 9
USB Device Framework

A USB device may be divided into three layers:

• The bottom layer is a bus interface that transmits and receives packets.

• The middle layer handles routing data between the bus interface and various endpoints on the device.
An endpoint is the ultimate consumer or provider of data. It may be thought of as a source or sink for
data.

• The top layer is the functionality provided by the serial bus device; for instance, a mouse or ISDN
interface.

This chapter describes the common attributes and operations of the middle layer of a USB device. These
attributes and operations are used by the function-specific portions of the device to communicate through
the bus interface and ultimately with the host.

9.1 USB Device States
A USB device has several possible states. Some of these states are visible to the USB and the host, while
others are internal to the USB device. This section describes those states.

9.1.1 Visible Device States
This section describes USB device states that are externally visible (see Figure 9-1). Table 9-1 summarizes
the visible device states.

Note: USB devices perform a reset operation in response to reset signaling on the upstream port. When
reset signaling has completed, the USB device is reset.

<<Fix figure and table 9-1 and following sections for HS reset handling>>>

Universal Serial Bus Specification Revision 2.0 (0.79)

176 USB-IF Member Confidential

Powered

Default

Hub
Configured

Address

Configured

Device
Configured

Device
Deconfigured

Suspended

Bus
Inactive

Bus Activity

Bus Activity

Attached

Hub Reset
or

Deconfigured

Reset

Suspended

Suspended

Bus
Inactive

Bus
Inactive

Bus Activity

Address
Assigned

Reset

Suspended
Bus Activity

Bus
Inactive

Power
Interruption

Figure 9-1. Device State Diagram

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 177

Table 9-1. Visible Device States

Attached Powered Default Address Configured Suspended State

No -- -- -- -- -- Device is not attached to
the USB. Other attributes
are not significant.

Yes No -- -- -- -- Device is attached to the
USB, but is not powered.
Other attributes are not
significant.

Yes Yes No -- -- -- Device is attached to the
USB and powered, but
has not been reset.

Yes Yes Yes No -- -- Device is attached to the
USB and powered and
has been reset, but has
not been assigned a
unique address. Device
responds at the default
address.

Yes Yes Yes Yes No -- Device is attached to the
USB, powered, has been
reset, and a unique
device address has been
assigned. Device is not
configured.

Yes Yes Yes Yes Yes No Device is attached to the
USB, powered, has been
reset, has a unique
address, is configured,
and is not suspended.
The host may now use
the function provided by
the device.

Yes Yes -- -- -- Yes Device is, at minimum,
attached to the USB and
is powered and has not
seen bus activity for 3 ms.
It may also have a unique
address and be
configured for use.
However, because the
device is suspended, the
host may not use the
device’s function.

9.1.1.1 Attached
A USB device may be attached or detached from the USB. The state of a USB device when it is detached
from the USB is not defined by this specification. This specification only addresses required operations and
attributes once the device is attached.

Universal Serial Bus Specification Revision 2.0 (0.79)

178 USB-IF Member Confidential

9.1.1.2 Powered
USB devices may obtain power from an external source and/or from the USB through the hub to which they
are attached. Externally powered USB devices are termed self-powered. Although self-powered devices
may already be powered before they are attached to the USB, they are not considered to be in the Powered
state until they are attached to the USB and VBUS is applied to the device.

A device may support both self-powered and bus-powered configurations. Some device configurations
support either power source. Other device configurations may be available only if the device is self-
powered. Devices report their power source capability through the configuration descriptor. The current
power source is reported as part of a device’s status. Devices may change their power source at any time;
e.g., from self- to bus-powered. If a configuration is capable of supporting both power modes, the power
maximum reported for that configuration is the maximum the device will draw from VBUS in either mode.
The device must observe this maximum, regardless of its mode. If a configuration supports only one power
mode and the power source of the device changes, the device will lose its current configuration and address
and return to the Powered state. If a device is self-powered and its current configuration requires more than
100mA, then if the device switches to being bus-powered, it must return to the Address state. Self-powered
hubs that use VBUS to power the Hub Controller are allowed to remain in the Configured state if local
power is lost. Refer to Section 11.14 for details.

A hub port must be powered in order to detect port status changes, including attach and detach. Bus-
powered hubs do not provide any downstream power until they are configured, at which point they will
provide power as allowed by their configuration and power source. A USB device must be able to be
addressed within a specified time period from when power is initially applied (refer to Chapter 7). After an
attachment to a port has been detected, the host may enable the port, which will also reset the device
attached to the port.

9.1.1.3 Default
After the device has been powered, it must not respond to any bus transactions until it has received a reset
from the bus. After receiving a reset, the device is then addressable at the default address.

When the reset process is complete, the USB device is operating at the correct speed (e.g., low-/full-/high-
speed). The speed selection for low- and full-speed is determined by the device termination resistors. A
device that is capable of high-speed operation determines whether it will operate at high-speed as a part of
the reset process (see Chapter 7 for more details).

A device capable of high-speed operation must reset successfully at full-speed when in an electrical
environment that is operating at full-speed. After the device is successfully reset, the device must also
respond successfully to device and configuration descriptor requests and return appropriate information.
The device may or may not be able to support its intended functionality when operating at full-speed.

9.1.1.4 Address
All USB devices use the default address when initially powered or after the device has been reset. Each
USB device is assigned a unique address by the host after attachment or after reset. A USB device
maintains its assigned address while suspended.

A USB device responds to requests on its default pipe whether the device is currently assigned a unique
address or is using the default address.

9.1.1.5 Configured
Before a USB device’s function may be used, the device must be configured. From the device’s
perspective, configuration involves writing a non-zero value to the device configuration register.
Configuring a device or changing an alternate setting causes all of the status and configuration values
associated with endpoints in the affected interfaces to be set to their default values. This includes setting
the data toggle of any endpoint using data toggles to the value DATA0.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 179

9.1.1.6 Suspended
In order to conserve power, USB devices automatically enter the Suspended state when the device has
observed no bus traffic for a specified period (refer to Chapter 7). When suspended, the USB device
maintains any internal status, including its address and configuration.

All devices must suspend if bus activity has not been observed for the length of time specified in
Chapter 7. Attached devices must be prepared to suspend at any time they are powered, whether they have
been assigned a non-default address or are configured. Bus activity may cease due to the host entering a
suspend mode of its own. In addition, a USB device shall also enter the Suspended state when the hub port
it is attached to is disabled. This is referred to as selective suspend.

A USB device exits suspend mode when there is bus activity. A USB device may also request the host to
exit suspend mode or selective suspend by using electrical signaling to indicate remote wakeup. The ability
of a device to signal remote wakeup is optional. If a USB device is capable of remote wakeup signaling, the
device must support the ability of the host to enable and disable this capability. When the device is reset,
remote wakeup signaling must be disabled.

9.1.2 Bus Enumeration
When a USB device is attached to or removed from the USB, the host uses a process known as bus
enumeration to identify and manage the device state changes necessary. When a USB device is attached to
a powered port, the following actions are taken:

1. The hub to which the USB device is now attached informs the host of the event via a reply on its status
change pipe (refer to Section 11.13.3 for more information). At this point, the USB device is in the
Powered state and the port to which it is attached is disabled.

2. The host determines the exact nature of the change by querying the hub.

3. Now that the host knows the port to which the new device has been attached, the host then waits for at
least 100 ms to allow completion of an insertion process and for power at the device to become stable.
The host then issues a port enable and reset command to that port. Refer to Section 7.1.7.1 and Figure
7-19 for sequence of events and timings of connection through device reset.

4.The hub maintains the reset signal to that port for 10 ms (See Section 11.5.1.5). When the reset signal is
released, the port has been enabled. The USB device is now in the Default state and can draw no more
than 100mA from VBUS. All of its registers and state have been reset and it answers to the default
address.

4. address. <<Check timings and words for HS reset operation; may be correct as is>>

5. The host assigns a unique address to the USB device, moving the device to the Address state.

6. Before the USB device receives a unique address, its Default Control Pipe is still accessible via the
default address. The host reads the device descriptor to determine what actual maximum data payload
size this USB device’s default pipe can use.

7. The host reads the configuration information from the device by reading each configuration zero to
n-1, where n is the number of configurations. This process may take several milliseconds to complete.

8. Based on the configuration information and how the USB device will be used, the host assigns a
configuration value to the device. The device is now in the Configured state and all of the endpoints in
this configuration have taken on their described characteristics. The USB device may now draw the
amount of VBUS power described in its descriptor for the selected configuration. From the device’s
point of view it is now ready for use.

When the USB device is removed, the hub again sends a notification to the host. Detaching a device
disables the port to which it had been attached. Upon receiving the detach notification, the host will update
its local topological information.

Universal Serial Bus Specification Revision 2.0 (0.79)

180 USB-IF Member Confidential

9.2 Generic USB Device Operations
All USB devices support a common set of operations. This section describes those operations.

9.2.1 Dynamic Attachment and Removal
USB devices may be attached and removed at any time. The hub that provides the attachment point or port
is responsible for reporting any change in the state of the port.

The host enables the hub port where the device is attached upon detection of an attachment, which also has
the effect of resetting the device. A reset USB device has the following characteristics:

• Responds to the default USB address

• Is not configured

• Is not initially suspended.

When a device is removed from a hub port, the hub disables the port where the device was attached and
notifies the host of the removal

9.2.2 Address Assignment
When a USB device is attached, the host is responsible for assigning a unique address to the device. This is
done after the device has been reset by the host and the hub port where the device is attached has been
enabled.

9.2.3 Configuration
A USB device must be configured before its function(s) may be used. The host is responsible for
configuring a USB device. The host typically requests configuration information from the USB device to
determine the device’s capabilities.

As part of the configuration process, the host sets the device configuration and, where necessary, selects the
appropriate alternate settings for the interfaces.

Within a single configuration, a device may support multiple interfaces. An interface is a related set of
endpoints that present a single feature or function of the device to the host. The protocol used to
communicate with this related set of endpoints and the purpose of each endpoint within the interface may be
specified as part of a device class or vendor-specific definition.

In addition, an interface within a configuration may have alternate settings that redefine the number or
characteristics of the associated endpoints. If this is the case, the device shall support the GetInterface() and
SetInterface() requests to report or select the current alternative setting for the specified interface.

Within each configuration, each interface descriptor contains fields that identify the interface number and
the alternate setting. Interfaces are numbered from zero to one less than the number of concurrent interfaces
supported by the configuration. Alternate settings range from zero to one less than the number of alternate
settings for a specific interface. The default setting when a device is initially configured is alternate setting
zero.

In support of adaptive device drivers that are capable of managing a related group of USB devices, the
device and interface descriptors contain Class, SubClass, and Protocol fields. These fields are used to
identify the function(s) provided by a USB device and the protocols used to communicate with the
function(s) on the device. A class code is assigned to a group of related devices that has been characterized
as a part of a USB Class Specification. A class of devices may be further subdivided into subclasses and
within a class or subclass a protocol code may define how the Host Software communicates with the device.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 181

Note: the assignment of class, subclass and protocol codes must be coordinated but is beyond the scope of
this specification.

9.2.4 Data Transfer
Data may be transferred between a USB device endpoint and the host in one of four ways. Refer to Chapter
5 for the definition of the four types of transfers. An endpoint number may be used for different types of
data transfers in different alternate settings. However, once an alternate setting is selected (including the
default setting of an interface), a USB device endpoint uses only one data transfer method until a different
alternate setting is selected.

9.2.5 Power Management
Power management on USB devices involves the issues described in the following sections.

9.2.5.1 Power Budgeting
USB bus power is a limited resource. During device enumeration, a host evaluates a device's power
requirements. If the power requirements of a particular configuration exceed the power available to the
device, Host software shall not select that configuration.

USB devices shall limit the power they consume from VBUS to one unit load or less until configured.
Suspended devices, whether configured or not, shall limit their bus power consumption as defined in
Chapter 7. Depending on the power capabilities of the port to which the device is attached, a USB device
may be able to draw up to five unit loads from VBUS after configuration.

9.2.5.2 Remote Wakeup
Remote wakeup allows a suspended USB device to signal a host that may also be suspended. This notifies
the host that it should resume from its suspended mode, if necessary, and service the external event that
triggered the suspended USB device to signal the host. A USB device reports its ability to support remote
wakeup in a configuration descriptor. If a device supports remote wakeup, it must also allow the capability
to be enabled and disabled using the standard USB requests.

Remote wakeup is accomplished using electrical signaling described in Section 7.1.7.5.

9.2.6 Request Processing
With the exception of SetAddress() requests (see Section 9.4.6), a device may begin processing of a request
as soon as the device returns the ACK following the Setup. The device is expected to “complete”
processing of the request before it allows the Status stage to complete successfully. Some requests initiate
operations that take many milliseconds to complete. For requests such as this, the device class is required
to define a method other than Status stage completion to indicate that the operation has completed. For
example, a reset on a hub port takes at least 10 ms to complete. The SetPortFeature(PORT_RESET) (see
Chapter 11) request “completes” when the reset on the port is initiated. Completion of the reset operation is
signaled when the port’s status change is set to indicate that the port is now enabled. This technique
prevents the host from having to constantly poll for a completion when it is known that the request will take
a relatively long period of time.

9.2.6.1 Request Processing Timing
All devices are expected to handle requests in a timely manner. USB sets an upper limit of 5 seconds as the
upper limit for any command to be processed. This limit is not applicable in all instances. The limitations
are described in the following sections. It should be noted that the limitations given below are intended to
encompass a wide range of implementations. If all devices in a USB system used the maximum allotted
time for request processing the user experience would suffer. For this reason, implementations should strive

Universal Serial Bus Specification Revision 2.0 (0.79)

182 USB-IF Member Confidential

to complete requests in times that are as short as possible.

9.2.6.2 Reset/Resume Recovery Time
After a port is reset or resumed, the USB System Software is expected to provide a “recovery” interval of
10 ms before the device attached to the port is expected to respond to data transfers. The device may ignore
any data transfers during the recovery interval.

After the end of the recovery interval (measured from the end of the reset or the end of the EOP at the end
of the resume signaling) the device must accept data transfers at any time.

9.2.6.3 Set Address Processing
After the reset/resume recovery interval, if a device receives a SetAddress() request, the device must be able
to complete processing of the request and be able to successfully complete the Status stage of the request
within 50 ms. In the case of the SetAddress() request, the Status stage successfully completes when the
devices sends the zero-length Status packet or when the device sees the ACK in response to the Status stage
data packet.

After successful completion of the Status stage, the device is allowed a SetAddress() recovery interval of 2
ms. At the end of this interval, the device must be able to accept Setup packets addressed to the new
address. Also, at the end of the recovery interval the device must not respond to tokens sent to the old
address (unless, of course, the old and new address is the same.)

9.2.6.4 Standard Device Requests
For standard device requests that require no Data stage, a device must be able to complete the request and
be able to successfully complete the Status stage of the request within 50 ms of receipt of the request. This
limitation applies to requests to the device, interface, or endpoint.

For standard device requests that require data stage transfer to the host, the device must be able to return the
first data packet to the host within 500 ms of receipt of the request. For subsequent data packets, if any, the
device must be able to return them within 500 ms of successful completion of the transmission of the
previous packet. The device must then be able to successfully complete the status stage within 50 ms after
returning the last data packet.

For standard device requests that require a data stage transfer to the device, the 5-second limit applies. This
means that the device must be capable of accepting all data packets from the host and successfully
completing the Status stage if the host provides the data at the maximum rate at which the device can accept
it. Delays between packets introduced by the host add to the time allowed for the device to complete the
request.

9.2.6.5 Class-specific Requests
Unless specifically exempted in the class document, all class-specific requests must meet the timing
limitations for standard device requests. If a class document provides an exemption, the exemption may
only be specified on a request-by-request basis.

A class document may require that a device respond more quickly than is specified in this section. Faster
response may be required for standard and class-specific requests.

9.2.6.6 Speed Dependent Descriptors
A device capable of operation at high-speed can operate in either full- or high-speed. The device always
knows its operational speed due to having to manage its transceivers correctly as part of reset processing
(See chapter 7 for more details on reset). A device also operates at a single speed after completing the reset
sequence. For example, there is no speed switch during normal operation. However, a high-speed capable

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 183

device may have configurations that are speed dependent. That is, it may have some configurations that are
only possible when operating at high-speed or some that are only possible when operating at full-speed.
High-speed capable devices must support reporting their speed dependent configurations.

A high-speed capable device responds with descriptor information that is valid for the current operating
speed. For example, when a device is asked for configuration descriptors, it only returns those for the
current operating speed (e.g., full speed). However, there must be a way to determine the capabilities for
both high and full-speed operation

Two descriptors allow a high-speed capable device to report configuration information about the other
operating speed. The two descriptors are: the Other_speed Device_Qualifier descriptor and the
Other_speed Configuration descriptor. These two descriptors are retrieved by the host by using the
GetDescriptor request with the corresponding descriptorType values.

NOTE: These descriptors are not retrieved unless the host explicitly issues the corresponding
GetDescriptor requests. If these two requests are not issued, the device would simply appear to be a
single speed device.

Devices that are high-speed capable must set the version number of their descriptors to 0200H. This
indicates that such devices support the Other_speed requests defined by USB2.0. A device with a version
number less than 0200H causes a Request Error (see next section) if it receives these Other_Speed requests.
A USB1.x device (e.g., one with a device descriptor version less than 0200H) should not be issued one of
the Other- speed requests.

9.2.7 Request Error
When a request is received by a device that is not defined for the device, is inappropriate for the current
setting of the device, or has values that are not compatible with the request, then a Request Error exists.
The device deals with the Request Error by returning a STALL PID in response to the next Data stage
transaction or in the Status stage of the message. It is preferred that the STALL PID be returned at the next
Data stage transaction, as this avoids unnecessary bus activity.

Universal Serial Bus Specification Revision 2.0 (0.79)

184 USB-IF Member Confidential

9.3 USB Device Requests
All USB devices respond to requests from the host on the device’s Default Control Pipe. These requests are
made using control transfers. The request and the request’s parameters are sent to the device in the Setup
packet. The host is responsible for establishing the values passed in the fields listed in Table 9-2. Every
Setup packet has eight bytes.

Table 9-2. Format of Setup Data

Offset Field Size Value Description

0 bmRequestType 1 Bitmap Characteristics of request:

D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4...0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4...31 = Reserved

1 bRequest 1 Value Specific request (refer to Table 9-3)

2 wValue 2 Value Word-sized field that varies according to
request

4 wIndex 2 Index or
Offset

Word-sized field that varies according to
request; typically used to pass an index or
offset

6 wLength 2 Count Number of bytes to transfer if there is a
Data stage

9.3.1 bmRequestType
This bitmapped field identifies the characteristics of the specific request. In particular, this field identifies
the direction of data transfer in the second phase of the control transfer. The state of the Direction bit is
ignored if the wLength field is zero, signifying there is no Data stage.

The USB Specification defines a series of standard requests that all devices must support. These are
enumerated in Table 9-3. In addition, a device class may define additional requests. A device vendor may
also define requests supported by the device.

Requests may be directed to the device, an interface on the device, or a specific endpoint on a device. This
field also specifies the intended recipient of the request. When an interface or endpoint is specified, the
wIndex field identifies the interface or endpoint.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 185

9.3.2 bRequest
This field specifies the particular request. The Type bits in the bmRequestType field modify the meaning of
this field. This specification defines values for the bRequest field only when the bits are reset to zero,
indicating a standard request (refer to Table 9-3).

9.3.3 wValue
The contents of this field vary according to the request. It is used to pass a parameter to the device, specific
to the request.

9.3.4 wIndex
The contents of this field vary according to the request. It is used to pass a parameter to the device, specific
to the request.

The wIndex field is often used in requests to specify an endpoint or an interface. Figure 9-2 shows the
format of wIndex when it is used to specify an endpoint.

D7 D6 D5 D4 D3 D2 D1 D0

Direction Reserved (Reset to zero) Endpoint Number

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-2. wIndex Format when Specifying an Endpoint

The Direction bit is set to zero to indicate the OUT endpoint with the specified Endpoint Number and to
one to indicate the IN endpoint. In the case of a control pipe, the request should have the Direction bit set
to zero but the device may accept either value of the Direction bit.

Figure 9-3 shows the format of wIndex when it is used to specify an interface.

D7 D6 D5 D4 D3 D2 D1 D0

Interface Number

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-3. wIndex Format when Specifying an Interface

9.3.5 wLength
This field specifies the length of the data transferred during the second phase of the control transfer. The
direction of data transfer (host-to-device or device-to-host) is indicated by the Direction bit of the
bmRequestType field. If this field is zero, there is no data transfer phase.

On an input request, a device must never return more data than is indicated by the wLength value; it may
return less. On an output request, wLength will always indicate the exact amount of data to be sent by the
host. Device behavior is undefined if the host should send more data than is specified in wLength.

Universal Serial Bus Specification Revision 2.0 (0.79)

186 USB-IF Member Confidential

9.4 Standard Device Requests
This section describes the standard device requests defined for all USB devices. Table 9-3 outlines the
standard device requests, while Table 9-4 and Table 9-5 give the standard request codes and descriptor
types, respectively.

USB devices must respond to standard device requests, whether the device has been assigned a non-default
address or the device is currently configured.

Table 9-3. Standard Device Requests

bmRequestType bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

CLEAR_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Language

ID

Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

Two Device,
Interface, or

Endpoint
Status

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuration
Value

Zero Zero None

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Language

ID

Descriptor
Length

Descriptor

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

00000001B SET_INTERFACE Alternate
Setting

Interface Zero None

10000010B SYNCH_FRAME Zero Endpoint Two Frame Number

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 187

Table 9-4. Standard Request Codes

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved for future use 2

SET_FEATURE 3

Reserved for future use 4

SET_ADDRESS 5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

GET_CONFIGURATION 8

SET_CONFIGURATION 9

GET_INTERFACE 10

SET_INTERFACE 11

SYNCH_FRAME 12

Table 9-5. Descriptor Types

Descriptor Types Value

DEVICE 1

CONFIGURATION 2

STRING 3

INTERFACE 4

ENDPOINT 5

DEVICE_QUALIFIER 6

OTHER_SPEED_CONFIGURATION 7

INTERFACE_POWER 8

Feature selectors are used when enabling or setting features, such as remote wakeup, specific to a device,
interface, or endpoint. The values for the feature selectors are given in Table 9-6.

Universal Serial Bus Specification Revision 2.0 (0.79)

188 USB-IF Member Confidential

Table 9-6. Standard Feature Selectors

Feature Selector Recipient Value

DEVICE_REMOTE_WAKEUP Device 1

ENDPOINT_HALT Endpoint 0

TEST_MODE Device 2

If an unsupported or invalid request is made to a USB device, the device responds by returning STALL in
the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that
the device returns STALL at the earlier of the Data or Status stage. Receipt of an unsupported or invalid
request does NOT cause the optional Halt feature on the control pipe to be set. If for any reason, the device
becomes unable to communicate via its Default Control Pipe due to an error condition, the device must be
reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature
This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

CLEAR_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device, only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

A ClearFeature() request that references a feature that cannot be cleared, that does not exist, or that
references an interface or endpoint that does not exist will cause the device to respond with a Request Error.

If wLength is non-zero, then the device behavior is not specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: This request is valid when the device is in the Address state; references to interfaces
or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

Configured state: This request is valid when the device is in the Configured state.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 189

9.4.2 Get Configuration
This request returns the current device configuration value.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

If the returned value is zero, the device is not configured.

If wValue, wIndex, or wLength are not as specified above, then the device behavior is not specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: The value zero shall be returned.

Configured state: The non-zero bConfigurationValue of the current configuration shall be returned.

9.4.3 Get Descriptor
This request returns the specified descriptor if the descriptor exists.

bmRequestType bRequest wValue wIndex wLength Data

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Language ID

(refer to
Section 9.6.5)

Descriptor
Length

Descriptor

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Zero or
Language ID

(refer to
Section 9.6.7)

Descriptor
Length

Descriptor

The wValue field specifies the descriptor type in the high byte and the descriptor index in the low byte
(refer to Table 9-5). The wIndex field specifies the Language ID for string descriptors or is reset to zero for
other descriptors. The wLength field specifies the number of bytes to return. If the descriptor is longer than
the wLength field, only the initial bytes of the descriptor are returned. If the descriptor is shorter than the
wLength field, the device indicates the end of the control transfer by sending a short packet when further
data is requested. A short packet is defined as a packet shorter than the maximum payload size or a NULL
data packet (refer to Chapter 5).

The standard request to a device supports three types of descriptors: DEVICE (also
DEVICE_QUALIFIER), CONFIGURATION (also OTHER_SPEED_CONFIGURATION), and STRING.
A high-speed capable device supports the DEVICE_QUALIFIER to return information about the device for
the speed at which it is not operating (including wMaxPacketSize for the default endpoint DEVICE,
CONFIGURATION, and STRING.and the number of configurations for the other speed). The
OTHER_SPEED_CONFIGURATION returns information in the same structure as a CONFIGURATION
descriptor, but for a configuration if the device were operating at the other speed. A request for a
configuration descriptor returns the configuration descriptor, all interface descriptors, and endpoint
descriptors for all of the interfaces in a single request. The first interface descriptor follows the
configuration descriptor. The endpoint descriptors for the first interface follow the first interface descriptor.

Universal Serial Bus Specification Revision 2.0 (0.79)

190 USB-IF Member Confidential

If there are additional interfaces, their interface descriptor and endpoint descriptors follow the first
interface’s endpoint descriptors. Class-specific and/or vendor-specific descriptors follow the standard
descriptors they extend or modify.

All devices must provide a device descriptor and at least one configuration descriptor. If a device does not
support a requested descriptor, it responds with a Request Error.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: This is a valid request when the device is in the Configured state.

9.4.4 Get Interface
This request returns the selected alternate setting for the specified interface.

bmRequestType bRequest wValue wIndex wLength Data

10000001B GET_INTERFACE Zero Interface One Alternate
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to determine the currently selected alternative setting.

If wValue or wLength are not as specified above, then the device behavior is not specified.

If the interface specified does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: A Request Error response is given by the device.

Configured state: This is a valid request when the device is in the Configured state.

9.4.5 Get Status
This request returns status for the specified recipient.

bmRequestType bRequest wValue wIndex wLength Data

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

Two Device,
Interface, or

Endpoint
Status

The Recipient bits of the bmRequestType field specify the desired recipient. The data returned is the
current status of the specified recipient.

If wValue or wLength are not as specified above, or if wIndex is non-zero for a device status request, then
the behavior of the device is not specified.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 191

If an interface or an endpoint is specified that does not exist then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state: If an interface or endpoint that does not exist is specified, then the device responds
with a Request Error.

A GetStatus() request to a device returns the information shown in Figure 9-4.

D7 D6 D5 D4 D3 D2 D1 D0

Reserved (Reset to zero) Remote
Wakeup

Self
Powered

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-4. Information Returned by a GetStatus() Request to a Device

The Self Powered field indicates whether the device is currently self-powered. If D0 is reset to zero, the
device is bus-powered. If D0 is set to one, the device is self-powered. The Self Powered field may not be
changed by the SetFeature() or ClearFeature() requests.

The Remote Wakeup field indicates whether the device is currently enabled to request remote wakeup. The
default mode for devices that support remote wakeup is disabled. If D1 is reset to zero, the ability of the
device to signal remote wakeup is disabled. If D1 is set to one, the ability of the device to signal remote
wakeup is enabled. The Remote Wakeup field can be modified by the SetFeature() and ClearFeature()
requests using the DEVICE_REMOTE_WAKEUP feature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shown in Figure 9-5.

D7 D6 D5 D4 D3 D2 D1 D0

Reserved (Reset to zero)

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-5. Information Returned by a GetStatus() Request to a Interface

Universal Serial Bus Specification Revision 2.0 (0.79)

192 USB-IF Member Confidential

A GetStatus() request to an endpoint returns the information shown in Figure 9-6.

D7 D6 D5 D4 D3 D2 D1 D0

Reserved (Reset to zero) Halt

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-6. Information Returned by a GetStatus() Request to an Endpoint

The Halt feature is required to be implemented for all interrupt and bulk endpoint types. If the endpoint is
currently halted, then the Halt feature is set to one. Otherwise, the Halt feature is reset to zero. The Halt
feature may optionally be set with the SetFeature(ENDPOINT_HALT) request. When set by the
SetFeature() request, the endpoint exhibits the same stall behavior as if the field had been set by a hardware
condition. If the condition causing a halt has been removed, clearing the Halt feature via a
ClearFeature(ENDPOINT_HALT) request results in the endpoint no longer returning a STALL. For
endpoints using data toggle, regardless of whether an endpoint has the Halt feature set, a
ClearFeature(ENDPOINT_HALT) request always results in the data toggle being reinitialized to DATA0.
The Halt feature is reset to zero after either a SetConfiguration() or SetInterface() request even if the
requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommended that the Halt feature be implemented for the Default Control Pipe.
However, devices may set the Halt feature of the Default Control Pipe in order to reflect a functional error
condition. If the feature is set to one, the device will return STALL in the Data and Status stages of each
standard request to the pipe except GetStatus(), SetFeature(), and ClearFeature() requests. The device need
not return STALL for class-specific and vendor-specific requests.

9.4.6 Set Address
This request sets the device address for all future device accesses.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_ADDRESS Device
Address

Zero Zero None

The wValue field specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In the first stage, the Setup packet is
sent to the device. In the optional second stage, data is transferred between the host and the device. In the
final stage, status is transferred between the host and the device. The direction of data and status transfer
depends on whether the host is sending data to the device or the device is sending data to the host. The
Status stage transfer is always in the opposite direction of the Data stage. If there is no Data stage, the
Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device
does not change its device address until after the Status stage of this request is completed successfully.
Note that this is a difference between this request and all other requests. For all other requests, the
operation indicated must be completed before the Status stage.

If the specified device address is greater than 127, or if wIndex or wLength are non-zero, then the behavior
of the device is not specified.

Device response to SetAddress() with a value of 0 is undefined.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 193

Default state: If the address specified is non-zero, then the device shall enter the Address state;
otherwise, the device remains in the Default state (this is not an error condition).

Address state: If the address specified is zero, then the device shall enter the Default state;
otherwise, the device remains in the Address state but uses the newly-specified
address.

Configured state: Device behavior when this request is received while the device is in the Configured
state is not specified.

9.4.7 Set Configuration
This request sets the device configuration.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_CONFIGURATION Configuration Value Zero Zero None

The lower byte of the wValue field specifies the desired configuration. This configuration value must be
zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the
device is placed in its Address state. The upper byte of the wValue field is reserved.

If wIndex, wLength, or the upper byte of wValue is non-zero, then the behavior of this request is not
specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: If the specified configuration value is zero, then the device remains in the Address
state. If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device enters the
Configured state. Otherwise, the device responds with a Request Error.

Configured state: If the specified configuration value is zero, then the device enters the Address state.
If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device remains in
the Configured state. Otherwise, the device responds with a Request Error.

9.4.8 Set Descriptor
This request may be used to update existing descriptors or new descriptors may be added.

bmRequestType bRequest wValue wIndex wLength Data

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Language ID
(refer to

Section 9.6.5)
or zero

Descriptor
Length

Descriptor

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor

Index

Language ID
(refer to

Section 9.6.7)
or zero

Descriptor
Length

Descriptor

Universal Serial Bus Specification Revision 2.0 (0.79)

194 USB-IF Member Confidential

The wValue field specifies the descriptor type in the high byte and the descriptor index in the low byte
(refer to Table 9-5). The wIndex field specifies the Language ID for string descriptors or is reset to zero for
other descriptors. The wLength field specifies the number of bytes to transfer from the host to the device.

If this request is not supported then the device will respond with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: If supported, this is a valid request when the device is in the Address state.

Configured state: If supported, this is a valid request when the device is in the Configured state.

9.4.9 Set Feature
This request is used to set or enable a specific feature.

bmRequestType bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Zero
Interface
Endpoint

Zero None

00000000B
00000001B
00000010B

SET_FEATURE Feature
Selector

Test Selector Zero
Interface
Endpoint

Zero None

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device; only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients. A
SetFeature() request that references a feature that cannot be set or that does not exist causes a STALL to be
returned in the Status stage of the request.

If the feature selector is TEST_MODE, then the most significant byte of wIndex is used to specify the
specific test mode. The valid test mode selectors are listed in Table 9-7.

Table 9-7. Test Mode Selectors

Value Description

00H Reserved

01H Test_J

02H Test_K

03H Test_SE0_NAK

04H Test_PRBS

05H Test_Force_Enable

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 195

06H-3FH Reserved for standard test selectors

3FH-BFH Reserved

C0H-FFH Reserved for vendor-specific test modes.

If wLength is non-zero, then the behavior of the device is not specified.

If an endpoint or interface is specified that does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is receivedA device must be able to accept a
SetFeature(TEST_MODE, TEST_SELECTOR) request when in the Default State. Device behavior for
other SetFeature requests while the device is in the Default state is not specified.

Address state: If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.4.10 Set Interface
This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue wIndex wLength Data

00000001B SET_INTERFACE Alternative
Setting

Interface Zero None

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to select the desired alternate setting. If a device only supports a default setting for the
specified interface, then a STALL may be returned in the Status stage of the request.

If the interface or the alternative setting does not exist, then the device responds with a Request Error. If
wLength is non-zero, then the behavior of the device is not specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: The device shall respond with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.4.11 Synch Frame
This request is used to set and then report an endpoint’s synchronization frame.

bmRequestType bRequest wValue wIndex wLength Data

10000010B SYNCH_FRAME Zero Endpoint Two Frame
Number

When an endpoint supports isochronous transfers, the endpoint may also require per-frame transfers to vary
in size according to a specific pattern. The host and the endpoint must agree on which frame the repeating

Universal Serial Bus Specification Revision 2.0 (0.79)

196 USB-IF Member Confidential

pattern begins. The number of the frame in which the pattern began is returned to the host. This frame
number is the one conveyed to the endpoint by the last SOF prior to the first frame of the pattern.
Alternatively, the device may use this request to restart the pattern. In this case, the device would save the
frame number in each SOF and return this value in the Data stage of this transfer and restart the pattern on
each IN of the Data stage.

If a high-speed device supports the Synch Frame request, it must internally synchronize itself to the zeroth
microframe, and have a time notion of classic frame. Only the frame number is used to synchronize and
reported by the device endpoint (i.e. no micro-frame number). The endpoint must synchronize to the zeroth
microframe.

This value is only used for isochronous data transfers using implicit pattern synchronization. If wValue is
non-zero or wLength is not two, then the behavior of the device is not specified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: The device shall respond with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.5 Descriptors
USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format.
Each descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor
followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configurations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain references to string descriptors that provide displayable information
describing a descriptor in human-readable form. The inclusion of string descriptors is optional. However,
the reference fields within descriptors are mandatory. If a device does not support string descriptors, string
reference fields must be reset to zero to indicate no string descriptor is available.

If a descriptor returns with a value in its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length
field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways.

1. If the class or vendor specific descriptors use the same format as standard descriptors (e.g. start with a
length byte and followed by a type byte), they may be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor(Configuration) request. In this case, the
class or vendor-specific descriptors typically follow a related standard descriptor they modify or
extend.

2. If the class or vendor specifric descriptors are independent of configuration infomrationorinformation
or use a non-standard format, a GetDescriptor() request specifying the class or vendor specific
descriptor type and index may be used to retrieve the descriptor from the device. A class or vendor
specification will define the appropriate way to retrieve these descriptors.

9.6 Standard USB Descriptor Definitions
The standard descriptors defined in this specification may only be modified or extended by revision of the

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 197

Universal Serial Bus Specification.

Note: An extension to the USB 1.0 standard endpoint descriptor has been published in Device Class
Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will
do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

9.6.1 Device
A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device’s configurations. A USB device has only one device descriptor.

A high-speed capable device that has different device information for full-speed and high-speed must also
have a DEVICE_QUALIFIER (see Section 9.6.2).

The DEVICE descriptor of an USB2.0 high speed capable device has a version number of 2.0 (0200H) to
indicate that it may be high speed capable. The bNumConfigurations field indicates the number of
configurations at the current operating speed. Configurations for the other operating speed are not included
in the count. If there are specific configurations of the device for specific speeds, the bNumConfigurations
field only reflects the number of configurations for a single speed, not the total number of configurations for
both speeds.

If the device is operating at high-speed, the bMaxPacketSize0 field must be 64 indicating a 64 byte
maximum packet. High-speed operation doesn’t allow other maximum packet sizes for the control endpoint
(endpoint 0).

All USB devices have a Default Control Pipe. The maximum packet size of a device’s Default Control Pipe
is described in the device descriptor. Endpoints specific to a configuration and its interface(s) are described
in the configuration descriptor. A configuration and its interface(s) do not include an endpoint descriptor
for the Default Control Pipe. Other than the maximum packet size, the characteristics of the Default
Control Pipe are defined by this specification and are the same for all USB devices.

The bNumConfigurations field identifies the number of configurations the device supports. Table 9-8
shows the standard device descriptor.

Table 9-8. Standard Device Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant DEVICE Descriptor Type

2 bcdUSB 2 BCD USB Specification Release Number in
Binary-Coded Decimal (i.e., 2.10 is 210H).
This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

Universal Serial Bus Specification Revision 2.0 (0.79)

198 USB-IF Member Confidential

Offset Field Size Value Description

4 bDeviceClass 1 Class Class code (assigned by the USB).

If this field is reset to zero, each interface
within a configuration specifies its own
class information and the various
interfaces operate independently.

If this field is set to a value between 1 and
FEH, the device supports different class
specifications on different interfaces and
the interfaces may not operate
independently. This value identifies the
class definition used for the aggregate
interfaces. (For example, a CD-ROM
device with audio and digital data
interfaces that require transport control to
eject CDs or start them spinning.)

If this field is set to FFH, the device class
is vendor-specific.

5 bDeviceSubClass 1 SubClass Subclass code (assigned by the USB).

These codes are qualified by the value of
the bDeviceClass field.

If the bDeviceClass field is reset to zero,
this field must also be reset to zero.

If the bDeviceClass field is not set to FFH,
all values are reserved for assignment by
the USB.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 199

Table 9-8. Standard Device Descriptor (Continued)

Offset Field Size Value Description

6 bDeviceProtocol 1 Protocol Protocol code (assigned by the USB).
These codes are qualified by the value of
the bDeviceClass and the
bDeviceSubClass fields. If a device
supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use class-specific protocols on a
device basis. However, it may use class-
specific protocols on an interface basis.

If this field is set to FFH, the device uses
a vendor-specific protocol on a device
basis.

7 bMaxPacketSize0 1 Number Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid)

8 idVendor 2 ID Vendor ID (assigned by the USB)

10 idProduct 2 ID Product ID (assigned by the
manufacturer)

12 bcdDevice 2 BCD Device release number in binary-coded
decimal

14 iManufacturer 1 Index Index of string descriptor describing
manufacturer

15 iProduct 1 Index Index of string descriptor describing
product

16 iSerialNumber 1 Index Index of string descriptor describing the
device’s serial number

17 bNumConfigurations 1 Number Number of possible configurations

9.6.2 Device_Qualifier
The Device_Qualifier descriptor describes information about a high-speed capable device that would
change if the device were operating at the other speed. For example, if the device is currently operating
at full-speed the Device_Qualifier returns information about how it would operate at high-speed and
vice-versa. Table 9-9 shows the fields of the Device_Qualifier descriptor.

Universal Serial Bus Specification Revision 2.0 (0.79)

200 USB-IF Member Confidential

Table 9-9. Device_Qualifier Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant Device Qualifier Type

2 bcdUSB 2 BCD USB Spec version number (e.g., 0200 for
V2.00)

4 bDeviceClass 1 Class Class Code

5 bDeviceSubClass 1 SubClass SubClass Code

6 bDeviceProtocol 1 Protocol Protocol Code

7 bMaxPacketSize0 1 Number Maximum packet size for other speed

8 bNumConfigurations 1 Number Number of Other-speed Configurations

9 bReserved 1 Zero Reserved for future use, must be zero

The vendor, product, device, manufacturer, product, serialnumber fields of the standard device descriptor
are not included in this descriptor since that information is constant for a device for all supported speeds.
The version number for this descriptor must be at least 2.0 (0200H).

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to DEVICE_QUALIFIER (see Table 9-5).

9.6.3 Configuration
The configuration descriptor describes information about a specific device configuration. The descriptor
contains a bConfigurationValue field with a value that, when used as a parameter to the SetConfiguration()
request, causes the device to assume the described configuration.

The descriptor describes the number of interfaces provided by the configuration. Each interface may
operate independently. For example, an ISDN device might be configured with two interfaces, each
providing 64kB/s bi-directional channels that have separate data sources or sinks on the host. Another
configuration might present the ISDN device as a single interface, bonding the two channels into one
128kB/s bi-directional channel.

When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.3).

A USB device has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single
configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be
shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration. If a particular interface has
alternate settings, an alternate may be selected after configuration. Table 9-10 shows the standard
configuration descriptor.

Table 9-10. Standard Configuration Descriptor

Offset Field Size Value Description

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 201

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant CONFIGURATION Descriptor Type

2 wTotalLength 2 Number Total length of data returned for this
configuration. Includes the combined length
of all descriptors (configuration, interface,
endpoint, and class- or vendor-specific)
returned for this configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by this
configuration

5 bConfigurationValue 1 Number Value to use as an argument to the
SetConfiguration() request to select this
configuration

6 iConfiguration 1 Index Index of string descriptor describing this
configuration

Universal Serial Bus Specification Revision 2.0 (0.79)

202 USB-IF Member Confidential

Table 9-10. Standard Configuration Descriptor (Continued)

Offset Field Size Value Description

7 bmAttributes 1 Bitmap Configuration characteristics

D7: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4...0: Reserved (reset to zero)

D7 is reserved and must be set to one for
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in MaxPower to indicate the amount of
bus power required and sets D6. The actual
power source at runtime may be determined
using the GetStatus(DEVICE) request (see
Section 9.4.5).

If a device configuration supports remote
wakeup, D5 is set to one.

8 MaxPower 1 mA Maximum power consumption of the USB
device from the bus in this specific
configuration when the device is fully
operational. Expressed in 2mA units (i.e., 50
= 100mA).
Note: a device configuration reports whether
the configuration is bus-powered or self-
powered. Device status reports whether the
device is currently self-powered. If a device is
disconnected from its external power source,
it updates device status to indicate that it is no
longer self-powered.

A device may not increase its power draw
from the bus, when it loses its external power
source, beyond the amount reported by its
configuration.

If a device can continue to operate when
disconnected from its external power source,
it continues to do so. If the device cannot
continue to operate, it fails operations it can
no longer support. The USB System Software
may determine the cause of the failure by
checking the status and noting the loss of the
device’s power source.

9.6.4 Other_Speed_Configuration
The Other_Speed_Configuration descriptor describes a configuration of a high-speed capable device if
it were operating at its other possible speed. The structure of the Other_Speed_Configuration is
identical to a Configuration descriptor.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 203

Table 9-11. Other_Speed_Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of descriptor

1 BdescriptorType 1 Constant Other_speed_Configuration Type

2 wTotalLength 2 Number Total length of data returned …

4 bNumInterfaces 1 Number Number of interfaces supported by this
speed configuration.

5 bConfigurationValue 1 Number Value to use to select configuration…

6 iConfiguration 1 Index Index of string descriptor…

7 bmAttributes 1 Bitmap Same as Configuration descriptor

8 bMaxPower 1 MA Same as Configuration descriptor

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to OTHER_SPEED_CONFIGURATION (see Table 9-5).

9.6.5 Interface
This descriptor describes a specific interface within a configuration. A configuration provides one or more
interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within the
configuration. When a configuration supports more than one interface, the endpoints for a particular
interface follow the interface descriptor in the data returned by the GetConfiguration() request. An interface
descriptor is always returned as part of a configuration descriptor. Interface descriptors cannot be directly
accessed with a GetDescriptor() or SetDescriptor() request.

An interface may include alternate settings that allow the endpoints and/or their characteristics to be varied
after the device has been configured. The default setting for an interface is always alternate setting zero.
The SetInterface() request is used to select an alternate setting or to return to the default setting. The
GetInterface() request returns the selected alternate setting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has alternate settings for one or more of its interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor with the bInterfaceNumber and bAlternateSetting
fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor
and its associated endpoint descriptors. The second interface descriptor’s bInterfaceNumber field would
also be set to zero, but the bAlternateSetting field of the second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor and the
interface identifies a request interface that uses the default pipe attached to endpoint zero. In this case, the
bNumEndpoints field shall be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints. Table 9-12 shows the
standard interface descriptor.

Universal Serial Bus Specification Revision 2.0 (0.79)

204 USB-IF Member Confidential

Table 9-12. Standard Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant INTERFACE Descriptor Type

2 bInterfaceNumber 1 Number Number of interface. Zero-based value
identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select alternate setting for
the interface identified in the prior field

4 bNumEndpoints 1 Number Number of endpoints used by this
interface (excluding endpoint zero). If this
value is zero, this interface only uses the
Default Control Pipe.

5 bInterfaceClass 1 Class Class code (assigned by the USB).

A value of zero is reserved for future
standardization.

If this field is set to FFH, the interface
class is vendor-specific.

All other values are reserved for
assignment by the USB.

6 bInterfaceSubClass 1 SubClass Subclass code (assigned by the USB).
These codes are qualified by the value of
the bInterfaceClass field.

If the bInterfaceClass field is reset to
zero, this field must also be reset to zero.

If the bInterfaceClass field is not set to
FFH, all values are reserved for
assignment by the USB.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 205

Table 9-12. Standard Interface Descriptor (Continued)

Offset Field Size Value Description

7 bInterfaceProtocol 1 Protocol Protocol code (assigned by the USB).
These codes are qualified by the value of
the bInterfaceClass and the
bInterfaceSubClass fields. If an interface
supports class-specific requests, this
code identifies the protocols that the
device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use a class-specific protocol on
this interface.

If this field is set to FFH, the device uses
a vendor-specific protocol for this
interface.

8 iInterface 1 Index Index of string descriptor describing this
interface

9.6.6 Endpoint
Each endpoint used for an interface has its own descriptor. This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptor is
always returned as part of the configuration information returned by a GetDescriptor(Configuration)
request. An endpoint descriptor cannot be directly accessed with a GetDescriptor() or SetDescriptor()
request. There is never an endpoint descriptor for endpoint zero. Table 9-13 shows the standard endpoint
descriptor.

Table 9-13. Standard Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant ENDPOINT Descriptor Type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB
device described by this descriptor. The
address is encoded as follows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero
Bit 7: Direction, ignored for

 control endpoints
 0 = OUT endpoint
 1 = IN endpoint

Universal Serial Bus Specification Revision 2.0 (0.79)

206 USB-IF Member Confidential

Table 9-13. Standard Endpoint Descriptor (Continued)

Offset Field Size Value Description

3 bmAttributes 1 Bitmap This field describes the endpoint’s
attributes when it is configured using the
bConfigurationValue.

Bit 1..0: Transfer Type
 00 = Control
 01 = Isochronous
 10 = Bulk
 11 = Interrupt

All other bits are reserved.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.

For isochronous endpoints, this value is
used to reserve the bus time in the
schedule, required for the per-frame data
payloads. The pipe may, on an ongoing
basis, actually use less bandwidth than
that reserved. The device reports, if
necessary, the actual bandwidth used via
its normal, non-USB defined
mechanisms.

For interrupt, bulk, and control endpoints,
smaller data payloads may be sent, but
will terminate the transfer and may or may
not require intervention to restart. Refer
to Chapter 5 for more information.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 207

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.

For isochronous endpoints, this value is
used to reserve the bus time in the
schedule, required for the per-
(micro)frame data payloads. The pipe
may, on an ongoing basis, actually use
less bandwidth than that reserved. The
device reports, if necessary, the actual
bandwidth used via its normal, non-USB
defined mechanisms.

For all endpoints, bits 11..0 specify the
maximum packet size (in bytes).

For high-speed isochronous and interrupt
endpoints:

Bit 13..12 specify the number of additional
transaction opportunities per microframe:

00 = None (1 transaction per microframe)
01 = 1 additional (2 per microframe)
10 = 2 additional (3 per microframe)
11 = Reserved

Refer to Chapter 5 for more information.

6 bInterval 1 Number Interval for polling endpoint for data
transfers. Expressed in milliseconds.

This field is ignored for bulk and control
endpoints. For isochronous endpoints
this field must be set to 1. For interrupt
endpoints, this field may range from 1 to
255.

Universal Serial Bus Specification Revision 2.0 (0.79)

208 USB-IF Member Confidential

6 bInterval 1 Number Interval for polling endpoint for data
transfers. Expressed in frames or micro-
frames depending on the device
operating speed (i.e., either 1 millisecond
or 125µs units).

For full-speed isochronous endpoints, this
value must be 1.

For high-speed isochronous endpoints,
this value may be an interval value from 0
to 16. The bInterval value is used as the
exponent for a 2^N value, e.g. a bInterval
of 3 means a period of 8 (2^3).

For full/low-speed interrupt endpoints, the
value of this field may be from 1 to 255.

For high-speed interrupt endpoints, the
bInterval value is used as the exponent
for a 2^N value, e.g. a bInterval of 3
means a period of 8 (2^3). This value
must be from 0 to 16.

See Chapter 5 description of periods for
more detail.

High-speed isochronous and interrupt endpoints use bits 13..12 of wMaxPacketSize to specify multiple
transactions for each microframe specified by bInterval. If bits 13..12 of wMaxPacketSize are zero, the
maximum packet size for the endpoint can be any allowed value (as defined in Chapter 5). If bits 13..12
of wMaxPacketSize are not zero (0), the allowed values for wMaxPacketSize bits 11..0 are limited as
shown in Table 9-14.

Table 9-14. Allowed wMaxPacketSize Values for Different Numbers of Transactions per
Microframe

wMaxPacketSize
bits 13..12

wMaxPacketSize
bits 11..0 Values
Allowed

00 1 – 1024

01 513 – 1024

10 683 – 1024

11 N/A; reserved

9.6.7 String
String descriptors are optional. As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Version 1.0, Volumes 1 and 2, The Unicode Consortium, Addison-Wesley Publishing Company,
Reading, Massachusetts. The strings in a USB device may support multiple languages. When requesting a
string descriptor, the requester specifies the desired language using a sixteen-bit language ID (LANGID)
defined by Microsoft for Windows as described in Developing International Software for Windows 95 and
Windows NT, Nadine Kano, Microsoft Press, Redmond, Washington. String index zero for all languages
returns a string descriptor that contains an array of two-byte LANGID codes supported by the device.

Universal Serial Bus Specification Revision 2.0 (0.79)

USB-IF Member Confidential 209

Table 9-15 shows the LANGID code array. A USB device may omit all string descriptors. USB devices
that omit all string descriptors shall not return an array of LANGID codes.

The array of LANGID codes is not NULL-terminated. The size of the array (in bytes) is computed by
subtracting two from the value of the first byte of the descriptor.

Table 9-15. Codes Representing Languages Supported by the Device

Offset Field Size Value Description

0 bLength 1 N+2 Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 wLANGID[0] 2 Number LANGID code zero

...

N wLANGID[x] 2 Number LANGID code x

The UNICODE string descriptor (shown in Table 9-16) is not NULL-terminated. The string length is
computed by subtracting two from the value of the first byte of the descriptor.

Universal Serial Bus Specification Revision 2.0 (0.79)

210 USB-IF Member Confidential

Table 9-16. UNICODE String Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 bString N Number UNICODE encoded string

9.7 Device Class Definitions
All devices must support the requests and descriptor definitions described in this chapter. Most devices
provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are common to a group of devices. In order to define a class of devices,
the following information must be provided to completely define the appearance and behavior of the device
class.

9.7.1 Descriptors
If the class requires any specific definition of the standard descriptors, the class definition must include
those requirements as part of the class definition. In addition, if the class defines a standard extended set of
descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions
should follow the approach used for standard descriptors; for example, all descriptors should begin with a
length field.

9.7.2 Interface(s) and Endpoint Usage
When a class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with
proprietary features as long as they meet the base definition of the class.

9.7.3 Requests
All of the requests specific to the class must be defined.

