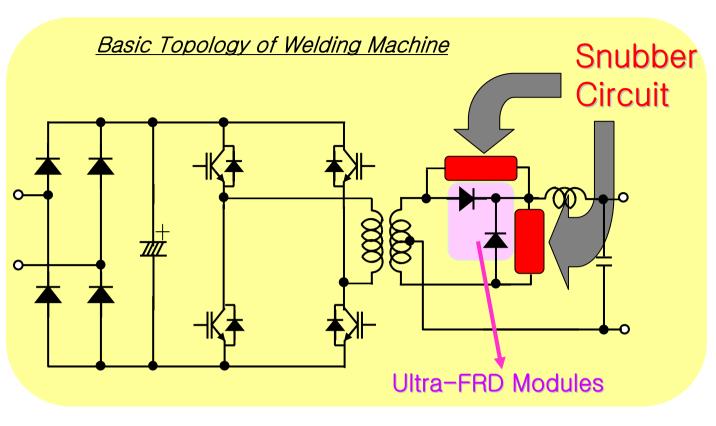
Snubber Circuits Test Result for the FRD Module Application

2005, 04, 28

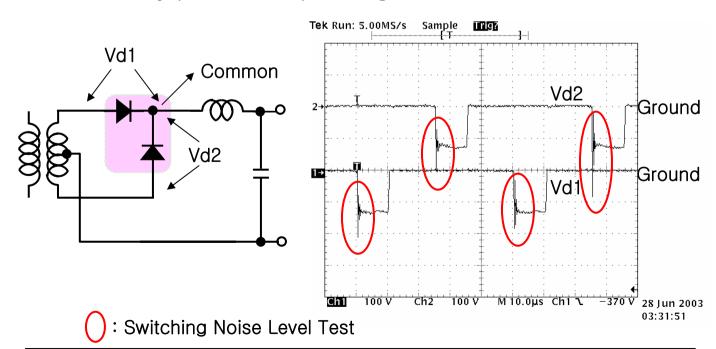
Dawin Electronics Co.,Ltd. Application Engineering

YJ KIM

E-mail:dawin@dawinelectronic.com



Content


1. Snubber test Circuits for FRD Module	Page 3
2. Secondly part FRD Operating Waveform	Page 3
 3. Vd1 Noise Signal Test Result	Page 4
4) Notice	Page 5
4. Vd1 Noise Signal Test Data	Page 6
3) Only 472[1KW] Cap. Connection 4) 472[1KV] Cap. + 4.7 Ohm [3W] Series Connection	Page 7
5) Only 103[1KV] Cap. Connection 6) 103[1KV] Cap. + 4.7 Ohm [3W] Series Connection	Page 8
7) 103[1KV] Cap. + 10 Ohm [3W] Series Connection8) Only 503[1KV] Cap. Connection	Page 9
9) 503[1KV] Cap. + 4.7 Ohm [5W] Series Connection— 10) 503[1KV] Cap. + 10 Ohm [5W] Series Connection	Page10

1. Snubber test Circuits for FRD Module

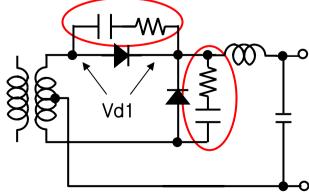
2. Secondly part FRD Operating Waveform

3. Vd1 Noise Signal Test Result

1) Common Condition

- Test Device : DWC2F100N040S

- Test System: 180A ARC Welding Machine (Made in Korea)


=> Switching Frequency : 20Khz
=> at Maximum Output Power

- Vd1 Noise Signal Monitoring

2) Test Result According to the Snubber Circuits

Test Condition(RC Snubber)	Circuits	Result
No Snubber(No Connection)		Too Bad
Only 472[1KV] Cap.	\neg	Bad
472[1KV] Cap. + 4.70hm [3W]	⊢ ₩-	So so
Only 103[1KV] Cap.	\neg	Bad
103[1KV] Cap. + 4.7Ohm [3W]	⊣⊢ ₩-	Good
103[1KV] Cap. + 10Ohm [3W]	⊣⊢ ₩-	Very Good
Only 503[1KV] Cap.	$\dashv \vdash$	Too Bad
503[1KV] Cap. + 4.70hm [5W]	<u> </u>	Too Bad
503[1KV] Cap. + 10Ohm [5W]	⊣⊢ w-	Too Bad

3) RC Snubber Circuit Connection Method

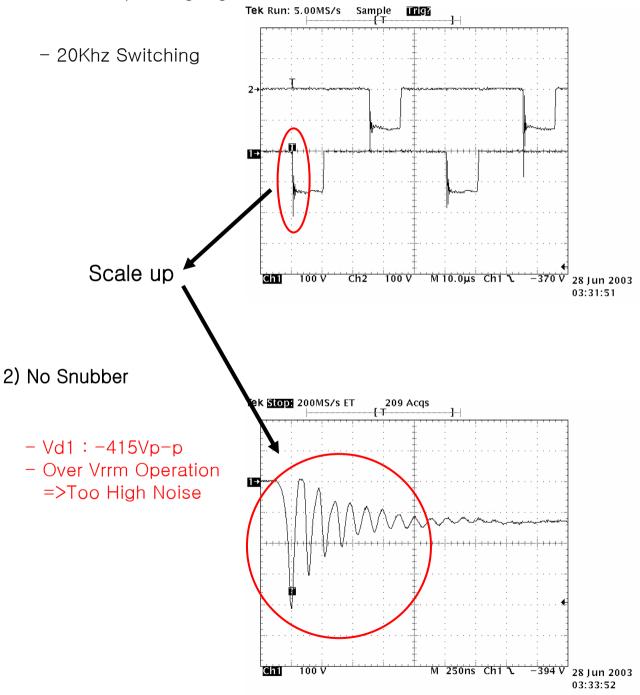
4) Notices

- There is a possibility that there will be some difference in each system.
 In general, the snubber circuits can be selected and used by referring to the above test result.
- Recommended values
 There is slight difference, according to each system; thus, the following values are recommended:
 - => The best snubber circuit value method: Series connection of 103 Cap. [1KV] * 10 Ω [3W]
 - => Second method: Series connection of 103 Cap. [1KV] * 4.7 Ω [3W]
 - => Third method: Series connection of 472 Cap. [1KV] * 10 Ω [3W]
- In case of welding machines,

The application of the above snubber circuits is the circuits in which the maximum system power up to \sim 5KW is applied.

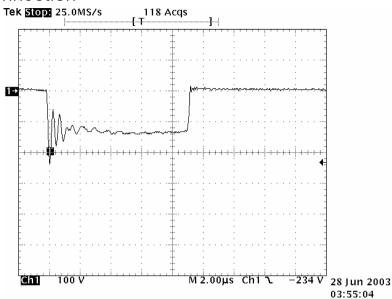
In other words, this can be expressed as the following formula, P = 1/2 * C*V*V[W]

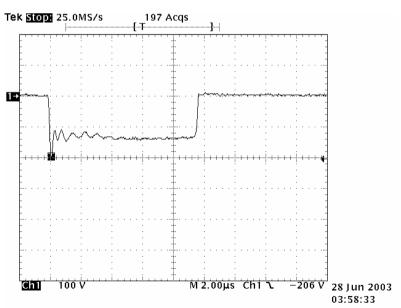
As indicated in the above formula, the heat dissipation characteristics are determined, according to capacitor value.


Thus, the more complex and excellent circuits than the above-mentioned snubber circuits should be applied and used in the system where more power is required.

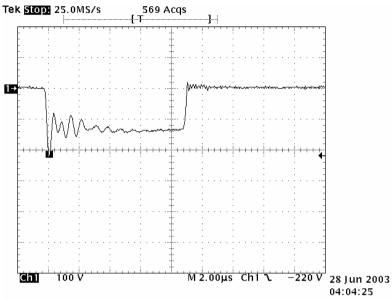
When applying the above-mentioned snubber circuit,
 if R and C have a severe heating, a higher watt resistor should be used, or bulkier product should be selected and used with the same capacity in terms of a capacitor.

4. Vd1 Noise Signal Test Data


1) Vd1, Vd2 Operating Signal

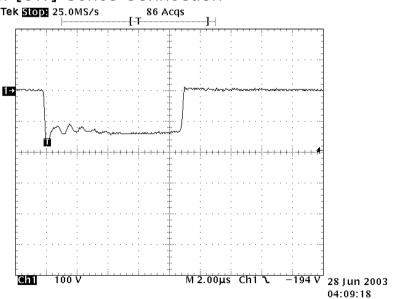

3) Only 472[1KV] Cap. Connection

$$-Vd1:-234Vp-p$$


4) 472[1KV] Cap. + 4.70hm [3W] Series Connection

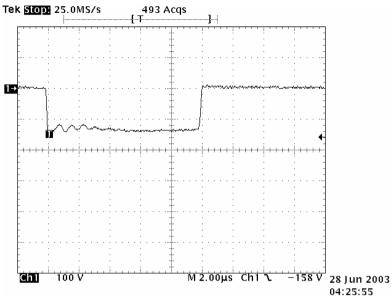
$$-Vd1:-206Vp-p$$

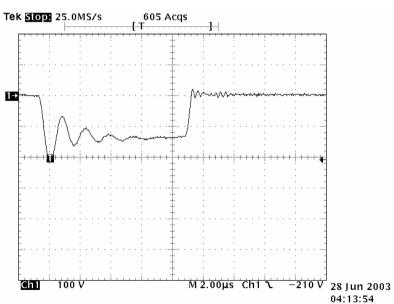
5) Only 103[1KV] Cap. Connection


$$-Vd1:-220Vp-p$$

6) 103[1KV] Cap. + 4.70hm [3W] Series Connection

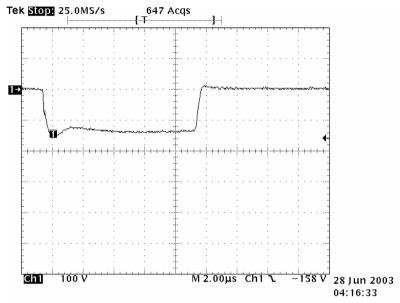
- Vd1: -180Vp-p

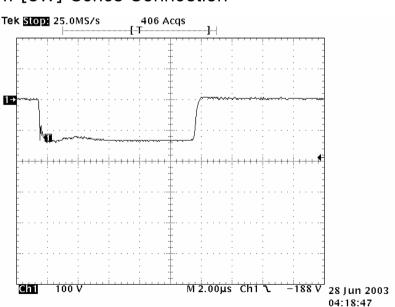

- Good Method


7) 103[1KV] Cap. + 10Ohm [3W] Series Connection

- Vd1 : -158Vp-p
- Very Good Method

8) Only 503[1KV] Cap. Connection


- Vd1 : -210Vp-p
- Too bad


9) 503[1KV] Cap. + 4.7Ohm [5W] Series Connection

$$- Vd1 : -158Vp-p$$

10) 503[1KV] Cap. + 10Ohm [5W] Series Connection

$$-Vd1:-148Vp-p$$

