4 Channel Parallel NiMH Battery Charger IC LS2981 4通道線氫電池並聯分時充電控制IC

特色

可以單1顆鎳氫電池獨立充電,共有4 通道並聯分時充電控制迴路.

採用高精密 1 mV 解析度的類比數位轉換 (或摩數轉換, ADC),可精準判別鎳 氫電池充飽狀況;即電池電壓負增值 (-deltaV),零增值(0 deltaV) = 5 mV. (合乎工業界對鎳氫電池充電充飽的要求: -delta $V = 5 \sim 10 \text{ mV}$).

專有雜訊過濾線路設計,可判別為線路上不定時雜訊,或電池電壓微小變化之充飽狀態.

智慧型邏輯線路可以判斷空電池之假性負增值(-deltaV), 以免誤判充飽.

當充飽狀況產生後,再以涓流電流補充電,以彌補電池自然放電,線路零件 耗電的損耗,直到電源或電池取下為止,

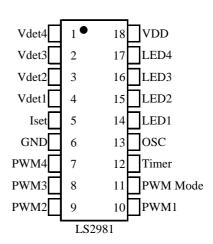
4通道迴路, 並聯分時控制, 精簡周邊零件成本.

定電流充電模式- 自動偵測並調整充電電流為定電流方式, 合乎工業界對 銀氫電池充電要求.

過放電電壓保護-電池過放電時,自動調整為小電流充電(預備充電流程),以保護電池性能壽命.

過充電電壓保護- 當電池電壓超出正

常充電電壓範圍,自動切斷終止充電流程,以防止電池漏液,爆炸等危險.

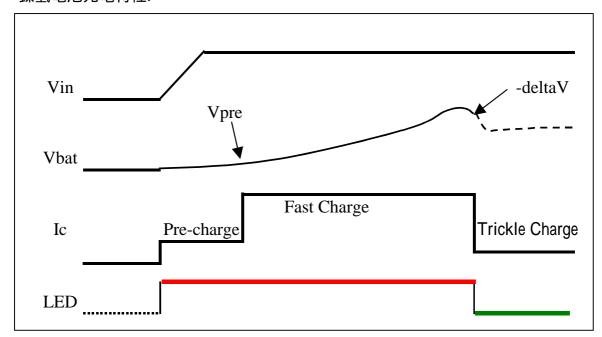

安全充電終止時間保護- 當電池異常時,於合理時間內,無正常充飽狀況產生時,強行終止充電流程,以防止電池漏液,爆炸等危險.有8或16小時設定選擇.

安全預備充電終止時間保護- 自動限制預備充電流程的合理時間.

採用單腳 RC 線路經濟震盪線路. 4 組獨立雙色 LED 充電狀態顯示: 電源開啟/無電池/充電/充飽/ 電池異常.

工作電壓: 5.0 Volt.

封裝: LS2981S: SOP-18 (300 mil)



應用產品: 高精準之4通道鎳氫電池並聯分時充電器.

腳位定義

Pin No.	Name	I/O	Description 描述		
腳數	名稱	輸出入	Description July		
1	Vdet4	I	-第4通道電池電壓偵測輸入,接於第4通道電池之正端		
2	Vdet3	I	-第3通道電池電壓偵測輸入,接於第3通道電池之正端		
3	Vdet2	I	-第2通道電池電壓偵測輸入,接於第2通道電池之正端		
4	Vdet1	I	-第1通道電池電壓偵測輸入,接於第1通道電池之正端		
5	Iset	I	-充電電流設定/偵測輸入		
			-接於所有電池負端共接,並串一電阻接地,以偵測充電電流.		
			-相對應之電壓值 ~ 340mV.(當 IC 工作電壓 =5.0V.)		
			-充電電流值 = ~ 340mV / R(接地電阻)		
6	GND	P	-Ground 接地		
7	PWM4	О	-第4通道電池充電控制輸出		
			-若 PWM Mode: 低電位, 可驅動外接 PMOS, PNP		
			-若 PWM Mode: 高電位, 可外接 NMOS, NPN,		
			再驅動 PMOS, PNP		
8	PWM3	О	-第3通道電池充電控制輸出 (驅動方式與 PWM4 相同)		
9	PWM2	О	-第2通道電池充電控制輸出 (驅動方式與 PWM4 相同)		
10	PWM1	О	-第1通道電池充電控制輸出 (驅動方式與 PWM4 相同)		
11	PWM	I	-充電控制模式選擇輸入		
	Mode		-接於高電位, 則 PWM1, 2, 3, 4 充電控制輸出動作為高電位.		
			-接於低電位, 則 PWM1, 2, 3, 4 充電控制輸出動作為低電位.		
12	Timer	I	-充電時間設定輸入 (4 個通道計時個別啟動, 終止)		
			-接於高電位,充電終止時間: 16 小時.		
			-接於低電位,充電終止時間: 8 小時.		
			-接於 VDD/2 電位,進入測試模式(Test Mode):		
			Timer = 8~ 16 秒		
13	OSC	I	-RC 振盪輸入		
			-建議值: R= 18k ohm, C=100pf.		
14	LED1	O	-第1通道電池充電狀態 LED 輸出		
			-充電時,為高電位以驅動紅色 LED.		
			-充飽時,為低電位以驅動綠色 LED.		
			-其他狀態,另見 LED 狀態顯示.		
15	LED2	О	-第 2 通道電池充電狀態 LED 輸出 (驅動方式與 LED1 相同)		
16	LED3	O	-第 3 通道電池充電狀態 LED 輸出 (驅動方式與 LED1 相同)		
17	LED4	0	-第 4 通道電池充電狀態 LED 輸出 (驅動方式與 LED1 相同)		
18	VDD	P	-電源輸入		

鎳氫電池充電特性:

無電池時: 以微小脈波以便喚醒出廠過久之呆滯電池(電池電壓過低, 如同無電池). 預充(Pre-Charge): 過放電之電池, 自動以較小定電流充電, 以保護電池壽命.

預充終止時間保護(Pre-Charge Time Out): 於預充時間終止後, 電池電壓亦無法回升至 正常電位, 即視為異常電池, 強迫終止充電流程.

快充(Fast Charge): 正常電壓之電池, 自動以設定之定電流充電, 以快速充電流程. 快充終止時間保護(Fast Charge Time Out): 於快充時間終止後, 電池電壓亦無法達到正 常充飽電位, 則視為已充飽電池, 強迫終止充電流程, 以保護電池壽命.

涓充(Trickle Charge): 電池電壓達充飽電位, 則 LED 轉為充飽燈號; 同時以較小定電 流充電. 以使電池飽和度增加.

運作方式:

智慧型並聯分時充電控制- 自動偵測 電池置入通道數量, 以調整分時比例. 例如 4 個通道均有電池, 則每一通道均 分, 各有 1/4 時間以運作充電流程. 若 3 個通道有電池; 則每一通道, 各有 1/3 時間: 若2個通道有電池,則每一通道, 各有 1/2 時間; 若僅 1 個通道有電池, 則 此通道有100%時間以運作充電流程.

若多個通道充電運作時, 其中單一或 部份通道電池已充飽, 則分時比例再作 調整, 以使充電效率達最佳化狀態.

IC 內部採高精準模數 ADC 轉換, 每 階為 1 mV, 可精準判別電池充飽電壓 -deltaV = 5mV

充電效率優先原則- 當單一或部份通 道電池已充飽, 會暫停充電流程, 待所 有電池都達充飽狀態, 再同時進行涓流 電流補充電流程,以達快速效果,

腳位工作原理:

VDD(電源輸入, pin18):

所有電壓偵測值均 5.0V 工作電壓為準. 若工作電壓變動, 則作相對變動.

建議工作電壓應於 4.5V ~5.5V 內.

OSC (RC 振盪輸入, pin13):

5.0V 工作電壓下, R=18k ohm, C=100pf, 標準振盪頻率=~900k Hz.

於標準振盪頻率=~900k Hz., 啟動電源時, LED 輸出高/低電位, 均為 500ms 重複三次; 可由此精準測試快充終止時間保護值(8 或 16 小時).

<u>Timer (充電終止保護, 時間設定輸入</u> pin12):

於標準振盪頻率下,外接低電位,快充終止時間(Fast Charge Time Out)= 8 小時.外接高電位,快充終止時間= 16 小時.

充電終止時間值為每一通道獨立計算, 不因其他通道電池的提早/延後置入或充 飽而影響.

PWM1, 2, 3, 4 (充電迴路控制輸出, pin10, 9, 8, 7):

PWM1, 2, 3, 4 為相對應於第 1, 2, 3, 4 通道之充電迴路控制輸出.

當通道運作時,採用充電時(約2秒), PWM 起作用,以控制定電流充電;關電 時(約0.2秒),PD關閉作用,不充電,並由 Vdet 腳位作量取電池電壓功能.以取得 準確電池電壓.

於 PWM 動作依 PWM Mode (pin11, 充電控制模式選擇輸入) 而定為高/低電位,以開啟外部 MOS,或電晶体,三極管線路架構.

PWM 振盪頻率約 120k Hz (快充時), 定電流控制方式, 詳見 Iset 腳位描述.

PWM Mode (充電控制模式選擇輸入, pin11):

外接於高電位,則 PWM1,2,3,4 充電控

制輸出動作為高電位. 外接於低電位, 則 PWM1, 2, 3, 4 充電控制輸出動作為低電位.

LED1, 2, 3, 4

(LED 狀態輸出, pin14, 15, 16, 17):

LED1, 2, 3, 4 為相對應於第 1, 2, 3, 4 通道電池之燈號顯示.

外接紅綠雙色, 2 腳 LED(不共陰不共陽). 若驅動電流=10mA, 則接 220 ohm至 VDD, 220 ohm至 GND.

LED 腳位接紅燈正極(燈綠負極).

LED 顯示模式

項次	狀態	顯示		
1	電源啟動	紅, 綠交互閃爍,		
		各 0.5 秒, 共 3 秒		
2	無電池	熄滅		
3	電池異常	紅, 綠交互,		
	-預充異常,	各 0.25 秒		
	-電池電壓過高	(直到電池取出)		
4	充電	紅燈恆亮		
5	充飽 (或涓充)	綠燈恆亮		

Iset (充電電流設定/偵測輸入, pin5):

外接充電電流設定之電阻(Rc), 置於電池之負端(並接地). 標準之充電電流設定值= 340mV/Rc.

若充電電流大於設定值,內部即關閉 PWM 動作,若充電電流小於設定值,內 部即開啟 PWM 動作,以達定電流目標.

實際充電電流值受 IC 內部, 與外部 MOS 動作反應快慢而影響, 一般誤差約 有設定值,之+/-10%.

Vdet1, 2, 3, 4

(電池電壓偵測輸入, pin4, 3, 2, 1):

Vdet1, 2, 3, 4 為相對應於第 1, 2, 3, 4

通道之電池電壓偵測輸入.

關電時(約 0.2 秒), PWM 關閉作用, 不充電, 僅由 Vdet 腳位作電池電壓偵測. 避免量取的電池電壓會包合充電電流乘以電池內阻的虛值電壓.

若電池電壓小於 Vin, 會視為沒有電池 置入. IC 以微小脈波以便喚醒出廠過久之 呆滯電池(電池電壓過低, 如同無電池).

若電池電壓小於 Vmin, IC 會執行預充 (Pre-Charge)流程. 即過放電之電池, 自動以較小定電流(預充電流)充電, 以保護電池壽命.

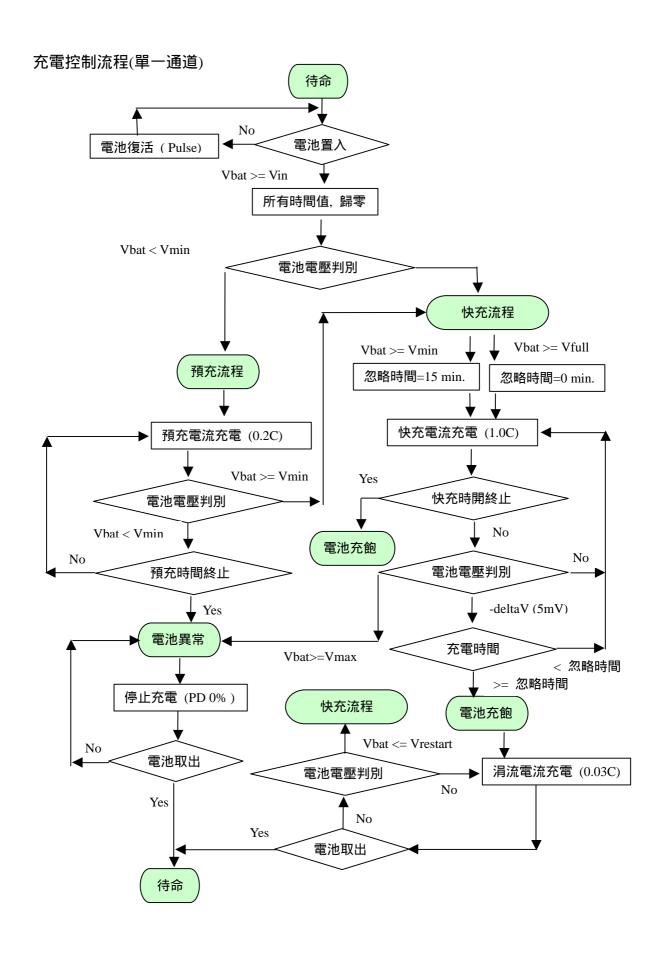
預充終止時間保護(Pre-Charge Time Out): 於預充時間(30min.)終止後, 電池電壓亦無法回升至正常電位, 即視為異常電池, 強迫終止充電流程.

若電池電壓大於 Vmin, IC 會執行快充 (Fast Charge)流程. 即正常電壓之電池, 自動以設定之定電流(快充電流)充電, 以快速充電.

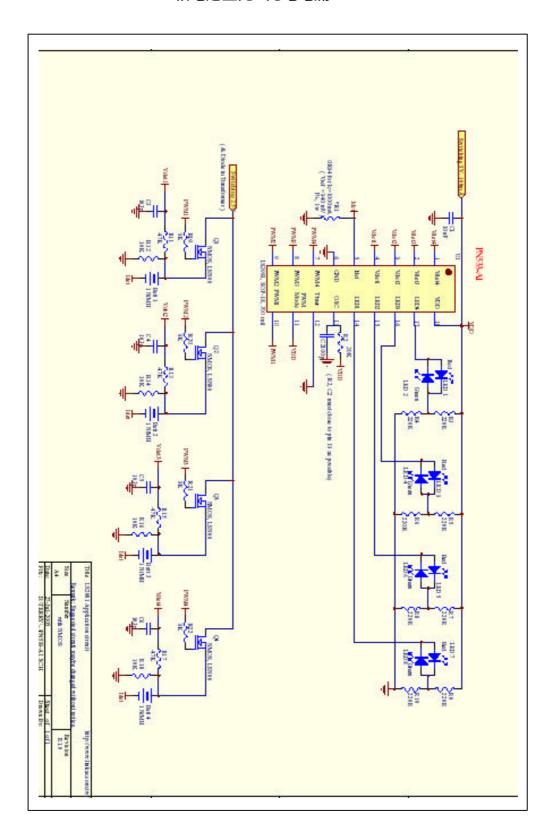
快充終止時間保護(Fast Charge Time Out): 於快充時間終止後,電池電壓亦無法達到正常充飽電位,則視為已充飽電池,強迫終止充電流程,以保護電池壽命.

此快充終止時間之設定, 詳見 Timer 腳位 說明.

若電池電壓呈現-deltaV 現象(電池電壓至最大值後下降,即單位時間內電壓增加值為負數;即負增值),則為電池充飽狀態. LED 轉為充飽燈號. 並執行涓充(Trickle Charge)流程,以較小定電流(涓流)充電,以使電池飽和度增加.


IC 能判別假性-deltaV; 即空的電池於充電的初期, 電池電壓會有不升反降的情況, 類似充飽時的-deltaV 狀況; 但並非實際充飽.

因一次電池(乾電池,或鹼性電池)外型 與可充電的鎳氫電池相似,若終端客戶 誤將一次電池置入充電,則 IC 能以最大 可允許電池電壓(Vmax)方式,判別為電 池異常.但誤置之一次電池容量特性差 異甚大,可能判斷異常的時間也不同.


重新啟動快充流程(Re-Start Fast Charge flow):若充飽電池長時間未取出,致使電池電壓下降低於 Vrestart 值,則 IC 重新進入快充流程,以滿足電池都能處於最佳充飽狀態.

時間保護 (Time out protect), 與充電週期(Duty Cycle)

項	內容	電池電壓判別	充電	時間保護
次			電流	
1	電池偵測(激活電池)	Vbat <vin< td=""><td>脈波</td><td>-</td></vin<>	脈波	-
2	預充 (電池過放電)	Vin <= Vbat < Vmin	0.2C	0.5 小時
				(超過,為異常)
4	放電終止	Vbat<= Vdis		
4	快充	Vmin <= Vbat	1C	8 或 16 小時,
				依 Timer 腳位而用
4	重新快充	Vbat <= Vrestart		
6	涓充(充飽)	-deltaV	0.03C	
7	電池電壓異常	Vmax <= Vbat	0C	Remark: 異常

參考之運用線路圖: Vin= 2.5V/1.1A & 5.0V/0.1A 電源輸入, 4 顆電池並充. 充電電流=1.0A

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground -0.5 V to +7.0 V Operating Temperature 0°C to 70°C Storage Temperature -55°C to $+125^{\circ}\text{C}$ Soldering Temperature 260°C for 10 seconds (See IPC/JEDEC Standard J-STD-020A for Surface Mount Devices.)

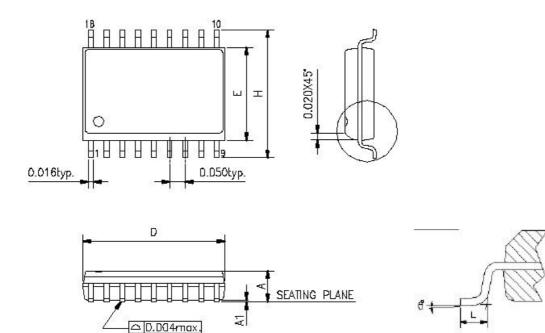
RECOMMENDED DC OPERATING CONDITIONS

(0°C to 70°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDD	4.75	5.0	5.25	V	

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}\text{C to } 70^{\circ}\text{C; VDD} = 5.0\text{V})$


PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage	Ili			+500	nA	
I/O Leakage	Ilo			+500	nA	
Pull-up resister	Rpull-up		47		Kohm	
Logic 1 Output	Vон	3.0			V	
Logic 0 Output	Vol			0.8	V	@ Іон
						$= 0.1 \sim 1 \text{mA}$
PWM Active High	Iрwмн		9		mA	@ Voh
Souring Current						= 3.6V
PWM Active Low	IPWML		45		mA	@ Vol
Sinking Current						= 0.8V
-Delta V	-delV		5		mV	
Battery plug Volt.	Vin		0.3		V	1, 2
Pre-charge Volt.	Vmin		1.00		V	1, 2
Re-start Volt.	Vrestart		1.30		V	1, 2
Ignore Volt.	Vignore		1.39		V	1, 2
Max. Battery Voltage	Vmax		1.60		V	1, 2
Fast Charge Cut-off Volt	Viset		340		mV	1, 2
Fast Charge Current	Icharge		680		mA	1, 2
(R@Idet pin = 0.5 ohm)						
System Closk	Fosc		900		k Hz	R=18k,
System Clock						C=100pF

Notes: 1.) Data related to VDD.

2.) All Volt. data (except -deltaV, 0 delta) +/- 50mV.

Mechanical Drawing: SOP-18 (300 mil)

2 - (/						
Symbols	Min./ Inch	Max./ Inch	Remark			
A	0.093	0.104				
A1	0.004	0.012				
D	0.447	0.463				
Е	0.291	0.299				
Н	0.394	0.419				
L	0.016	0.050				
	0	8				

