

COE Advanced Eighth Brick Size Converter

· High efficiency 91%@5.0V/25A 89%@2.5V/40A87%@1.8V/50A

· High useable current

Low profile

...... 2.5V/21A at 70°C 200LFM 1.8V/25A at 70°C 200LFM 1.5V/25A at 70°C 200LFM158W/in³ · High power density 0.40"(10.2mm)-40°C~120°C

· Operation temperature • Open frame and metal enclosed package

· Quarter brick pin out compatible

PRELIMINARY DATA SHEET

The "Advanced" COE series high efficiency dc/dc converter is co-developed by Glary Power Technology and Idealise Research to provide up to 50A delivered current with new industry standard double-pin packaging. The efficient SR technology combining with patented "Buck Reset" topology cut power loss to improve the efficiency. The low profile converter was integrated with patent pending "Sink-Plate" structure gives converter the most effected thermal managing function that able to eliminate the hot spot and improve the thermal resistance greatly. This module is designed to meet high-reliability and/or high-density applications that supplied by a 24V or 48V (36~75V) input bus.

Part Number *	Input		Output		Efficiency
COE48120ABCD-EF	36V~75V	145W	12.0V/11A	132W	92%
COE48050ABCD-EF	36V~75V	138W	5.0V/25A	125W	91%
COE48033ABCD-EF	36V~75V	111W	3.3V/30A	99W	90%
COE48025ABCD-EF	36V~75V	114W	2.5V/40A	100W	89%
COE48018ABCD-EF	36V~75V	106W	1.8V/50A	90W	87%
COE48015ABCD-EF	36V~75V	90W	1.5V/50A	75W	85%

Part Number *	Input		Output		Efficiency
COE24120ABCD-EF	18V~36V	147W	12.0V/11A	132W	91%
COE24050ABCD-EF	18V~36V	139W	5.0V/25A	125W	90%
COE24033ABCD-EF	18V~36V	111W	3.3V/30A	99W	89%
COE24025ABCD-EF	18V~36V	114W	2.5V/50A	125W	89%
COE24018ABCD-EF	18V~36V	106W	1.8V/50A	90W	87%
COE24015ABCD-EF	18V~36V	90W	1.5V/50A	75W	85%

* Options for COEXXXXXABCD-EF are as follows:

"P" for Positive or "N" for Negative. A (Enable Logic):

B (Pin Length): "0" for Pin Length 0.120" "1" for Pin Length 0.16" "2" for Pin Length 0.20" "3" for Pin Length 0.240"

"0" for 0.36" "1" for 0.40" "3" for 0.50" C (Total Height): "2" for 0.45"

D (Base Plate): "S" 3.0mm Base Plate "M" 1.0mm Metal Plate "A" 3.0mm Sink-Plate "B" 5.0mm Sink-Plate

EF (Output): 00~99 for Output Current Rating

Example: COE48018P31M-40 is a "Cool" series OPEN version eighth brick size 48V to 1.8V/40A dc/dc converter with options of positive control logic, 0.240" pin length, 0.40" total height and 1.0mm Metal Plate.

ABSOLUTE MAXIMUM RATINGS					
Temperature	Operation	-40°C to +120°C			
	Storage	-55°C to +125°C			
Input Voltage Range	Operation:				
	24V Models	-0.5V to +40Vdc			
	48V Models	-0.5V to +80Vdc			
	Transient (100mS):				
	24V Models	50V Maximum			
	48V Models	100V Maximum			
Isolation Voltage	Input to Output	2.0KV Minimum			
	Input to Case	1.0KV Minimum			
	Output to Case	1.0KV Minimum			
Remote Control Voltage		-0.5V to +12Vdc			

GENERAL SPECIFICATIONS					
Conversion Efficiency	Typical	See table			
Switching Frequency	Typical	300KHz			
MTBF	Bellcore	4.94×10 ⁶ hrs @GB.			
OTP	Internal	120°C Latched			
Weight		1.0 oz			
Size		2.30"×0.90"×0.36"			

CONTROL FUNCTIONS			
Remote Control	Logic High	+3.0V t0 +6.5V	
	Logic Low	0V to +1.0V	
Input Current of Remote Control Pin		-0.5mA ~ +1.5mA	

INPUT SPECIFICATIONS						
Operation Voltage Range	24V Models	+18V to +36Vdc				
	48V Models	+36V to +75Vdc				
Reflected Ripple Current	$L_{EXT} = 10uH$	20mA Max				
Power ON Voltage Ranges	24V Models	+17.5V to +17.9Vdc				
	48V Models	+35.0V to +35.8Vdc				
Power OFF Voltage Ranges	24V Models	+17.0V to +17.4Vdc				
	48V Models	+34.0V to +34.8Vdc				
Off State Input Current	V_{NOM}	6mA Max				
Latch-State Input Current	V_{NOM}	8mA Max				
Input Capacitance	24V Models	10.0uF Max				
	48V Models	2.2uF Max				

OUTPUT SPECIFICATIONS					
Voltage Accuracy	Typical	±1%			
Line Regulation	Full Input Range	±0.2%			
Load Regulation	10%~100%	±0.2%			
Temperature Drift	-40°C ~100°C	±0.02%/°C			
Output Tolerance Band	All Conditions	±3%			
Ripple & Noise (20MHz)	Peak-Peak (RMS)	3% (1%) V _o			
Over Voltage Protection	V _{NOM} , 10% Load	115~130 %Vo			
Output Current Limits	V_{NOM}	105%~125%			
Voltage Trim	V _{NOM} , 10% Load	±10%			
Input Ripple Rejection (<1KHz)	V _{NOM} , Full Load	-50dB			
Step Load (2.5A/uS)	50%~75% Load	300mV/300uS			
Start-Up Delay Time	V _{NOM} , Full Load	20mS/250mS			

NOTE

- 1. 20MHz bandwidth current probe measured without an external filter.
- 2. Output ripple and noise is measured by using the proposed test method of Glary Power Technology Co. Ltd.
- 3. Input fusing is required and recommended to base on surge current and maximum input current.
- 4. Case and base-plate should be connected to AC ground to maintain good EMC performance.
- 5. Case and base-plate should be inaccessible to prevent the damage from highly operating temperature.
- 6. Contact Glary Power Technology for non-standard inquiry.