


Dual N-Channel 20-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

•	Low DS(on) Provides Higher Efficiency	y and
	Extends Battery Life	

- Low gate charge 7nC
- High performance
- High current handling
- Miniature TSOP-6 Surface Mount Package Saves Board Space

PRODUCT SUMMARY				
V _{DS} (V)	R _{DS (on)} (ohm)	I _D (A)		
20	0.030	5.0		
20	$0.046 @ V_{GS} = 2.5V$	3.0		

ABSOLUTEM AXIMUM RATINGS (T A = 25 °C UNLES SOTHERWISENOTED)					
Parameter			M aximum	Units	
Drain-Source Voltage			20	V	
Gate-Source Voltage			±10		
Continuous Drain Current ^a	$T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$	I.	3.8		
Continuous Drain Current	$T_A=70^{\circ}C$	ъ	3.0	A	
Pulsed Drain Current ^b		I_{DM}	10		
Continuous Source Current (Diode Conduction) ^a			0.46	A	
Decree Disciplation ^a	$T_A=25^{\circ}C$	P_{D}	1.25	\mid W	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1 D	0.8	VV	
Operating Junction and Storage Temperature Range		T_J, T_{stg}	-55 to 150	°C	

TH ER MALR ESISTANCE RATINGS						
Parameter	Symbol	M aximum	Units			
M · I	t <= 5 sec	D	100	°C/W		
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	166			

1

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter	Symbol	Test Conditions	Li mits			Unit	
rarameter	Зуппоог	1 est Conditions	Min	Тур	M ax	Onit	
Static							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \text{ uA}$				V	
Gate-Threshold Voltage	V _G S(th)	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	0.5	0.8	1.5	`	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current	Idss	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA	
Zero Gate Voltage Diam Current	1022	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	uA	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10			A	
D · C O D · A	IDS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 5.0 \text{A}$		27	30	mΩ	
Drain-Source On-Resistance ^A		$V_{GS} = 2.5 \text{ V}, I_{D} = 3.0 \text{ A}$		35	46		
Forward Tranconductance ^A	gs	$V_{DS} = 5 \text{ V}, I_{D} = 3.0 \text{ A}$		11		S	
Diode Forward Voltage	Vsd	$I_S = 2.00 \text{ A}, V_{GS} = 0 \text{ V}$		0.80	1.20	V	
Dynamic ^b	•				•		
Total Gate Charge	Qg	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V},$		11			
Gate-Source Charge	Q_{gs}	$I_D = 4.0 \text{ A}$		2.20		пC	
Gate-Drain Charge	Qgd	ID – 4.0 A		2.50			
Switching	•				•		
Turn-On Delay Time	t _{d(on)}			9	17		
Rise Time	t _r	$V_{DD} = 10 \text{ V}, \qquad \text{ID} = 1 \text{ A},$		11	18	ns	
Turn-Off Delay Time	t _{d(off)}	$R_G = 10 \text{ oh,m}$, $V_{GEN} = 4.5 \text{ V}$		18	29	1115	
Fall-Time	t_{f}			5	10		

- a. Pulse test: $PW \le 300us duty cycle \le 2\%$.
- b. Guaranteed by design, not subject to production testing.m

Megasys(MEI) reserves the right to make changes without further notice to any products herein. MEI makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor doesMEI assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in MEI data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. MEI does not convey any license under its patent rights nor the rights of others. MEI products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the MEI product could create a situation where personal injury or death may occur. Should Buyer purchase or use MEI products for any such unintended or unauthorized application, Buyer shall indemnify and hold MEI and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that MEI was negligent regarding the design or manufacture of the part. MEI is an Equal Opportunity/Affirmative Action Employer.