NOT MEASUREMENT SENSITIVE

MIL-STD-105E 10 MAY 1989 SUPERSEDING MIL-STD-105D 29 APRIL 1963

MILITARY STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

AMSC N/A

AREA QCIC

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DEPARTMENT OF DEFENSE Washington, DC 20301

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

1. This military standard is approved for use by all Departments and Agencies of the Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to:

Commander U.S. Army Armament Research, Development and Engineering Center ATTN: SMCAR-BAC-S/Bldg. 6 Picatinny Arsenal, NJ 07806-5000

by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or letter.

FOREWORD

This publication provides sampling procedures and reference tables for use in planning and conducting inspection by attributes. The sampling concept is based on the probabilistic recurrence of events when a series of lots or batches are produced in a stable environment.

This publication should be used to guide the user in the development of an inspection strategy that provides a cost effective approach to attaining confidence in product compliance with contractual technical requirements. The user is warned of the assumed risks relative to the chosen sample size and AQL.

Military specifications should not contain requirements for use of specific sampling plans, nor should they provide AQL's or LTPD's as a requirement. Sampling plans for continuous, rather than lot inspection, are contained in MIL-STD-1235, "Single and Multi-Level Continuous Sampling Procedures and Tables for Inspection by Attributes".

CONTENTS

			Page
Paragrap	h		
	1.	SCOPE	. 1
	1.1	Purpose	. 1
	1.2	Application	. 1
	2.	DOCUMENTS	. 1
	2.1	Not applicable	. 1
	3.	DEFINITIONS	. 1
	3.1	Acceptable Quality Level (AQL)	. 2
	3.2	Average Outgoing Quality (AOQ)	. 2
	3.3	Average Outgoing Quality Limit (AOQL)	. 2
	3.4	Classification of Defects	. 2
	3.5	Critical Defect:	. 2
	3.6	Critical Defective	. 2
	3.7	Defect	. 2
	3.8	Defective	. 3
	3.9	Defects Per Hundred Units	. 3
	3.10	Inspection	. 3
	3.11	Inspection by Attributes	. 3
	3 12	Lot or Batch	•
	3 13	Lot or Batch Size	•
	3 14	Major Defect	•
	3 15	Major Defective	•
	3 16	Minor Defect	• J
	2.17	Minor Defective	
	$3 \cdot \perp 7$	Dergent Defective	
	3.10		• 4
	3.19	Process Average	• 4
	3.20		• 4
	3.21	Sample Size Code Letter	• 4
	3.22	Sampling Plan	• 4
	3.23	Unit of Product	. 4
	4.	GENERAL REQUIREMENTS	. 4
	4.1	Written Procedures	. 4
	4.2	Nonconformance	. 4
	4.3	Formation and Identification of Lots or Batches	. 5
	4.4	AQL	. 5
	4.4.1	AQL Use	. 5
	4.4.2	Limitation	. 5
	4.4.3	Choosing AQLs	. 5

CONTENTS - Continued.

Page

Paragraph		Lag
4.5	Sampling	5
4.5.1	Representative Sampling	5
4.5.2	Time of Sampling	5
4.5.3	Double or Multiple Sampling	5
4 6	Inspection Procedures	6
4.0	Switching Procedures	6
4 7 1	Normal to Tightonod	6
4.7.1	Mightoned to Normal	6
4.7.2	Narmal to Dodugod	C C
4.7.3	Normal to Reduced	0
4.7.4	Reduced to Normal	6
4.8	Discontinuation of Inspection	7
4.9	Sampling Plans	./
4.9.1	Inspection	7
4.9.2	Code Letters	7
4.9.3	Obtaining Sampling Plan	7
4.9.4	Types of Sampling Plans	8
4.10	Determination of Acceptability	8
4.10.1	Percent Defective Inspection	8
4.10.1.1	Single Sampling Plan	8
4.10.1.2	Double Sampling Plan	8
4.10.1.3	Multiple Sampling Plan	8
4.10.1.4	Special Procedure for Reduced Inspection	8
4.10.2	Defects Per Hundred Units Inspection	9
4.11	Limiting Quality Protection	9
4.12	Curves	9
4.12.1	Operating Characteristic Curves	9
4.12.2	Average Sample Size Curves	9
111111	morage sampre sile carves	2
5. TA	ABLE	11
mable.		
т	Comple Cize Code Letters	10
	Sample Size Code Letters	ΤЭ
II-A.	Single Sampling Plans for Normal Inspection	1 4
	(Master table)	14
11-B.	Single Sampling Plans for Tightened Inspection	1 -
	(Master table)	15
II-C.	Single Sampling Plans for Reduced Inspection	
	(Master table)	16
III-A.	Double Sampling Plans for Normal Inspection	
	(Master table)	17
III-B.	Double Sampling Plans for Tightened Inspection	
	(Master table)	18
III-C.	Double Sampling Plans for Reduced Inspection	
	(Master table)	19

CONTENTS - Continued.

Table

Page

	IV-A.	Multiple Sampling Plans for Normal Inspection	
		(Master table)	20
	IV-B.	Multiple Sampling Plans for Tightened Inspection	
		(Master table)	22
	IV-C.	Multiple Sampling Plans for Reduced Inspection	
		(Master table)	24
	V-A.	Average Outgoing Quality Limit Factors for	
		Tightened Inspection (Single Sampling)	26
	V-B.	Average Outgoing Quality Limit Factors for	
		Tightened Inspection (Single Sampling)	27
	VI-A.	Limiting Quality (in Percent Defective) for	
		which a Pa = 10% (for Normal Inspection,	
		Single Sampling)	28
	VI-B.	Limiting Quality (in Defects per Hundred Units)	
		for which the Pa = 10% (for Normal Inspection,	
		Single Sampling)	29
	VII-A.	Limiting Quality (in Percent Defective) for	
		which the $Pa = 5\%$ (for Normal Inspection,	
		Single Sampling)	30
	VII-B.	Limiting Quality (in Defects per Hundred Units)	
		for which the Pa = 5% (for Normal Inspection,	
		Single Sampling)	31
	VTTT.	Limit Numbers for Reduced Inspection	32
	TX.	Average Sample Size Curves for Double and	
		Multiple Sampling	33
Sampl	ing Plans a	and Operating Characteristic	
Cur	ves (and Da	ata) for:	

-							
	X-A.	Sample	Size	Code	Letter	A	34
	X-B.	Sample	Size	Code	Letter	B	36
	X-C.	Sample	Size	Code	Letter	C	38
	X-D.	Sample	Size	Code	Letter	D	40
	X-E.	Sample	Size	Code	Letter	Ε	42
	X-F.	Sample	Size	Code	Letter	F	44
	X-G.	Sample	Size	Code	Letter	G	46
	X-H.	Sample	Size	Code	Letter	Н	48
	X-J.	Sample	Size	Code	Letter	J	50
	X-K.	Sample	Size	Code	Letter	K	52
	X-L.	Sample	Size	Code	Letter	L	54
	X-M.	Sample	Size	Code	Letter	M	56
	X-N.	Sample	Size	Code	Letter	N	58
	X-P.	Sample	Size	Code	Letter	P	60
	X-Q.	Sample	Size	Code	Letter	Q	62
	X-R.	Sample	Size	Code	Letter	R	64

CONTENTS - Continued.

			Page
	X-S.	Sample Size Code Letter S	66
Paragrap	h		
	6.	NOTES	67
	6.1	Intended Use	67
	6.2	Subject Term (key word) Listing	67
	6.3	Changes from Previous Issue	67
		CONCLUDING MATERIAL	68

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY ATTRIBUTES

1. SCOPE

1.1 Purpose. This publication establishes lot or batch sampling plans and procedures for inspection by attributes. This publication shall not be interpreted to supercede or conflict with any contractual requirements. The words "accept", "acceptance", "acceptable", etc, refer only to the contractor's use of the sampling plans contained in this standard and do not imply an agreement by the Government to accept any product. Determination of acceptability by the Government shall be as described in contractual documents. The sampling plans described in this standard are applicable to AQL's of .01 percent or higher and are therefore not suitable for applications where quality levels in the defective parts per million range can be realized.

1.2 Application. Sampling plans designated in this publication are applicable, but not limited, to inspection of the following:

- a. End item.
- b. Components and raw materials.
- c. Operations or services.
- d. Materials in process.
- e. Supplies in storage.
- f. Maintenance operations.
- g. Data or records.
- h. Administrative procedures.

These plans are intended primarily to be used for a continuing series of lots or batches. The plans may also be used for the inspection of isolated lots or batches, but, in this latter case, the user is cautioned to consult the operating characteristic curves to find a plan which will yield the desired protection (See 4.11).

- 2. DOCUMENTS
- 2.1 Not applicable.
- 3. DEFINITIONS

3.1 Acceptable Quality Level (AQL). When a continuous series of lots is considered, the AQL is the quality level which, for the purposes of sampling inspection, is the limit of a satisfactory process average (See 3.19).

NOTE: A sampling plan and an AOL are chosen in accordance with the risk assumed. Use of a value of AQL for a certain defect or group of defects indicates that the sampling plan will accept the great majority of the lots or batches provided the process average level of percent defective (or defects per hundred units) in these lots or batches be no greater than the designated value of AQL. Thus, the AQL is a designated value of percent defective (or defects per hundred units) for which lots will be accepted mst of the time by the sampling procedure being used. The sampling plans provided herein are so arranged that the probability of acceptance at the designated AQL value depends upon the sample size, being generally higher for large samples than for small ones, for a given AQL. The AQL alone does not identify the chances of accepting or rejecting individual lots or batches but more directly relates to what might be expected from a series of lots or batches, provided the steps indicated in this publication are taken. It is necessary to refer to the operating characteristic curve of the plan to determine the relative risks.

3.2 Average Outgoing Quality (AOQ). For a particular process average, the AOQ is the average quality of outgoing product including all accepted lots or batches, plus all rejected lots or batches after the rejected lots or batches have been effectively 100 percent inspected and all defectives replaced by non-defectives.

3.3 Average Outgoing Quality Limit (AOQL). The AOQL is the maximum AOQ for a given acceptance sampling plan. Factors for computing AOQL values are given in Table V-A for each of the single sampling plans for normal inspection and in Table V-B for each of the single sampling plans for tightened inspection.

3.4 Classification of Defects. A classification of defects is the enumeration of possible defects of the unit of product classified according to their seriousness.

3.5 Critical Defect. A critical defect is a defect that judgement and experience indicate would result in hazardous or unsafe conditions for individuals using, maintaining, or depending upon the product, or a defect that judgement and experience indicate is likely to prevent performance of the tactical function of a major end item such as a ship, aircraft, tank, missile, or space vehicle.

3.6 Critical Defective. A critical defective is a unit of product which contains one or more critical defects and way also contain major and/or minor defects.

3.7 Defect. A defect is any nonconformance of the unit of product with specified requirements.

3.8 Defective. A defective is a unit of product which contains one or rare defects.

3.9 Defects per Hundred Units. The number of defects per hundred units of any given quantity of units of product is one hundred times the number of defects contained therein (one or more defects being possible in any unit of product) divided by the total number of units of product, i.e.:

Defects per = Number of defects x 100

hundred units Number of units inspected

3.10 Inspection. Inspection is the process of measuring, examining, testing, or otherwise comparing the unit of product with the requirements.

3.11 Inspection by Attributes. Inspection by attributes is inspection whereby either the unit of product is classified simply as defective or non-defective, or the number of defects in the unit of product is counted, with respect to a given requirement or set or requirements.

3.12 Lot or Batch. The term lot or batch shall mean "inspection lot" or "inspection batch", i.e., a collection of units of product from which a sample is to be drawn and inspected and may differ from a collection of units designated as a lot or batch for other purposes (e.g., production, shift, etc.).

3.13 Lot or Batch Size. The lot or batch size is the number of units of product in a lot or batch.

3.14 Major Defect. A major defect is a defect, other than critical, that is likely to result in failure, or to reduce materially the usability of the unit of product for its intended purpose.

3.15 Major Defective. A major defective is a unit of product which contains one or more major defects, and may also contain minor defects but contains no critical defect.

3.16 Minor Defect. A minor defect is a defect that is not likely to reduce materially the usability of the unit of product for its intended purpose, or is a departure from established standards having little bearing on the effective use or operation of the unit.

3.17 Minor Defective. A minor defective is a unit of product which contains one or more minor defects but contains no critical or major defect.

3.18 Percent Defective. The percent defective of any given quantity of units of product is one hundred times the number of defective units of product contained therein divided by the total number of units of product, i.e.:

Percent Defective = Number of defectives x 100

Number of units inspected

3.19 Process Average. The process average is the average percent defective or average number of defects per hundred units (whichever is applicable) of product submitted by the supplier for original inspection. Original inspection is the first inspection of a particular quantity of product as distinguished from the inspection of product which has been resubmitted after prior rejection.

3.20 Sample. A sample consists of one or more units of product drawn from a lot or batch, the units of the sample being selected at random without regard to their quality. The number of units of product in the sample is the sample size.

3.21 Sample Size Code Letter. The sample size code letter is a device used along with the AQL for locating a sampling plan on a table of sling plans.

3.22 Sampling Plan. A sampling plan indicates the number of units of product from each lot or batch which are to be inspected (sample size or series of sample sizes) and the criteria for determining the acceptability of the lot or batch (acceptance and rejection numbers).

3.23 Unit of Product. The unit of product is the thing inspected in order to determine its classification as defective or non-defective or to count the number of defects. It may be a single article, a pair, a set, a length, an area, an operation, a volume, a component of an end product, or the end product itself. The unit of product may or may not be the same as the unit of purchase, supply, production, or shipment.

4. GENERAL REQUIREMENTS

4.1 Written Procedures. Written procedures are ordinarily developed and made available for the Government representatives review, upon request. When the written procedures indicate use of this standard, they shall comply with the requirements of this standard and reference appropriate parts as necessary.

4.2 Nonconformance. The extent of nonconformance of product shall be expressed either in terms of percent defective or in terms of defects per hundred units.

4.3 Formation and Identification of Lots or Batches. The product shall be assembled into identifiable lots, sublots, batches, or in such other manner as may be prescribed. Each lot or batch shall, as far as is practicable, consist of units of product of a single type, grade, class, size, and composition, manufactured under essentially the same conditions, and at essentially the same time. The lots or batches shall be identified by the contractor and shall be kept intact in adequate and suitable storage space.

4.4 AQL.

4.4.1 AQL Use. The AQL, together with the Sample Size Code Letter, is used for indexing the sampling plans provided herein.

4.4.2 Limitation. The selection or use of an AQL shall not imply that the contractor has the right to supply any defective unit of product.

4.4.3 Choosing AQLs. Different AQLs may be chosen for groups of defects considered collectively, or for individual defects. An AQL for a group of defects may be chosen in addition to for individual defects, or subgroups, within that group. AQL values of 10.0 or less may be expressed either in percent defective or in defects per hundred units; those over 10.0 shall be expressed in defects per hundred units only.

4.5 Sampling.

4.5.1 Representative (Stratified) Sampling. When appropriate, the number of units in the sample shall be selected in proportion to the size of sublots or sub-batches, or parts of the lot or batch, identified by some rational criterion. When representative sampling is used, the units from each sublot, sub-batch or part of the lot or batch shall be selected at random.

4.5.2 Time of Sampling. A.sample may be drawn after all the units comprising the lot or batch have been assembled, or sample units may be drawn during assembly of the lot or batch, in which case the size of the lot or batch will be determined before any sample units are drawn. If the sample units are drawn assembly of the lot or batch, and if the rejection number is reached before the lot is completed, that portion of the lot already completed shall be rejected. The cause of the defective product shall be determined and corrective action taken, after which a new lot or batch shall be begun.

4.5.3 Double or Multiple Sampling. When double or multiple sampling is to be used, each sample shall be selected over the entire lot or batch.

4.6 Inspection Procedures. Normal inspection will be used at the start of inspection. Normal, tightened or reduced inspection shall continue unchanged for each class of defects or defectives on successive lots or batches except where the switching procedures given below require change. The switching procedures shall be applied to each class of defects or defectives independently.

4.7 Switching Procedures.

4.7.1 Normal to Tightened. When normal inspection is in effect, tightened inspection shall be instituted when 2 out of 2, 3, 4, or 5 consecutive lots or batches have been rejected on original inspection (i.e., ignoring resubmitted lots batches for this procedure).

4.7.2 Tightened to Normal. When tightened inspection is in effect, normal inspection shall be instituted when 5 consecutive lots or batches have been considered acceptable on original inspection.

4.7.3 Normal to Reduced. When normal inspection is in effect, reduced inspection shall be instituted provided that all of the following conditions are satisfied:

a. The preceding 10 lots or batches (or more, as indicated by the note to Table VIII) have been on normal inspection and all have been accepted m original inspection; and

b. The total number of defectives (or defects) in the samples from the 10 lots or batches (or such other number as was used for condition "a" above) is equal to or less than the applicable number given in Table VIII. If double or multiple sampling is in use, all samples inspected should be included, "first" samples only; and

- c. Production is at a steady rate; and
- d. Reduced inspection is considered desirable.

4.7.4 Reduced to Normal. When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:

a. A lot or batch is rejected; or

b. A lot or batch is considered acceptable under the procedures of 4.101.4, or

c. Production becomes irregular or delayed; or

d. Other conditions warrant that normal inspection shall be instituted.

4.8 Discontinuation of Inspection. If the cumulative number of lots not accepted in a sequence of consecutive lots on original tightened inspection reaches five, the acceptance procedures of this standard shall be discontinued. Inspection under the provisions of this standard shall not be resumed until corrective action has been taken. Tightened inspection shall then be used as if 4.7.1 had been invoked.

4.9 Sampling Plans.

4.9.1 Inspection Level. The inspection level determines the relationship bet the lot or batch size and the sample size. The inspection level to be used for any particular requirement will be as prescribed by the contractor's written procedures. Three inspection levels: I, II, and III, are given in Table I for general use (see 4.1). Normally, Inspection Level II is used. However, Inspection Level I may be used when less discrimination is needed, or Level III may be used for greater discrimination. Four additional special levels: S-1, S-2, S-3, and S-4, are given in the same table and may be used where relatively small sample sizes are necessary and large sampling risk can or must be tolerated.

NOTE: In the selection of inspection levels S-1 to S-4, care must be exercised to avoid AQLs inconsistent with these inspection levels. In other words, the purpose of the special inspection levels is to keep samples small when necessary. For instance, the code letters under S-1 go no further than D, equivalent to a single sample of size 8, but it is of no use to choose S-1 if the AQL is 0.10 percent for which the minimum sample is 125.

4.9.2 Code Letters. Sample sizes are designated by code letters. Table I shall be used to find the applicable code letter for the particular lot or batch size and the prescribed Inspection level.

4.9.3 Obtaining Sampling Plan. The AQL and the code letter shall be used to obtain the sampling plan from Tables II, III, or IV. When no sampling plan is available for a given combination of AQL and code letter, the tables direct the user to a different letter. The sample size to be used is given by the new code letter, not by the original letter. If this procedure leads to different sample sizes for different classes of defects, the code letter corresponding to the largest sample size derived may be used for all classes of defects. As an alternative to a single sampling plan with an acceptance number of 0, the plan with an acceptance number of 1 with its correspondingly larger sample size for a designated AQL (where available), may be used.

4.9.4 Types of Sampling Plans. Three types of sampling plans: Single, Double, Multiple, are given in Tables II, III, and IV, respectively. When several types of plans are available for a given AQL and code letter, any one may be decision as to type of plan, either single, double, or multiple, when available for a given AQL and code letter, will usually be based upon the comparison between administrative difficulty and the average sample sizes of the available plans. average sample size of multiple plans is less than for double (except in the case corresponding to single acceptance number 1) and both of these are always less than a single sample size (see Table IX). Usually the administrative difficulty for single sampling and the cost per unit of the sample are less than double or multiple.

4.10 Determination of Acceptability.

4.10.1 Percent Defective Inspection. To determine acceptability of a lot or batch under percent defective inspection, the applicable sampling plan shall be used in accordance with 4.10.1.1, 4.10.1.2, 4.10.1.3, and 4.10.1.4.

4.10.1.1 Single Sampling Plan. The number of sample units inspected shall be to the sample size given by the plan. If the number of defectives found in sample is equal to or less than the acceptance number, the lot or batch shall considered acceptable. If the number of defectives is equal to or greater than rejection number, the lot or batch shall be rejected.

4.10.1.2 Double Sampling Plan. A number of sample units equal to the first ample size given by the plan shall be inspected. If the number of defectives in the first sample is equal to or less than the first acceptance number, lot or batch shall be considered acceptable. If the number of defectives found in the first sample is equal to or greater than the first rejection number, lot or batch shall be rejected. If the number of defectives found in the first sample is between the first acceptance and rejection numbers, a second sample of the same size shall be inspected. The number of defectives found in first and second samples shall be accumulated. If the cumulative number of defectives is equal to or less than the second acceptance number, the lot or batch 1 be considered acceptable. If the cumulative number of defectives is equal to or greater than the second rejection number, the lot or batch shall be rejected.

4.10.1.3 Multiple Sample Plan. Under multiple sampling, the procedure shall be similar to that specified in 4.10.1.2, except that the number of successive samples required to reach a decision may be as many as seven.

4.10.1.4 Special Procedure for Reduced Inspection. Under reduced inspection, the sampling procedure may terminate without either acceptance or rejection criteria having been net. In these circumstances, the lot or batch will be considered acceptable, but normal inspection will be reinstated starting with the next lot or batch (see 4.7.4.b).

4.10.2 Defects per Hundred Units Inspection. To determine the acceptability of a lot or batch under defects per hundred units inspection, the procedure specified for percent defective inspection above shall be used, except that the word "defects" shall be substituted for "defectives".

4.11 Limiting Quality Protection. The sampling plans and associated procedures given in this publication were designed for use where the units of product are produced in a continuing series of lots or batches over a period of time. However, if the lot or batch is of an isolated nature, it is desirable to limit the selection of sampling plans to those, associated with a designated AQL value, that provide not less than a specified limiting quality protection. Sampling plans for this purpose can be selected by choosing a Limiting Quality (LQ) and a consumer's risk to be associated with it. Tables VI and VII give values of LQ for the commonly used consumer's risks of 10 percent and 5 percent respectively. If a different value of consumer's risk is required, the O.C. curves and their tabulated values may be used. The concept of LQ may also be useful in specifying the AQL and Inspection Levels for a series of lots or batches, thus fixing minimum sample size where there is some reason for avoiding (with more than a given consumer's risk) more than a limiting proportion of defectives (or defects) in any single lot or batch.

4.12 Curves.

4.12.1 Operating Characteristic Curves. The operating characteristic curves for normal inspection, shown in Table X, indicate the percentage of lots or batches which may be expected to be accepted under the various sampling plans for a given process quality. The curves shown are for single sampling; curves for double and multiple sampling are matched as closely as practicable. The O.C. curves shown for AQLs greater than 10.0 are based on the Poisson distribution and are applicable for defects per hundred units inspection; those for AQLs of 10.0 or less and sample sizes of 80 or less are based on the Poisson distribution and are applicable for percent defective inspection; those for AQls of 10.0 or less and sample sizes larger than 80 are based the Poisson distribution and are applicable either for defects per hundred units inspection, or for percent defective inspection (the Poisson distribution being an adequate approximation to the binomial distribution under these conditions). Tabulated values, corresponding to selected values or probabilities of acceptance (Pa, in percent) are given for each of the curves shown, and, in addition, for tightened inspection, and for defects per hundred units for AQLs of 10.0 or less and sample sizes of 80 or less.

4.12.2 Average Sample Size Curves. Average sample size curves for double and multiple sampling are in Table IX. These show the average sample sizes which may be expected to occur under the various sampling plans for given levels of process quality. The curves assume no curtailment of inspection and are approximate to the extent that they are based upon the Poisson Distribution, and that the sample sizes for double and multiple sampling are assumed to be 0.631n and 0.25n respectively, where n is the equivalent sample size.

SECTION 5

TABLES AND CURVES

PAGE 12 INTENTIONALLY LEFT BLANK

TABLE 1-Sample size code letters

(see 4.9.1 and 4.9.2)

_		- <u></u> .		Special insp	ection levels		Gene	ral inspection	le vels	
Lot	or baich	i size	S-1	S-2	S-3	S-4	1	u	111	
2	Lo Io		A	•	A	A	A	A	В	
9	to	15	•	A	A .	A	A	В	с	
16	lo	25	A	A	В	В	В	С	D	
26	to	50	•	B	В	с	с	D	E	
51	to	90	В	В	с	С	С	E	F	
91	to	150	В	В	с	D	Ð	F	G	
151	to	280	в	С	D	E	E	G	н	2116
281	to	500	В	С	D	E	F	н	L I	Ľ
501	to	1200	с	С	E	F	G	J	к	E F
1201	lo	3200	с	υ	E	G	н	к	L	F
3201	to	10000	c	מ	F	G	L I	L	M	
10001	to	35000	С	D	F	н	к	M	N	
35001	to	150000	D	Е	6	J	L	N	P	
150001	to	500000	Ð	E	G	1	М	[P	Q	
500001	and	over	D	Е	н	ĸ	N	Q	R	

LETTERS CODE

TABLE II-A-Single sampling plans for normal inspection (Master table)

(see 4.9.3 and 4.9.4)

											٨	cceptabl	e Quelit;	r Levela	(normal)	iospecti:	»i)											
Sample size code	Sample aise	\$.0LD	0.015	0.025	0 040	0.065	D.EÖ	0 15	0.25	0.40	0.65	L.O	15	25	4.0	6.5	10	15	25	40	65	FOD	150	250	400	650	1000	
lener		Ac R	Ac Re	Ac Re	Ac He	Ac Re	Ac Re	Ac Re	4c Re	Ac Re	Ac fle	Ac Re	Ac Re	Ac Be	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Br	Ac fle	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	
A B C	2 3 5					-							Ĵ	Ŀ,	\$; {}	ረ ት ር	Ţ,	-5- 1 2 2 3	1 Z 2 3 3 4	23 34 56	З 4 5_6 7 В	56 78 1011	7 8 10 11 14 15	10 11 14 15 21 22	14 15 21 22 30 31	21 22 30 31 44 45	3033 4445 4477-	MIL-ST
D E F	8 13 20											小小	<u>-</u> ትሳ	슈: - "	-[]- 1 2 3	1 2 2 3 3 4	23 34 56	34 56 78	5 6 7 8 10 11	7 8 10 11 14 15	10 11 14 15 21 22	14 15 21 22	21 22 36 31	30 31 41 45	••• 11	$\widehat{\Pi}$		D-105E
G H J	32 50 90							<u> </u>		ራ ት ት -	ረት የ 1	- - 2 2 3	1 2 2 3 3 4	23 34 56	3 4 5 6 7 8	56 78 1011	.78 3011 1415	10 4 5 2 22	14 15 21 22	21 22 11	Î							
К 1. ₩	125 200 315					\ - - - -	- ት ት	⟨ <u>^</u> <u></u> - ~	-{]- 1 2 2 3	1 Z 2 3 3 4	23 34 56	34 56 78	56 78 10?1	7 0 10 11 14 15	10 11 14 15 21 22	14 15 21 22	21 22	Î										
N P Q	500 900 1250	0,1		<u>ት</u> ት -	ሳ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ		1 2 2 3 3 4	2 3 3 4 5 6	34 56 78	56 78 1011	7 8 10 11 14 15	10 11 14 15 21 22	14 15 21 22 11	21 22														
R	2000	Î		t 2	23	3 4	56	7 8	10 11	14 15	2] 22	Î																

🕂 = Use first sampling plas below arrow. If asuple size equals, or unceeds, lot or batch size, do 100 percent inspection.

- Use first sampling plan above arture.

Ac - Acceptance number.

Be so Rejection number.

SINGLE NORMAL

TABLE 11-B — Single sampling plans for tightened inspection (Master table)

Sample											Accept	inble Qui	ality Lo	rela (Ligi	stened in	epectice))										
aize Tode letter	Sample Gize	0.010	0.015	0.025	0.040	9.065	0.19	0.15	0.25	0.40	¢.65	1.0	15	2.5	4.0	6.5	10	15	z	40	65	100	150	250	400	650	1000
	I	Ac the	Ac fte	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac fie	Ac Re	At Re	Ac Re	Ac fle	Ac Re	Ac Re	Ac Re	Ac Re	Ac fle	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re
A B C	2 3 5														۰, ۱	ት - -	Ĵ	\int_{1}^{1}	- 小 1 2 2 3	1 2 2 3 3 4	2 3 3 4 5 6	34 56 89	5 6 8 9 12 13	0 1 12 13 18 19	12 13 18 19 27 29	18 19 27 28 41 42	27 28 41 42
D E F G H	8 13 20 32 50															\downarrow	1 2 2 3 3 4 5 6 8 9	73 34 56 89	3 4 5 6 8 9 12 13 18 19	5 6 # 9 12 13 16 19	₽ 9 12 13 10 19	12 13	18 19 27 28	27 28 41 42	•• •2 {} 		
J K L M	60 125 200 315				↓ ↓	 		€ • •	• • [] • •	$\int_{1}^{1} 2$	→ - 2 2 3 4	1 2 2 3 3 4 5 6	2 3 3 4 5 6 8 9	3 4 5 6 8 9 12 13	5 6 8 9 12 13 18 19	1 9 12 13 14 19 11	12 13 18 19	11 19 11 19									
N P Q R	500 800 1250 2000		↓ ・	ی ، ،]	• 1 	J 1 2 2 3	 1 2 2 3 3 4	12 23 34 56	2 3 3 4 3 6 8 9	3 4 5 6 8 9 12 13	5 6 8 9 12 13 18 19	, 》 12 11 11 11 11 11	12 13 11 19 11 19														
5	3150			1 2																							

She first sampling plus below arrow. If sample size equals or exceeds lot or batch size, do 100 percent inspective.
 Use first sampling plus above arrow.
 Ac = Acceptance number.
 Be = Rejection number.

SINGLE TIGHTENED

MIL-SID-105E

TABLE II-C-Single sampling plans for reduced inspection (Master table)

(see 4.9.3 and 4.9.4)

SINGLE

REDUCED

1

Use first sampling plan below arrow. If sample size equals or exceeds lot or batch size, do JW percent inspection. 2

X Zz ne t Use first sampling plan above arrow. Acceptance number. =

Hojection number. Hojection scheduler. Hole acceptance number has been exceeded, but the rejection number has not been reached, accept the lot, but rejustate normal inspection _ from 4.10.7.4

16

MIL-SID-105E

TABLE III-A-Double sampling plans for normal inspection (Master table)

(see 4.9.3 and 4.9.4)

														rceşişbê	e Qualu	Levels	(normal i	mpectie	in)									<u></u>	7
size code	Sample	Sample site	Luna- lutive annple	0 010	0 015	0 025	0.040	0.065	0 10	0.15	0 25	0 40	0.65	J.0	15	25	10	6.5	10	15	25	40	65	100	150	250	400	650	1000
letter			8124	40 He	Ac He	Ac the	Ac He	Ac Ite	ąc. He	Ac He	Ac IIr	Ar lie	Ac He	Ac Ite	Ac ite	Ac ile	Ac fle	Ac Ile	Ac lle	Ac lie	Ac Ile	Ac fle	Ac ste	Ac He	Ac Re	Ac Ar	Ac He	Ac He	Ac IIr
•				n	П	n	In	П	П	Π	Π	n	П	Π	Π	Π	Ŷ	•	Π	থ	•	•	•	•	•	·	·	•	$\overline{\cdot}$
13	First Second	2	2														•	Ŷ	ſ	02 12	03 34	14 45	25	3 7	Š 9 12 13	7 JI 18 19	11 14 26 27	17 22 37 36	25 JI 56 57
c	First Secoul	3	3												Ŷ	•	î	ĩ	02 12	03	14	25	3 7	5 9	7 11	11 16	17 22 37 38	25 31 56 57	$\widehat{\mathbf{M}}$
"	First Second	5	5 10											Ŷ	•	Û	Ţ	02 12	03	14	25 67	37	5 P	7 II 18 19	11 16 26 27	17 22 37 38	25 Ji 56 57	٦î	
E	First Second		8 16										IJ	·	Û	Û	02 12	03 34	14 45	25	37	59 1213	7 ti 18 19	11 16. 26 27	17 22 37 38	25 31 56 57	Î		
F	t con Second	13 13	13 26									IJ,	·	Ŷ	Û	02 17	03 34	14	2 S 6 7	37	5 9 12 13	7 LL 18 19	11 16 26 27	Î	î	Î			
G	First Second	20 20	20 60								Ŷ	•	Û	Ŷ	0 2 1 2	0 3 3 4	L 4 4 5	25.67	37 89	5 9 12 13	7 11 18 19	11 16 26 27	Î						
н	First Second	12 12	32 64							Υ	٠	Û	Ŷ	0 2 1 Z	0 3 3 4	14 45	25	37 89	5 9 12 13	7 EL 18 15	11 16 26 27	Î							
,	First Second	50 50	50 100						IJ	·	Û	Û	02	03 34	14	25	37 89	5 y 12 13	7 11 18 19	11 16 26 27	î								
ĸ	Final Second	80	60 160					11	-	介	ſ	02	03 34	1 4	25 67	37 89	5 9 12 13	7 1)	11 16 26 27	Î									
L	Fana Second	125 125	125 750				Į,	•	Û	U	02 12	3 I 0 J	1 4 4 5	25] 7 8 9	\$9 1213	7 E1 10 EV	11 16 26 27	Î										
4	Form Second	260 200	200 400			IJ	•	ប	Û	0 2 1 2	0 3 3 4	14	25	37 89	59 1213	7 11 14 19	11 1.6 26 27	î											
ì	Fini Second	315 315	315 630		IJ		Ŷ	Û	02 12	0) 3 (14 45	25 67] 7 1 9	5 9 12 13	7 1 18 9	11 16 26 27	Î												
ſ	Firet Second	500 500	500 1000	Ŷ	•	Û	Û	0 Z 1 2	03 34	1 4 4 5	25 67	37 89	5 V 12 L1	7 83 18 39	EI 16 26 27	Î													
ų	First Second	800 800	900 1600	•	Î	U	02 12	03 34	1 4 4 5	2 5 6 1	37 89	59 1213	7 11 17	11 16 26 27	Î														
11	Firm Second	1250 1250	1250 2500	Û		0 7 1 7	0 3 3 4	14	2 S 6 7	37 89	5 9 12 13	2 17 18 19	11 16 26 27	Û														U	

Use first sampling plus below strow. If sample size equals or exceeds lot or herely size, do 100 percent inspection.
 Use first sampling plus above strow.
 Ac = Acceptance number.
 Election sampler.
 Use corresponding single sampling plus (or othersatively, use double sampling plus below, where evaluable).

Use corresponding single sampling plan (or olteratively, use double sampling plan larks, where evaluable).

17

MIL-SID-105E

DOUBLE NORMAL

TABLE III-B - Double sampling plans for tightened inspection (Master table)

(see 4.9.3 and 4.9.4)

			6								·		۸.	regitabl	واللبيول	Lorda	(1956)eau	ni insper	t:oaj										
sure rate	Sample	Semple bize	lative asmple	10 OFU	o uts	0.025	0.040	0-06-à	० छ	e 15	v.5	41 KP	U oS -	1.0	1.5	25	40	6.5	10	15	ъ	40	65	100	650	274	¥20	A50	1900
brtier			nize	te He	Le 16	ъ њ	ъ Вс	х в-	ъ њ	5 16	ւս	5. Br	A. H.	л . П.	Ar Br	A, He	Ar Ife	Ac Ibr	Ac ile	Ar ile	Ar II.	Az Na	ar 160	4c Hr	te He	1- 11-	\$r 14+	Ar De	۱۲ II
1				n	Π	Π	П	n	Π	Π	n	ſ	Π	Π	П	Π	Π	ফ	Π	Π	J.	•	•	•	•	•	•	•	•
n	Farst	2	2														ļ	•		Î	0 2	0 1		25	17	4 14	911	15 20 31 15	3 3
r.	Forst	3	<u>ن</u> د													JL	·			0 2	0 1	1 4	2 3	3 1	6 10	9 11	15-20	21 24	<u>1</u> 7
0	First	5	5													•	Π		0 2	0 3	1 4	2 5	3 7	6 10	40 10 9 14	13 20	3.39	<u>"</u> 介	
r	Firm														Ĭ	Π		0 2	0 3		2 5	3 7	6 10	9 14	15 20	33 29	<u>ጉ</u>		
+	First	11	86 []											÷	n	JLI	> 2	0 1	14	2 3	6 7	11 12 4 10	9 14	23 24 11	<u>።</u> ። ጉ	ະ 17			
G	Farst	20	.30 .30										÷	Π		0 2	0 3	3 9	2 5	37	6 10	9 14	<u>።</u> ጉ						
	First	_20 	32									-	П		U 2	U 3	14	2 5	3 7	6 10	1 14	<u>።</u>							
- <u>-</u>	Second First	32 50	64 50								~	п		<u>ې</u>	1 2 0 3	34 t4	4 S 2 S	67 37	11 12 6 10	15 16 9 14	23 24 4								
	Second : First	50 He	100 110							<u>ب</u> لا ب	n			12 6 J	34 14	4 5	67	11 12 6 10.	15 16 9 14	23 24									
	Seroad First	80 125	169						<u>بل</u>			₹.	1 2 0 1	34	4 S 7 S	6 7	6 10	13 H6 9 14	23 24										
	Second Fami	125	250					<u>-</u>	г		<u>.</u>	1 2	j į	• 5	6 7	11 12	9 14	23 24	וזך										
	Second Kunst	200	400				<u></u>			<u> </u>	1 2	3 4	• •	67	11 12	15 16	23 24												
,	Secon1	315	500			<u>J</u>			<u>.</u>	1 2	<u> </u>	• •	6 7	11 12	15 16	23 24													
,. 	r (rsi Second	500 500	200 1000		<u>↓</u>			ন্দ	1 2	34	4 5	67	11 12	15 16	23 24	$\hat{\Pi}$													
2.	First Second	404 800	908 1600	Î	·		₩	02 12	0 3	1 4 4 5	25	37 1112	6 10 15 16	9 14 23 24	$\widehat{\Pi}$														
ц	Forse Second	1250 1250	1250 2500	•	Ŷ	<u> I</u>	02 12	03 34	1 4 4 5	25 67	37 1112	6 (U 15 16	9 14 23 24	Ŷ		IJ			IJ					U					l
5	Firsi Second	2000 2000	2006 4000			0 2 1 2																							

 In the first sampling plan below arrow. If sample size equals or exceeds for or back size, do 100 percent unspection

 Image: The first sampling plan shows arrow.

 At an Acceptance number.

 Bt an Hypertion number.

 Image: The correstonables used number bins are also below arrow.

DOUBLE TIGHTENED

MIL-SID-105E

TABLE III-C — Double sampling plans for reduced inspection (Master table)

(see 4.9.3 and 4.9.4)

S													Accep	table Qu	niky La	vetu (red	nc ed i ung	ection)	t											1
er se corte	Sample	Sample aize	futive sample	0.010	0.015	0.025	0.040	0.065	0,10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	2	45	65	108	150	250	690	650	1000]
letter			ai se	Ar He	Ac He	Ac He	Ar Re	Ac Re	Ac lie	Ac Be	Ac Re	Ar fu	Ac ite	Ac Ne	Ac Re	Ac Re	Ac fie	Ac He	Ac Re	Ac Be	Ac Re	Ac fla	Ac Re	Ac He	Ac Be	Ac Re	Ac He	Ar Pa		
A B C															J	Û	い い つ	· મિ	Ţ	रु	:	:	•	:	•	•	:		: 17	
U	First Second	2	2											J۲	•	Û	Ŷ	0 2 0 2	0 3	04	8 4 3 6	15	27	3 B B 2	5 10 12 14	2 12 18 22	1) 17 26 30	Îî		
E	Firm Second	3 3	3										J.	٠	Î	Ð	02 02	03 04	0 4 1 5	06	1 S 4 7	2 7	1 1 1 17	S 10 12 16	7 12 18 72	11 17 26 30	î			
*	Firet Second	5 5	5 10									IJ	•	Û	থ	0 2	0 J 0 4	04	04	1 5	27	3 8 8 12	5 10 12 16	î	î	Î				
c	Firet Second	:	4									·	Û	ſ	0 2 0 2	03	04	04	1 5	2 7	3 8	5 10 12 14	介							
н	Firm Second	11 13	13 24							Ŷ	•	Û	Ŷ	0 2 8 2	0 3	04	0 4 3 4	1 S 4 7	2 T 6 9	3 B B 12	\$ 10 12 26	î								
1	Firei Second	20 20	20 40						IJ	• .	Û	J	0 2	03 84	0 t 1 5	0 4 3 6	15	27	3 A 8 12	\$ 10 12 16	î									ļĮ
K	Firm Second	32 32	32 64					IJ	·	Û	J	0 2 0 2	0 3 9 6	04 15	0 4 3 6	J 5 4 7	2 1	3 B 6 12	5 10 12 16	$\widehat{\mathbf{n}}$										I ĝ
L	F true Second	50 50	50 100				J.	•	Û	Û	02 02	0 3 0 4	0 (1 5	94 36	15	27	3 1 8 12	5 10 12 14	$\widehat{\Pi}$											L C
м	First Second	00 00	80 169			IJ	•	Û	Ĵ	02 02	03 94	0 1	0 6 3 6	1 S 4 7	27 69	3 8 8 12	5 HO 1 2 H6													["
· N	First Second	125 125	125 250		Ŷ	·	î	Ĵ	0 2 0 2	B 3 0 4	04 15	04 36	1 S 4 7	2 1	3 E 11 12	5 10 12 16	$\widehat{1}$													
Р	First Second	206 200	2013 4000	IJ	•	$\widehat{\mathbf{v}}$	ĩ	8 2 8 2	8 3 0 4	0 4 1 5	0 4 3 6	15	27	3 8 8 12	5 10 12 16	$\widehat{\Pi}$														
Ų	First Second	315 315)15 630	•	Î	J	02 02	0 J 0 4	0 4 1 5	04	15	27	3 0 8 12	5 10 12 16																
	Firs: Second	500 500	500 1000	$\widehat{\Gamma}$		• 2 • 2	03 04	84 15	• •	1 S 4 T	2769	1 8 8 12	5 10 12 16	Û																

 Use first sampling plus below arow. If sample size equals or vacerols los or batch size, do 100 percent inspection.
 Was first sampling plus below arow.
 Arcepture number.
 Repection number.
 Be conversioning single sampling plus for shorestively, use double compling plus below, when available.)
 If, alter the second sample, the accepture number has been escended, but the enjection number has not been vached ched, accept the lot, but relaxists useral Inspection from 4.10.1.4/

DOUBLE REDUCED

Has first grapping plus below some forfer to entituation of table on following page, when uncertainty. If sample also repair at recercle for or basch else, do 100 precess inspection.
 We first remplies plus above around.
 The first remplies plus above around.
 We apple of the sample of the sample of the definition of table on following page, when uncertainty. If sample also repair at recercle for or basch else, do 100 precess inspection.
 We apple of the sample of the sample of the order inspection.
 We apple of the sample of the sample of the order inspection.
 We apple of the sample of the order inspection.
 We apple of the sample of the order inspection.
 We apple of the sample of the order inspection.
 We apple of the sample of the order inspection.
 We apple of the sample of the order inspection.

(see 4.9.3 and 4.9.4)

1													Arry	ander (Jo	alas Les	rls (aer	mat caap	r (1998) .										
sample asce crate	5.000p1r	م المحمد ال ما يا ال	Canas- Laterer Samule	8.910	0.01	5 0 025	1: 040	0.065	Q 14	0.15	¥.3	Q. #J	9.65	1.4	1.5	2.5	4.0	4.5	10	15	ర	w	۵\$	100	154	54	4100	N20 1000
5-11-r			1	v 44		Ar H	Ar He	40 Hr	41 110	Ar fir	* 16	As flr	Ac 16	Ar He	ar lir	Ar He	Ar He	Ac 14-	Ac 14+	 Ar ile	Ar 14	Ar He	Ac He	Ar fle	Ac H-	A. #	he lle	As No Ar He
	First Second Third First Sist Sist Sist	******	22 43 9 25 8 26 20 20 20 20 20 20 20 20 20 20 20 20 20						·			• 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3	# 2 9 3 1 4 2 4 3 5 4 5	+ J 0 3 1 4 5 5 5 6 7 6	+ 4 5 2 4] 7 5 1 7 9 9 10	0 4 1 6 3 0 5 10 7 11 19 12 19 19	0 S J 8 6 10 8 13 11 15 14 57 18 19	1 7 4 10 8 13 9 2 17 9 7 20 21 24 25 26	2 7 1 2 3 3 1 3 7 1 2 3 3 7 1 3 7 1 3 3 7 1 3 1 3	$\widehat{\parallel}$		$\widehat{\parallel}$		$\widehat{\prod}$				
E.	First Vecnut Third Found Fifth Siath Seventh	****	50 198 350 350 350 350 300 350					•			· · · · · · · · · · · · · · · · · · ·	• 2 0 3 0 4 7 4 3 5 1 5	+ 3 1 4 2 5 3 4 4 6 6 7	2 6 3 7 5 8 7 9 9 10	0 4 7 6 3 10 5 10 7 11 10 12 13 16	0 5 3 0 6 60 8 13 11 15 14 17 16 69	1 7 4 10 1 13 12 17 17 20 21 21 25 26	2 14 14 19 15 25 29 31 31 37 34	$\langle \dots \rangle$									
Li I	Foret Surand Theel Fourth Filth Such Seventh	222222	80 143 143 140 140 140 140 140 140 140 140 140 140				•			• 2 • 2 U 2 U 3 1 3 1 3 1 3 2 1	• 2 • J • J • J • 4 • 3 • 5 • 5	• 1 • 1 • 4 • 4 • 5 • 6 • 7	* * 1 5 2 * 3 7 5 8 7 9 9 10	# 4 1 6 3 8 5 16 7 11 10 12 11 14 	0 5 3 8 6 10 8 13 11 15 1 9 17 18 19	1 T 6 J0 8 13 12 17 17 20 21 23 25 26	2 9 7 14 13 19 19 35 25 29 31 30 17 30	Î										
	First Second Third Fourth Fifth Signh Newsik	2122532	1 11 250 975 500 625 750 875					J	- 2 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	• Z 0 J 0 J 1 4 2 1 3 5 4 5	# 3 0 3 1 4 2 5 3 4 4 6 6 7	r 4 1 5 2 6 3 7 5 8 7 9	0 4 1 5 3 0 5 10 7 11 10 12 13 14	0 5 3 8 6 10 8 13 11 15 14 47 18 29	1 7 4 10 1 1 3 12 17 17 20 21 21 25 26	2 4 7 11 13 19 19 25 25 29 25 29 26 21 27 30												
ľ	turat Second taunt taunt taunt till Such Such Such Such	2 2 2 2 3 2 3 3 3 3	200 100 800 900 1000 1200 1409		·		Ĵ	2 2 3 4 3 1 1 3 1 2 1 2	* 0 3 0 3 1 4 3 5	e L a J 1 4 7 5 3 6 4 6 6 7	8 4 1 5 2 6 3 7 5 8 7 9 9 10	0 0 1 6 3 0 5 10 7 11 10 12 1.9 14	0 5 3 8 6 10 8 11 11 15 14 17 18 19	1 7 4 19 0 1J 12 12 17 20 21 21 25 26	2 9 1 14 11 19 19 25 25 29 11 31 37 38	$\widehat{\parallel}$												
	hira Serodi Third Holeth Hith Serenth	115 315 315 315 315 315 315 315	.115 6,90 945 1280 1575 1890 2015	•		$\left \right\rangle$	• 2 • 2 • 2 • 2 • 3 • 3 • 3 • 3 • 3 • 4 • 4 • 4 • 4 • 5 • 5 • 5 • 5 • 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7	+ 2 0 3 1 4 2 4 3 5 4 5	+ J 0 3 1 4 2 5 3 6 6 7	+ 4 1 5 2 6 1 7 5 8 7 9 9 10	0 4 1 6 3 6 5 10 7 11 10 12 13 14	0 5 3 8 6 10 8 11 16 15 14 17 14 19	1 7 4 10 4 11 12 17 12 20 21 20 25 26	29 714 1319 195 2519 1111 1738														
H	First Second Third Footb Fifth Sigth Sewrath	500 500 500 500 500 500 500	50) 1960 1560 2980 2500 2500 3605 3500			• 2 • 2 • 2 • 2 • 1 • 1 • 1 • 1 • 1 • 1 • 1	- 7 0 J 5 4 2 4 3 5 4 5	• 3 • J 1 4 2 5 3 6 • 6 • 7	+ 6 1 5 2 6 3 7 5 8 7 9 9 10	0 4 4 6 3 8 5 80 7 81 90 92 13 14	0 5 J 8 6 10 8 13 11 15 14 17 19 19	1 7 4 10 8 13 12 17 17 20 21 23 25 25	2 9 7 11 10 25 10 25 11 10 11 11 11 11	$\widehat{\prod}$														
				\$	- Us - Us	e firmt as r firmt sa	aring p	na belan na pinan	aros li	lf as equi	le sise og procødsag	pals or page.		r Ios or br e searyl.	nci ov	. de 100		isapecti										

ntively, use autople plan helow, where usudable!

TABLE IV-A — Multiple sampling plans for normal inspection (Master table) (Continued)

(see4.9.3 and 4.9.4)

MULTIPLE

Ar He

opling plus for a this sample size

TABLE IV-B — Multiple sampling plans for tightened inspection (Master table)

(see 4.9.3 and 4.9.4)

			C			_								Acc rpt ab	le (Juatio	y Lew1	a (sighter	ned inse	nction)						-				
nize radio	50 mg hr	Sungdar 9189	latyve aavap l e	u 019	0 015	a 025	0 840	0.045	C 10	0 15	025	0.40	♦ 65	10	1.\$	2.5	4.0	- 63	30	15	ъ	-	45	100	150	25 9	409	650	1000
1-14-1			*18*	Ac He	ar He	Ac He	Ar ile	Ar He	Az fir	Ac He	Ar Hr	Ac He	Ac fla	Ac He	Ac Re	Ac He	Ac Re	AC 80	Ac Re	Ac Re	Ac Re	Ac Re	Ac Po	Ac Ru	Ac Re	Ac Be	åe Rø	Ac Br	Ac FL
4 15 17													$\left \right $			Ĵ	ŷ	ۍ ۲	ſ	ĩ	₽ ₽ ₽		•	• • •	•		•	• •	۔ آ
11	Esrei Serei Ebipt Eoueth Eifth Synth Sesenth		1 4 10 12 11													•			+ 2 + 2 0 Z 0 3 1 3 1 3 2 3	e 7 0 3 0 3 1 4 2 1 3 5 4 5	2 3 0 J 1 4 2 5 3 4 4 6 6 7	* 4 5 2 6 3 7 5 8 7 9 9 10	0 4 2 7 6 1) 9 17 12 14 14 15	0 6 3 9 7 12 10 15 14 17 16 20 21 22	1 8 4 12 11 17 16 22 22 25 27 27 37 33	3 10 10 17 17 24 28 31 32 37 40 43 46 49	4 15 16 25 26 36 37 66 49 55 61 64 72 73		
•	Forst Wrusel Fourth Forth Folth Sarth Sarth	5 3 3 3 1 3	J 6 9 32 t5 1₩ 21												•			• 2 • 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3	* 2 0 3 0 3 1 4 2 4 3 5 4 5	+ 3 0 3 1 4 2 5 4 4 6 7	+ 4 5 2 6] 7 5 7 0	0 4 2 7 4 9 6 11 9 12 12 14 14 15	0 6 3 9 7 19 10 15 14 17 18 20 21 22	1 0 6 12 11 17 16 22 22 25 27 29 37 33	3 18 10 17 17 24 21 31 32 37 40 43 41 47	4 15 16 25 26 36 37 46 49 55 61 64 72 73			
F	Firm Secund Exarch Franch Friek Saith Saith	\$ 5 5 5 5 5 5 5	5 10 15 20 25 30 35										\rightarrow	•		∥	• 2 • 2 • 2 • 3 1 3 1 3 2 3	• 2 • 2 • 3 1 4 7 4 3 5 4 5	# 3 0 3 1 4 2 5 3 6 4 6 6 7	* 6 1 5 2 6 3 7 5 8 7 9	0 4 1 7 6 9 6 11 9 12 12 14 14 15	0 6 3 9 7 12 50 15 14 37 18 20 21 22	1 0 6 12 11 17 16 22 21 25 71 29 32 33		Î	Î			
G	First Soc and Third Fourth Fifth Sizeth Sizenth	8 8 8 8 8 8 8	8 15 20 32 40 48 56										•		J	• 1 • 2 • 1 1 1 1 1 2	* 2 0 3 1 4 2 4 3 5 4 5	* 5 6 1 1 4 2 5 3 6 4 7	+ 4 1 5 2 7 5 7 9 10	0 6 2 7 6 31 9 17 17 34 16 15	0 6 3 12 10 15 14 17 18 20 21 22	1 0 6 12 51 17 16 22 27 29 32 33							
н	First Second David Fourth Fulfit Statt Second	13 13 13 13 13 13 13 13 13	1) 25 57 57 57 57 57 57 57 57 57 57 57 57 57									•		↓ ↓	• 2 • 2 • 2 • 3 1 3 1 3 2 3	* 2 0 3 1 4 3 5 4 5	# 3 0 3 1 4 2 5 3 6 4 6 6 7	# 4 1 5 7 6 3 7 5 8 7 9 10	0 4 2 7 4 9 6 11 9 12 12 14 14 15	0 i 3 4 7 12 10 15 14 17 18 20 21 22	1 8 6 12 11 17 16 22 27 29 37 10								
,	Ford Seroad Thirl Founh Folk Sanh Sanh	****	20 40 80 100 120 140				$ \rightarrow $		J.	\downarrow	•	}		* 2 • 2 0 J 1 J 1 J 2 J	 2 0 3 1 4 3 5 4 5 4 5 	#] 9] 1 9 2 5 3 6 4 6 6 7	* 6 1 5 2 6 3 7 5 0 1 9 9 10	0 2 4 1 0 2 4 1 1 2 14 1 15	0 9 9 12 15 17 10 12 12 12 12 12 12 12 12 12 12 12 12 12	1 0 6 17 11 17 16 22 27 25 27 27 37 33									

Ac = Use first Ac = Accepton He = Herection - Use come + = Use come c = Accepton

· nompling plan (ar slows) · nompling plan (ar altern · no this namele argo plan helow, where available). plan helow, where available).

TABLE IV-B --- Multiple sampling plans for tightened inspection (Master table) (Continued)

(see 4.9.3 and 4.9.4)

MIL-SID-105E

6h			C												Acceptal	de Quali	ir tzml	e laughte	ntel enap	ection									
+ite rodr	Saapte	Semple 1110	lative anaple	0 018	0 01	5 0 025	0 040	0.065	U 10	0 15	0 25	0 40	0.65	t Ø	15	25	10	65	10	15	×	40	65	100	150	250	4 7U	650	1000
Tever				Ac tle	* 1	14 A.C. 11	4 a e 1 he	Ar He	Ae He	Ar He	4.C 180	Ac 16-	Ac He	Ac 11-	Ac 140	Ac 160	Ac IIa	Ar IIe	Ac Ite	Ar Ibr	Ac Hr	Ac He	Ac the	Ac Ra	Ar He	Ac Ila	Ac Ile	Ac He	Ac He
k	t crait Sec and Fhird Found Filch Stath Scatt	******	17 54 17 18 192 22							•		J	* 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3	• 2 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	E 4 8 3 4 4 5 5 3 6 1 6 8 7	• 4 5 2 • 3 7 5 8 7 9 0	8 4 2 7 6 9 6 11 9 12 12 14 14 15	0 6 3 9 7 12 10 15 14 17 18 20 21 22	1 1 6 12 11 17 16 22 22 25 27 29 32 33	Î	Î	Î	Î	Î			Î		
L	Facel Sector Facel Facel Sector Sector	*****	S 8 3 2 2 2 2 3 3 3					∥	•			• 2 • 2 0 2 0 3 1 3 1 3 2 3	# 2 8 3 1 4 2 4 3 5 4 5	* 3 0 1 1 4 2 5 3 6 6 7	1 4 1 5 2 6 3 7 5 8 7 9 9 10	0 4 2 7 4 9 4 11 9 12 12 13 14 15	0 6 3 9 7 12 10 15 15 17 18 20 21 22	i i i i i i i i i i i i i i i i i i i	Î										
	First Second Third Fourth Fold Second Second Second Second	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 160 240 320 400 480 360					•	ſ		+ 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	+ 2 0 3 1 4 2 4 3 5	+ 3 6 3 1 4 2 5 3 6 6 7	+ 4 + 5 2 0 3 7 5 4 9 10	8 4 2 7 6 1 9 12 12 14 14 15	e 6 3 9 7 12 10 15 14 17 14 20 21 22	1 12 11 17 16 12 15 17 19	Î											
Y	First Second Third Foreb Fifth Seventh	125 125 125 125 125 125	125 200 115 500 675 875 875							• 2 • 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3	+ 2 0 3 1 4 2 4 3 5 4 5	• 1 • 1 • 1 • 5 • 6 • 7	+ 4 5 2 6 3 7 5 8 7 9 9 30	0 0 2 7 4 9 6 1 9 12 12 14 14 15	0 k 3 5 7 12 10 15 14 17 18 20 21 22	1 8 4 12 11 17 14 22 27 19 32 13	Î												
P	Final Social Fisher Fisher Social Social	200 200 200 200 200 200 200	200 400 600 1000 1200 1200						• 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2	# 2 D 3 D 3 I 4 2 4 3 5 4 5	+ 3 0 3 1 4 2 5 3 6 4 6 7	4 4 1 5 2 6 3 1 5 8 7 9 9 10	8 6 2 7 6 9 6 11 7 12 12 16 14 15	0 3 3 9 7 14 10 15 14 17 18 20 21 22	1 11 12 25 29 11 11 12 25 29 11	Î													
0	First Seroed Third Fourth Fifth Sitch Seventh	315 315 315 315 315 315 315 315	315 630 945 1260 1575 1890 226	∬	•			• 2 • 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3	+ 2 0 J 1 0 3 5 4 5	- 3 0 3 1 4 2 5 3 6 6 7	* * * 5 2 6 3 7 5 8 7 9 10	0 4 7 J 4 9 6 11 9 12 12 16 14 15	0 6 1 9 7 12 10 15 14 17 10 20 21 22	t 6 6 12 11 17 16 22 22 25 21 25 32 35	Î														
A	Firm Second Theri Fourth Fifth Sitth Sitth Seventh	500 500 506 506 509 500 500	500 1000 1500 2000 2500 3000 3000	•			• 2 • 2 • 2 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 2 • 1 • 2 • 1 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2	2334455	+) 0 3 1 4 2 5 1 6 4 5 4 7	# 4 5 2 # 3 7 5 # 7 9 9 0	0 4 2 7 4 9 6 11 9 12 12 14 14 15	0 6 1 9 7 12 10 15 14 17 19 20 21 22	1 8 6 11 12 16 12 17 20 12 12 12 12	Î															
5	Forst Second Thèn Fount Folst Stast Stast Srocaeth	600 500 900 900 900 900 900	100 1400 2400 3250 4400 4400 5600			• 2 • 2 • 3 1 3 1 5 2 3																							

MULTIPLE TIGHTENED

1

\$**.. - Use first - Shee first - Acceptate - Stepectors - Use correct - Acceptate escends lot a

REDUCED

TABLE IV-C-Multiple sampling plans for reduced inspection (Master table)

(see 4.9.3 and 4.9.4)

MIL-SID-105E

	;	·															. <u>.</u>												
			r											Accep	able ()u	elity La	velo (red	ared ine	pection)	t									
size code	Semple	مليسية. مذعة	fact up	e 010	0 015	0.025	0 046	6 045	0 19	0.15	825	0.40	0.45	1.0	15	25		65	10	15	25	40	45	100	150	250	400	450	Fect
heiser			6 131	Ac No	Ac R	Ac Re	Ar Re	Ac 14	Ac He	Ac Re	Ac Re	Ac Re	Ar He	Ar He	Ac Re	Ac Re	Ac Re	Ac Pe	he Phy	Ac Ro	Ac He	AC RO	Ac Ne	ac Ne	Ac He	Ac Re	Ac Ro	Ar 90	Ac
A C D			1											J]	រុ ភ្	4. 4. 4. 4.	· 令令 +	Ţ	+	•	· · ·	•	•	• • •	• • •		· · ·	: 1î
F		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 0 10 12										ŀ	ĵ		· 2 • 1 • 2 • 3 • 3 • 3 • 3 • 3		• 3 • 3 • 4 • 5 1 6 1 6 2 7	• 4 • 5 1 6 2 7 3 7 • 8	* 4 * 5 1 6 2 7 3 8 4 9 * 10	1 4 1 6 2 0 3 10 5 11 7 12 9 14	• 5 1 7 3 9 5 12 7 13 10 15 13 17	0 6 3 9 6 12 9 15 11 17 14 20 11 22		Î				
G	Lun III Schief Field Field Schief)))) 3	3 6 9 12 15 10 71								J		Î	Ĵ	• 2 • 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3	= 2 + 3 + 4 + 4 + 4 + 5 + 5 + 5	r 3 e 3 0 4 0 5 1 6 1 6 2 7	# 3 0 4 0 5 1 4 7 7 3 7 4 8	5 4 5 5 1 6 2 7 3 8 6 9 6 10	 4 1 3 10 5 11 7 12 14 	0 5 1 7 3 9 5 12 7 13 10 15 13 17	0 6 3 9 6 12 9 15 11 17 14 20 10 22	Î						
14	First" Second Thiel Fourth Folsk Suseh Suseh	5 5 5 5 5	\$ 10 15 20 25 30 30							J	•	Î		* 1 * 2 0 1 0 1 \$ 3 L 3	• 2 • 3 • 4 • 4 • 4 • 5		* 3 * * * 5 1 6 2 7 3 7 * *	# 6 8 5 1 6 2 7 3 8 6 9 6 10	4 4 1 6 2 8 3 10 5 11 7 12 9 14	0 5 1 7 3 7 5 12 7 13 10 15 10 17	0 6 3 9 6 12 9 15 11 17 16 20 18 72	Î							
J	Foret Second Found Found Folk Sigh Sigh	2 5 5 4 4	4 (5 22 40 44 54							•	Î	J	* 2 * 2 0 2 0 3 0 3 0 3 1 3	* 3 • 3 • 3 • 4 • 4 • 4 • 4 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5	* 3 * 3 0 5 1 6 2 7	• 3 6 4 9 5 1 6 2 7 3 7 4 8	P 4 0 5 1 8 2 7 3 8 4 7 6 10	<pre># 4 1 6 2 0 3 10 5 11 7 12 # 1)</pre>	0 5 1 7 3 9 5 17 7 13 10 15 13 17	0 6 3 9 6 12 1 15 1 15 1 17 1 4 29 1 17 2 2	Î								
ĸ	Firei Secont Firef Filth Sixth		1) 20 52 65 71 17							Î		+ 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3	8 2 8 3 8 3 0 4 0 4 1 5	* 3 * 3 * 4 * 5 * 4 * 5 * 4 * 5 * 1 * 6 * 7	- J 0 4 0 5 1 6 2 7 3 7	# 4 # 5 6 2 7 3 8 4 9	+ 1 1 6 2 0 3 10 5 11 7 12 + 11	0 5 1 1 3 9 5 12 7 13 10 15 11 12	0 6 3 9 6 17 8 15 11 17 16 27	Î									

Bise first sampling plan belon annue (vefer to contraction of table an fallward page, when neressary). If sample size equals, or recrede los or batch size, do 160 percent impecies
 Itse first sampling plan shore enous
 Acceptance sumber
 Bereform some data and an annue (vefer to contraction of table an fallward page, when neressary). If sample size equals, or recrede los or batch size, do 160 percent impecies
 Acceptance sumber
 Bereform sampling plan does does enous
 Bereform sambar
 Bitse corresponding single sampling plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding single compliant plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding single compliant plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding single compliant plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding to the sampling plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding to the sampling plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding to the sampling plan for alternatively, use multiple sampling plan below, where available).
 Bitse corresponding to the sampling plan for alternatively, use multiple sampling plan below, where available).
 Bitse first sample to the sample to

TABLE IV-C — Multiple sampling plans for reduced inspection (Master table) (Continued)

(see 4.9.3 and 4.9.4)

-1

[40	crianti	Qualit	y Levela	lreduced	inspec	1ioe)†											ļ
Sa+ 31	r# " 5=	mple	Sample	Cums- Jative sample	0.010	0 01	5 0	<u>مع</u>	10.040	0 065	0.10	0.15	0.25	0 40	0.65	3.0	15	25	4.0	65	10	15	z	40	65	100	150	250	400	650	1000	
letr				vize	Ac IIe	Ac 1	H- A	le He	Ac He	Ac Re	Ar He	Ac He	Ac He	Ac Ite	e Ac lle	Ac H	Ac 1	le Ac H	r Ac Hi	Ac H	e Ac H	e Ac He	Ac Ha	Ac He	Ac Br	Ac Re	Ac Re	Ac He	Ac Re	Ac Re	Ac He	}
	. Fin Sen Th Fo Fi Sin Se	rot cond hird purth dik ath reath	20 20 20 20 20 20 20 20 20	20 40 60 80 100 120 140						·			• 2 • 2 0 2 0 3 0 3 0 3		2 = 3 3 = 3 4 0 4 4 0 5 4 1 6 5 1 6 5 2 7	3 0 0 5 1 6 2 7 3 7 4 0	* 0 1 2 3 4 5 1	6 7 4 6 2 4 7 3 10 6 5 11 6 7 13 6 9 14	5 5 1 7 3 9 5 12 7 13 10 15 13 17	6 0 3 4 6 1 8 1 12 1 14 2 18 2 18 2							$\left \begin{array}{c} \\ \\ \\ \\ \end{array} \right $					
	r Fr Se Fr Fr Se Se	crol ccoed hard ourth idth idth isth rventh	32 32 32 32 32 32 32 32 32 32	32 64 96 128 160 192 224					•	Î		<pre> 2 2 2 2 2 3 3 3 3 3</pre>	* 2 • 3 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 5 • 5	0 0 1 1 2	3 0 4 0 5 5 1 6 5 3 7 6 3 7 7 6 8	+ 4 0 5 1 6 2 7 3 8 4 9 6 10	1 2 3 1 5 1 7 1 4	0 0 1 0 3 1 0 5 1 1 7 1 2 10 1 4 13 1	0 6 12 6 12 1 0 15 1 1 17 1 14 20 7 16 22	$\left \int \right $												
	N Fi Sv Fi Si Se	rrol hird ourth afth isth trenth	- 50 50 50 50 50 50 50	90 100 150 200 250 300 350				•			• 2 • 2 0 2 0 3 0 3 0 3 1 3	# 2 # 3 0 4 0 4 1 5 1 5			1 8 4 0 5 1 6 1 2 7 3 8 1 4 9 1 6 10	2 8 3 10 5 11 7 12 9 14	0 1 5 1 7 10	5 10 1 7 3 9 9 6 1 2 0 1 3 11 1 5 14 2 1 18 2														MIL-S
	n Fi Set Fi Fi Fi Set	iraa icourt hird ourth ifth ivit ivit	80 60 80 80 80 80 80	80 160 240 320 400 400 480 360						2 2 0 2 0 2 0 1 0 3 1 3	+ 2 + 3 0 3 0 4 0 4 1 5 3 5	+ 3 + 3 0 4 0 5 1 6 1 6 2 7			1 2 1 2 1 3 10 5 1 1 5 1 1 7 12 9 14	0 5 1 7 3 9 5 12 7 13 10 15 10 15	0 3 6 1 8 1 11 7 16 2 16 7															TD-105E
, ') Figure	erst reconsi werd ourth ifth rath rvents	125 125 125 125 125 125 125 125 125	125 230 173 300 623 750 875	•	Î	•		2 2 2 2 0 3 1 3	e 2 e 3 0 3 0 4 1 5 1 5	* 3 • 3 0 4 0 5 1 6 1 6 2 7	" 1 0 4 0 5 1 6 2 7 3 7 4 6	0 5 1 6 2 7 3 6 4 9 6 10	1 8 4 2 0 3 10 5 11 7 13 9 11	4 5 1 7 3 9 5 12 7 13 1 10 15 1 13 17	0 6 3 9 6 12 8 15 11 17 14 20 18 22		•														
	H Fi Se Fi Se Se	irst reitad bynt owrth ifth isth eventh	200 200 200 200 200 200 200 200	206 400 600 1000 1200 1400				1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 2 • 3 0 4 0 4 1 5 1 5	+ 3 + 3 0 4 0 5 1 6 1 6 2 7	+ 3 0 4 0 5 1 6 2 7 3 7 4 8	• 4 • 5 1 • 2 7 3 • 4 • 6 10	+ 1 1 6 2 1 3 10 5 11 7 12 9 14	0 5 1 7 3 9 5 12 1 7 11 1 10 15 1 11 17	0 6 3 1 6 12 8 8 15 1 17 1 4 20 1 8 22																	

MULTIPLE REDUCED

₽₽≈₽

M the first compling plan below arrow. If comple aire equals, or exceeds, for or batch size, do 100 percent inspection
 Che first compling plan below arrow feefer in preceding page when decessary).
 Acceptore number
 M threader not previde a this comple aire
 Acceptore not previde a this comple aire

Code	Sample											Accer	table (Quality	Level												
Letter	Size	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	25	40	65	100	150	250	400	650	10
A	2															18	<u> </u>		42	69	97	160	220	330	470	730	1
B	3			Ì							[12			28	46	65	110	150	220	310	490	720	1
с	5													7.4			17	27	39	63	90	130	190	290	430	660	
D	8												4.6			11	17	24	40	56	82	120	180	270	410		ļ
E	13			l l								2.8			6.5	n	15	24	34	50	72	110	170	250			
F	20					:					1.8			4.2	6.9	9,7	16	22	33	47	73						
G	32									1.2			2.6	4.3	6.1	9.9	14	21	29	46							
н	50								0.74			1.7	2.7	3.9	6.3	9.0	13	19	29								
J	80							0.46			1.1	1.7	2.4	4.0	5.6	8.2	12	18									
к	125						0.29			0.67	1.1	1.6	2.5	3.6	5.2	7,5	12										
L	200					0.18			0.42	0.69	0.97	1.6	2.2	3.3	4.7	7.3											
M	315				0.12			0.27	0.44	0.62	1.00	1.4	2.1	3.0	4.7												
N	500			0.074			0.17	0.27	0.39	0.63	0.90	1.3	1.9	2.9												,	
Р	800		0.046			0.11	0.17	0.24	0.40	0.56	0.82	1.2	1.8												· [
Q	1250	0.029			0.067	0.11	0.16	0.25	0.36	0.52	0.75	1.2		-													ĺ
																	-										
R	2000			0.042	0.069	0.097	0.16	0.22	0.33	0.47	0.73																

* Notes For the exact AOQL, the above values must be multiplied by (1 - $\frac{Sample \ size}{Let \ or \ Beich \ size}$)

Inspection.]

Ξζητ<u></u>ματο_πτω

TABLE V-B-Average Outgoing Quality Limit Factors for Tightened Inspection (Single sampling).

(see 3.3)

AOQL TIGHTENED * Noter For the exact AOQL, the above values must be multiplied by (1 - Semple size) Let or Betch size)

(+++ 11.4)

Inspection.]

LQ (DEFE 10.0%

Ĕ		.	.		<u> </u>						·				-		(See	4.117	_
ECTIV	Code	Sample							Accep	ptable Qu	ality Le	vel							
)ES)	leiter	size	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	1
	A	2						1			1	1					68	1	1
	В	3		ļ												54			
	С	5													37	1		58	
	Ð	8	1								ł			25		1	41	54	Ē
	F.	13											16		ļ	27	36	44	5
	F	20									{	11	ĺ		18	25	30	42	1 1 1 1
	G	32							Ì		6.9			12	16	20	27	34	05E
	н	50								4.5	í 1		7.6	10	13	18	22	29	
	J	80]			2.8	ĺ		4.8	6.5	8.2	11	14	19	24	
	к	125						1.8			3.1	4.3	5.4	7.4	9.4	12	16	23	1
	L	200					1.2			2.0	2.7	3.3	4.6	5.9	7.7	10	14		
	м	315				0.73			1.2	1.7	2.1	2.9	3.7	4.9	6.4	9.0			
	N	500			0.46			0.78	1.1	1.3	1.9	2.4	3.1	4.0	5.6				ł
	р	809		0.29			0.49	0.67	0.84	1.2	1.5	1.9	2.5	3.5					
	Q	1250	0.18			0.31	0.43	0.53	0.74	0.94	1.2	1.6	2.3						
	R	2000			0.20	0.27	0.33	0.46	0.59	0.77	1.0	1.4							

TABLE VI-A — Limiting Quality (in percent defective) for which $P_a = 10$ Percent (for Normal Inspection, Single sampling)

(see 4.11)

TABLE VI-B—Limiting Quality (in defects per hundred units) for which $P_a = 10$ Percent (for Normal Inspection, Single sampling)

(see 4.11)

Code	Sample												Accep	iable Q	huality	Level											
letter	size	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	25	40	65	100	150	250	400	650	1000
A	2													<u> </u>		120			200	270	330	460	590	770	1000	1400	1900
в	3	ļ	1				[1							77			130	180	220	310	390	510	670	940	1300	1800
С	5													46			78	110	130	190	240	310	400	560	770	1100	
D	8											l	29			49	67	84	120	150	190	250	350	480	670		
E	13										ļ	18			30	41	51	n	91	120	160	220	300	410			
F	20										12			20	27	33	46	59	77	100	140			-			
G	32									7.2			12	17	21	29	37	48	ស	88							
н	50						1		4.6			7.0	n	13	19	24	31	40	56			-					
L	80							2.9			4.9	6.7	8.4	12	15	19	25	35									
к	125						1.8			3.1	4.3	5.4	7.4	9.4	12	16	23										
ι	200					1.2			2.0	2.7	3.3	4.6	5.9	7.7	10	- 14											
м	315				0.73			1.2	1.7	2.1	2.9	3.7	4.9	6.4	9.0												
N	500			0.46			0.78	1.1	1.3	1.9	2.4	3.1	4.0	5.6													
P	800		0.29			0.49	0.67	0.84	1.2	1.5	1.9	2.5	3.5														
Ŷ	1250	0.18			0.31	0.43	0.53	0.74	0.94	1.2	1.6	2.3															
lt	2000			0.20	0.27	0.33	0.46	0.59	0.77	1.0	1.4																

LQ (DEFECTS) 10%

10 (DE 5.0%		IA	BLE V	II•A—	- Limit	ing Qi (for N	uality Iormai	(in pe I Inspe	ercent ection,	defecti Singl	ive) fo samf	r whi oling)	ch P _a	= 5	Percei	nt	(see	∍ 4. 11)
FECT	Code	Sample						Accept	able Qua	lity Lev	el]
IVES)	letter	aize	0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	
	A	2															78]
	В	3							1			1				63		İ	
	С	5	Ì												45		ł	66	
	D	8	1											31			47	60]_
	Е	13		1	1					1			21			32	41	50	Ē
	F	20										14			22	28	34	46	-SID
ľ	G	32	1				1			ĺ	8.9]	14	18	23	30	37	10
	н	50	1							5.8			9.1	12	15	20	25	32	Ē
	J	80					ĺ		3.7			5.8	7.7	9.4	13	16	20	26	
ľ	к	125	1					2.4		1	3.8	5.0	· 6.2	8.4	11	14	18	24	
	ι	200					1.5	1		2.4	3.2	3.9	5.3	6.6	8.5	11	15		
	м	315				0.95		}	1.5	2.0	2.5	3.3	4.2	5.4	7.0	9.6			
ľ	N	500	<u> </u>		0.60			0.95	1.3	1.6	2.1	2.6	3.4	4.4	6.1				
	Р	800		0.30			0.59	0.79	0.97	1.3	1.6	2.1	2.7	3.8				ł	
[0	1250	0.24			0.38	0.50	0.62	0.84	1.1	1.4	1.8	2.4						
	R	2000			0.24	0.32	0.39	0.53	0.66	0.85	1.1	1.5							

TABLE VII-A—Limiting Quality (in percent defective) for which $P_a = 5$ Percent (for Normal Inspection, Single sampling)
TABLE VII-B—Limiting Quality (in defects per hundred units) for which $P_a = 5$ Percent (for Normal Inspection, Single sampling)

(see 4.11)

	Code	Sample										Accept	able Q	aality	Level													
	letter	BİZE	0.010	0.015	0.025	0.040	0.065	0.19	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	25	40	65	100	150	250	400	650	1000
		2	1														150 -			240	320	390	530	660	850	1100	1500	2000
	В	3	1													100			160	210	260	350	440	570	730	1000	1400	1900
	c	5													60			95	130	160	210	260	340	440	610	810	1100	
	D	6	1											38			59	79	97	130	160	210	270	380	510	710	(
	E	13		ļ									23			37	48	60	81	100	130	170	230	310	440			1
	F	20										15			24	32	39	53	66	85	110	150						
	G	32	1								9.6			15	26	24	33	41	23	68	95							
	н	50	1							6.0			9.5	13	16	21	26	34	- 44	61						ĺ		
	1	80							3.6			5.9	7.9	9.7	13	16	21	27	38									
	к	125]					2.4			3.8	5.0	6.2	8.4	11	14	10	24										
	L	200					1.5			2.4	3.2	3.9	5.3	6.6	8.5	- 11	15										;	
	м	315				0.95			1.5	2.0	2.5	3.3	4.2	5.4	7.0	9,6												
្ល័ន្ដ៍	5	500	1		0.60			0.95	1.3	1.6	2.1	2.6	3.4	4.4	6.1										:			
τ. Έ	Э Р	800		0.38			0.59	0.79	0.97	1.3	1.6	2.1	2.7	3.8						i								
Ì		1250	0.24			0.38	0.50	0.62	0. 64	1.1	1.4	1.6	2.4			İ												
	:(T() +	2000			9.24	0.32	0.39	0.53	0.66	0.65	1.1	1.5																

31

MIL-SID-105E

Acceptable Quality Level Humber of nample units from last 10 lots or batches 15 25 40 65 100 150 250 400 650 1000 10 2.5 4.0 6.5 0.010 0.015 0.025 0.640 0.065 0.10 0.15 0.25 0.40 0.65 1.0 1.5 • ٠ . 14 22 40 68 115 183 277 : ٠ 2 4 8 : . . . ٠ . . . ٠ . đ . 20 - 29 • : • • • • ٠ • 3 7 7 13 22 36 63 63 110 ifis 178 : 30 - 49 50 - 79 Ð I : Û : 181 301 . 3 14 25 40 ٠ . . 0 0 2 105 101 297 42 68 : : • ٠ 2 1 14 24 : • ٠ : ٠ ٠ : : 0 ٥ 1 80 - 129 • • 177 277 301 471 • • : 0 4 13 25 ₩0 42 72 115 690 2 4 130 - 199 200 - 319 ٠ . . . 0 2 8 14 22 68 115 191 113 189 : • ٠ 24 : ٠ : : . : 0 ð 1 ; . 14 39 63 68 320 - 499 0 40 68 110 161 • 14 25 500 - 799 600 - 1349 : 0 2 2 3 7 42 • . • . 0 14 24 105 381 40 69 110 169 • 0 2 Z r, 7 Ð 24 1250 - 1999 . ٠ 0 0 • 8 14 14 24 22 38 40 67 68 111 2000 - 3149 : : ; . 0 4 115 181 186 . 0 Т 3150 - 1999 0 4 • : 2 4 1 1 7 7 14 25 42 40 68 63 110 181 . e 5000 - 7999 e 14 24 24 40 185 185 8000 - 12499 0 0 Z 2 ē IJ 69 110 169 12500 - 19999 6 4 21 38 40 67 68 115 181 Ð 2 ŧ 8 н 20000 - 31499 0 14 24 ш 186 31508 & Over Q . 1

TABLE VIII -- Limit Numbers for Reduced Inspection

(see 4.7.3)

Denotes that the number of sample units from the last an lots or batches is not sufficient for reduced isapection for this AQL. In this fastance more than ten lots or batches may be used for the calculation, provided that the lots or batches used are the most recent ones in sequence, that they have all been or more all has none has been rejected while on original impersion

32

MIL-SID-105E

LIMIT NUMBERS

TABLE IX — Average sample size curves for double and multiple sampling (normal and tightened inspection)

(see 4.12.2)

Į

I

1

n , 75n , 50n .25n ден 5 | | A= = T-AC = 1 . u 1 n x proportion defective л Chanking . Deskie .75n Average Sample .50n Size , 25n AC = 10 Ac = 14 AC = 18 ٥١ 12 15 12 il 18 21 3 15 14 11 10 20 in x proportion detective AVERAGE SAMPLE SIZE n Darah la . 75n .50n .25n A = = 41 - 21 44 = 30 A< . 2 18 20 30 40 e 13 2 39 52 27 9 15 n x proportion delective u = Equivalent ningte sample vizo Single cample acceptance cambe A c

Sampling.]

* AQL for normal inspection

t

TABLE X-A-Tables for sample size code letter: A

					Ancepta	ble Quality	Levela (noi	mal inspec	tion)						
Р.	65	65	25	40	65	100	150	\times	250	\times	400	\times	650	\times	1000
	p (in percent defective)						p (ii	n defecta pe	er hundred u	mila)					-
990	0.501	0,503	743	21 8	41 2	6 9 J	145	175	239	305	.374	\$17	629	859	977
95 0	2 53	2.56	17.8	40.9	6A.3	131	199	2,15	308	38 I	462	622	745	975	i 122
90.0	5 13	5.27	26 6	55 1	87.2	158	233	272	351	432	\$15	684	012	1073	1206
75 0	13 (14.4	48-1	56. 4	127	211	298	342	431	521	612	795	934	0214	1354
50 a	29 3	34.7	83 9	134	184	284	3483	433	533	633	733	933	1093	1363	1533
25 0	50.0	69 3	135	196	25.5	371	484	540	651	761	870	1087	1248	1568	1728
10.0	68.4	115	194	266	334	464	589	650	770	869	1006	1230	1409	1748	1916
50	77 6	150	237	31\$	388	526	657	722	848	972	1094	1335	1512	1862	2035
10	90.0	230	332	420	502	655	800	870	1007	1141	1272	1529	1718	2088	2270
	\times	\times	40	65	100	150	\times	250	\times	400	\times	650	\times	1000	Х
		•	.		Accept	sble Quality	r Levela (ii	chlened ina	pection		<u></u>				

Notos Binamfal distribution unad for process defactive computations; Painess for defaces per handred units.

TABLE X-A-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: A

	Сылы-						•••••••••••••••••••••	Accepta	ble Quali	ity Level	s (aormal	inspecti	an)							Cumu-
Type of sampling plan	lative sample	Less than 6.5	6.5	$\left \times\right $	10	15	25	40	65	100	150	\times	250	\times	400	\times	650	Х	1000	nample oize
		Ac fle	Ac Re	Ac He	Ac Re	Ac Re	Ac fie	Ac Re	Ac Re	Ac fle	Ac fle	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	
Single	2	▽	0 1	lles	Flee	line	1 2	2 3	3 4	56	78	89	10 11	12 13	14 15	18 19	21 22	27 28	30 31	2
Double		▽	•	code Letter	code Letter	code	(*)	(*)	(1)	(*)	(*)	(1)	(*)	(*)	(*)	(=)	(*)	(*)	(*)	
Yultiple		~		D	C .	8	•	•		•	•	•	•		•	•	•	•	•	
	<u> </u>	Less than 10	\times	10	15	25	40	65 Accepta	100 able Qual	150 iny Level	s (righter	250 ed inspe		400	\times	650	\times	1000	\times	

MIL-SID-105E

V = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac a Acceptance number

Re = Rejection number

٠

= Use single sampling plan above for alternatively use code letter D).

(*) = Use single sampling (or alternstively use code latter B),

TABLE X-B-Tables for sample size code letter: B

						Acce	pteble Qua	lity Level	(aormal i	nspection}							
P,	4.0	4.0	15	జ	40	65	100	$\left \times\right $	150.	\times	250	\times	470	\times	650	\times	1000
	p (in percent defective)			.	A			p (in	defects pe	r hundred v	mite)						
99.0	0.334	0,135	4.97	14.5	27.4	59.5	96.9	117	159	203	249	345	419	572	651	947	1029
95.0	1.70	1.71	11.0	27.3	45.5	87.1	133	157	206	256	308	415	496	663	748	1065	1152
90.0	1.45	3.51	17.7	36.7	58.2	105	155	161	234	268	343	456	541	716	804	1131	1222
75.0	914	9.59	32.0	57.6	84.5	141	199	228	287	347	406	530	623	809	903	1249	1344
รถก	20.6	23.1	55.9	89 t	122	189	256	289	356	422	489	622	722	922	1022	1369	1489
75.0	37.0	46.2	89.B	131	170	247	323	360	434	507	580	724	832	\$045	1152	1539	1644
10.0	53.6	76.8	130	177	223	309	392	433	514	593	671	825	939	1165	1277	1683	1793
5.0	63.2	99.9	158	Z10	258	350	438	481	\$65	648	730	690	1008	1241	1356	1773	1886
	74.5	164	791	280	185	417	533	580	671	761	B48	1019	1145	1392	1513	1951	2069
1.0	65	6.5	25	40	65	100	$\overline{\mathbf{x}}$	150	\mathbf{x}	250	$\overline{\times}$	400	\times	650	\times	1000	\times
			L	L	I	Ac	ceptable 0	kality Lev	els (lighte	ned inspec	tion)	d	L a	<u></u>	•	•	

Nores Alaumini distribution mud for person delective computations; Palaoan for defecto per handred units.

TABLE X-8-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: B

										Accep	unble Q	uatity l	,evels (normal i	inspectio	a).						Cumu.	
Type of sampling	lative sample	Less than 4.0	4.0	6.5	$\left \times\right $	10	15	25	40	65	100	$\left \times\right $	150	$\left \times\right $	250	$\left \times\right $	400	$\left \times\right $	650	$\left \times\right $	1000	letive sample	
pran	size	Ac Re	Ac fle	Ac Re	Ac He	Ac fte	Ac Re	Ac Re	Ac Re	Ac R	Ac R	Ac R	Ac Re	Ac Re	Ac Re	Ac Re	Ac Be	Ac Re	Ac Re	Ac Re	Ac Re	nize	
Single	3	Δ	0 1	llee	1/20	11.0	1 2	2 3	34	56	78	8 5	10 11	12 13	14 15	18 19	21 22	27 28	30 31	41 42	44 45	3	
Double	2	▽	•	code Letter	code	code Letter	0 2	03	14	2 5	3 7	3 7	5 9	6 10	7 11	9 14	11 15	15 20	17 22	23 29	25 31	2	
	•			•	Ð	с	1 2	3 9	• 3				. 12 13	13 10	0 10 17	23 24	20 21						
Yultiple		▽	•				++	**	**	**	**	**	++	-++-	++-	**	**	++	+1-	++-	++		MIL-SID-105E
	.	Less than 6.5	6.5	\times	10	15	25	40	65	100	\times	150	\times	250	\times	400	\times	550	\times	1000	\times		
									Acce	ptable Ç	hality l	.evels (lightene	ed inspe	ction)								

abla = 0se next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number

Re = Rejection number

* = Use single sampling plan above (or alternatively use code latter E).

++- \equiv . Use double sampling plan above (or elternatively use code latter D)

B

TABLE X-C-Tables for sample size code letter: C

Note: Figure on curves are Acceptable Quality Levels (AQL's) for semial inspection

							Acceptat	ile Quality	l,evels (no	ormal inspe	ction]							
P.	2.5	10	2.5	10	15	æ	40	65	\times	160	\times	150	$\left \times\right $	250	$\left \times\right $	400	$\left \times\right $	650
	p tin percer	n defective)							p (in	defects pr	r hunderd i	units)						
99.0	0.201	3.27	0.201	2.97	8.72	16.5	37.5	58.1	70.1	95.4	122	150	207	251	343	391	568	618
95.0	1.02	7.64	1.03	7.11	16.4	27.3	52.3	79.6	93.9	123	154	185	249	298	398	449	639	691
90.0	2.09	11.2	8.11	10.6	22.0	34.9	63.0	93.1	109	140	17.1	206	273	325	429	482	679	733
75.0	5.59	19.4	5.75	19.2	34.5	50.7	B4.4	E19	137	172	208	245	316	374	485	542	749	806
50.0	12.9	31.4	13.9	30.6	53.5	73.4	113	153	173	213	253	293	373	433	\$53	613	833	893
25.0	24.2	45.4	27.7	\$3.9	78.4	102	148	194	216	260	304	348	4.35	499	627	691	923	986
19.0	36.9	S8.4	46.1	77.8	106	134	185	215	260	,308	356	403	495	564	699	766	1010	1076
5.0	45.1	65,7	59.9	94.9	126	155	210	263	289	339	389	438	534	605	745	814	1064	1139
1.0	60.2	77.8	92.1	133	168	201	262	320	348	403	456	509	612	687	835	908	1171	1241
•	4.0	\times	4.0	15	ద	40	65	$\left \times\right $	100	Х	150	$\left \times\right $	250	\times	400	\times	650	\times
							Ассері	abie Qualit	y Levela (tightened i	nspection)							

Notes - Binomial distribution used for precent defective computations: Polynom for defects par handred units.

abla = 0me next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac 🚍 Acceptance number.

He = Rejection number,

Use single sampling plan above (or alternatively use code latter F)

-++ = Use double sampling plan above (or alternatively use code letter D)

TABLE X-D-Tables for sample size code letter: D

PERCENT OF LOTS EEPECTED TO HE ACCEPTED (Pg) PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P_) ю ю 011 001 120 130 160 170 QUALITY OF SUBMITTED LOTS (p, is percent defective for AQL's \gtrless 10; in defects per hundred units for AQL's > 10)

(Curves for double and multiple sampling are contched as closely as practicable)

CHART D - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Note: Figures on curves are Acceptable Quality Lawsis (AQL's) for normal Impaction,

ABLE X-D-1 - TABULATED VALUES FOR OP	PERATING CHARACTERISTIC CURVES	FOR SINGLE	SAMPLING PLANS
--------------------------------------	--------------------------------	------------	----------------

							A:	ceptable (Justity Leve	eia (normal i	inapection)	J							
Pe	1.5	6.5	10	1. S	6.5	10	15	25	40	$\left[\times\right]$	65	$\left \times\right $	100	$\left \times\right $	150	$\left \times\right $	250	$\left \times\right $	400
	p (in p	xorcent del	fective)						• <u> </u>	p (in d	lefects per	r hundred u	mits)	<u> </u>	·				
99 .0	0.126	1.97	5.08	0.126	1.85	5.45	10.3	22.3	36.3	43.8	59.6	76.2	93.5	129	157	215	244	355	386
95.0	0,639	4-64	11.1	0.641	4.44	10.2	17.1	32.7	49.8	58.7	17.1	96.1	116	156	165	249	281	399	432
90.0	1.31	6.68	14.7	1.32	6.65	13.8	21.8	39.4	58.2	67.9	87 8	108	129	171	203	268	301	424	458
75.0	3.53	12.1	22.1	3 60	12.0	21.6	31.7	52.7	74.5	85.5	108	130	153	199	234	303	339	468	504
50.0	8.30	20.1	32.1	8 66	21.0	33.4	45.9	70.9	95.9	108	133	158	183	233	871	346	383	521	558
25.0	15.9	30.3	43.3	17.3	33.7	49.0	63.9	92.8	121	135	163	190	217	272	312	392	432	517	617
10.0	25.0	40.6	53.8	28.6	48.6	66.5	83.5	116	147	162	193	222	252	309	352	437	479	631	672
5.0	31.2	47.1	60.0	37.4	59.3	78.7	96.9	131	164	180	212	243	274	336	378	465	509	665	7,07
1.0	43.8	59.0	70.7	57.6	83.0	105	126	164	200	218	252	265	318	382	429	522	568	732	776
	2.5	10	$\left \times\right $	2.5	10	- 15	25	40	\mathbf{x}	65	$\left \times\right $	100	\times	150	\times	250	$\overline{\mathbf{x}}$	400	$\overline{\mathbf{x}}$
							<u> </u>	Acceptab	le Quality	Levela (ti	ghtened ir	aspection)	· · · · · · · · · · · · · · · · · · ·	·	·		L	<u></u>	A.,

Notes: Blaumini distribution used for percant defective computations; Palance for defects per bundred units

D

											,	Acce	eptabl	le Q	uality	Lev	elo	(norme	inspe	ctio	ж)											
Type of sempling plan	Cumu- lative sample	Less that 1.5	ין ו.	.5	2.5	\times	4.0 -	6.5		10	1	5	25		40	>	<	65	\geq	{	100	\geq	(1	0	\geq	250		\times	400	Higher than 400	Cume- Intive sample	
····	size	Ac Re	Ac	Re	Ac Re	Ac Re	Ac Re	Ac R	e	: Re	Ac	Re	Ac R	le A	c Re	Ac	fle	Ac R	Ac A	e A	ic Ne	Ac R	e Ac	Re	Ac Re	Ac F	1e A	c Re	Ac R	nAc fle	oize	
Single	· 8	▽	0	I	tine	Une	line	1 2	2	3	3	•	5	6	78	8	9	10 LI	12 1	3 -	4 15	19 1	9 21	22	27 28	30 3	11 4	1 42	44	Δ	0	
Dauble	5	▽		•	code Letter	code Letter	code Letter	0 2	2 0	3	1	4	2	5	37 89	3 11	7 12	5	6 I 15 I	0 6 11	7 11 8 19	9 I 23 2	4 11 4 26	16 27	15 20 34 35	17 2	12 2 18 5	3 29 2 53	25 3 56 5	Δ	5 10	
	 		+	_	c	F	E	<u> </u>			-	_	 	-		-				╉	· · · · ·		+	┥					-			1
	2		•	•				≠ 2	•	2	•	3		•	04	0	4	05	0	6	17	1	8 2	9	J 10	•	2	6 15	6 10	Δ	2	
								# 2	0	3	0	3	1	s	16	2	7	38	3	٩ •	4 10	6 1:	2 7	14 1	10 17	ս	910	6 25	17 21		4	[
	6							0 2	0	3	I	+	2	6	3 B	4	9	6 10	71	2	8 13	H 1	7 13	19 1	17 24	19 :	17/20	6 36	29-39		6	
Multiple	8							0 3	1	4	2	5	3	7	5 10	6	u	8 13	IO 1	5 12	2 17	16 2	z 19	25	24 31	21 .	н)з:	7 46	40 45		8	
	10							1 3	2	4	3	6	54	8	7 11	9	12	11 15	14-1	ąμ	720	22 Z	5 25	29	32 37	36 4	10 41	9 SS	53 SE		10	
	12	ŀ						13	3	5	•	6	7 9	9 l	0 12	12	14	14 17	18 2	0 21	1 23	27 2	31	33	40 43	45 (7 6	E 64	65 68		12	
	14							2 3	•	5	6	7	9 IO	ի	3 16	14	15	18 19	21 2	2 29	526	32 3.	3 37	38	48 49	53 5	4 7:	2 73	77 78		14	ļ
	•	Leas that 2.5	2	.5	\times	4.0	6.5	10		15	2	5	40		\times	68	5	\times	100	>	\times	150	>	<	250	\geq	<	400	\succ	Higher than 400		-
											Ac	CEPI	able	Que	lity £	evel	9 (ri	ghiene	l inspe	ctic	on)											

D

TABLE X-D-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: D

△ = Use next preceding sample size code letter for which acceptance and rejection sumbers are available.

abla = the next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac 😑 Acceptance number

Re = Rejection number

• = Use single sampling plan above (or alternatively use code letter G)

_ = Acceptance not permitted at this sample size.

TABLE X-E-Tables for sample size code letter: E

CHART E - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

Nate: Figures as curves are Accuptulia Quality Levels (AtL's) for normal inspection.

								Acceptab	le Qualit	r Levela (normal ins	pection)								
P.	1.0	4.0	6.5	10	1.0	4.0	6.5	10	15	25	$\left \times\right $	40	$\left \times\right $	65	$\left \times\right $	100	$\left \times\right $	150	\times	250
	r	(in percen	it defectiv	e)					<u> </u>		p (in	defects pr	er hundred	units)						
49.0	0.077	1.16	3.58	6.75	0.0773	1.15	3.35	6.33	13.7	22.4	27.0	36.7	46.9	57.5	79.6	96.7	132	150	239	238
95.0	0.394	2.61	5.60	11.3	0.395	2.73	6.29	10.5	20.1	30.6	36.1	47.5	59.2	71.1	95.7	115	153	173	246	266
90.0	0.807	4.17	E.BD	14.2	0.810	4.09	9.48	13.4	24.2	35.8	41.8	54.0	66.5	79.2	105	125	165	185	261	282
75.0	2.19	7.41	13.4	19.9	2.21	7.39	13.3	19.5	32.5	45.8	52.6	66.3	80.2	94.1	122	14	187	208	288	310
50.0	5.19	12.6	20.0	27.5	5.33	12.9	20.6	28.2	43.6	59.0	66.7	B2.1	97.4	113	144	167	213	236	-321	344
25.0	10.1	19.4	28.0	36.1	10.7	20.7	30.2	39.3	57.1	74.5	R3.1	100	117	134	167	192	241	266	155	379
10.0	16.2	26.8	36.0	64.4	17.7	29.9	40.9	51.4	71.3	90.5	100	119	137	155	190	217	269	295	388	414
5.0	20.6	31.6	41.0	49.5	23.0	36.5	48.4	59.6	80.9	101	ш	130	150	168	205	233	286	313	409	435
1.0	29.8	41.3	\$0.6	58.8	35.4	51.1	64.7	77.3	101	123	134	155	176	196	235	264	321	349	450	477
L	1.5	6.5	10	\times	1.5	6.5	10	15	25	$\overline{\times}$	40	$\left \times\right $	65	\times	100	\geq	150	\times	250	\times
			•••••	•			<u></u>	Acce	piable Qu	ality Leve	la (tighter	ned inspec	rtion)							

Notes Biungial distribution and for percent delective computations, Palason for defects per bundred units.

Sampling Plans.]

E

TABLE X-E-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: E

											Å	cepte	ble	Queli	(y 1	,evei	le (e		l innpe	ctioe)												ſ
Type of sampling plan	Cumu- Intive sample	Lena shaa LQ	1.0	1.5	$\left \times\right $	2.5	4.0	6	5.5	10	-	15		8	>	\leq	4	D	Х	6	5	\times	10	0	\geq	<	150		\succ	{	250	thus 250	lacive snapl
	si 20	Ac Re	Ac Ar	Ac Re	Ac Fie	Ac Re	Ac P	le Ac	Re	Ac	Re/	le A	.e & c	c Re	Ac	Re	Ac	Re	Ac F	ie Ac	Re	Ac Be	Åc	Ra	٨c	Re	Ac 1	RaA	c I	7e A	c Re	Ac Re	
Single	13	▽	0 1	Tine	line	1100	1	2 2	3	3	4	5 (6 7	78	8	9	10	n	12 1	3 14	15	10 19	21	22	27	28	30	91 4	1 •	2 4	4 45	Δ	13
	8			code	code	code	0	2 0	3	1	4	2 5	; 3	1 7	3	7	5	9	6 1	0 7	11	9 14	h	16	Б	20	17	22 2	3 2	9 2	5 31	Δ	8
Double	16		•	Letter	Latier	Letter	1	2 3	ł	٠	5	6 1		9	n	12	12	13	15 1	618	19	23 24	26	27	з.	35	37	38 5	25	35	5 57		16
	3	V	•	D	G	F		2 .	2		3	. (. 4	0	4	•	5	0	6 1	7	1 8	2	9	3	10	4	12	6 1	5 (5 16	Δ	3
	6							zlo	3	0	3	1 9	; 1	1 6	2	7	3	3	3	9 4	10	6 12	7	14	10	17	11	9 1	62	5 13	27		6
	9						0	2 10	3	1	4	2 6	\$ 3	3 8	4	9	6	10	7 1	1 8	13	n 17	13	19	17	24	19 3	72	63	6 23	39	1	9
en lainta	12						0	3 1	4	2	5	3 3	1	5 10	6	11	8	13	10 1	5 12	17	16 22	19	z	24	11	27 3	4 3	7 4	6 4	0 69		12
	15						1	3 Z	4	3	6	5 (:	7 11	,	12	អ	15	14 1	117	20	22 25	3	29	32	37	36 4	0	95	s s	3 58		15
	18						1 :	3 3	5	4	6	7 9	910	12	12	14	14	17	18 2	21	23	27 25	31	33	40	8	45 (76	16	4 6	5 68	1	18
	21						2	3 4	5	6	7	9 10	0 13	3 14	14	15	18	19	21 2	2 25	26	32 33	37	38	48	(9	sa (4 7	27	3 7	7 78		21
	L	Leas then 1.5	1.5	\times	2.5	4.0	6.5	1	10	15		25	>	\times	4	ω	>	<	65	>	<	100	>	<	15	,	\geq		250		×	Higher than 250	
										٨	.cce	ptable	Qu	ality l	Lev	els (tight	eued	l ianpe	ction)]

△ = Use sext preceding sample size-code letter for which acceptance and rejection numbers are available.

V = Use sext autosequent anaple size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance augher.

Re u Rejection number.

Acceptance not permitted at this sample size.

E

TABLE X-F-Tables for sample size code letter: F

Note: Figures on entres are Acceptable Quality Lovels (AQL's) for normal inspection.

							Accep	tahle Quali	iy Levels (;	iomal insp	ection]			·			
°.	0.65	2.5	40	6.5	10	0.65	2.5	4.0	6.5	10	15	$\left \times\right $	25	$\left \times\right $	40	\times	65
		p tin p	ercent defe	ctive}				•		p (i	n defects pe	er hundred i	enits)	•			•
9.0	0.0502	0.759	2 . 27	4.36	9.75	0.0503	0.743	2.18	4.12	8.93	14.5	17.5	23.9	30.5	37.4	5L.7	62.9
5.0	0 256	1.81	4 22	7.14	14.0	0.255	1.79	4.09	6.83	13.1	19.9	23.5	30.8	38.4	46.2	62.2	74.5
0.0	0.525	2.69	5.64	9 03	16.6	0 527	2.66	5.51	8.72	15.8	23.3	27.2	35.1	43.2	51.5	68 L	81.2
5.0	1.43	4.61	a 70	12.8	21.6	L.44	4 81	8.64	12.7	21.1	29.6	34.2	43.1	52.1	61.2	79.5	93 4
0.0	3.41	8.25	13.1	18 1	27.9	3.47	8.39	13.4	18.4	28.4	38.3	63.3	53.3	63 3	73.3	93.3	108
5.0	6.70	12.9	18.7	24 2	34.8	6.93	13.5	196	25.5	37.1	48.4	54.0	65.1	76.1	87.0	109	125
0.0	10.9	181	24.5	30 4	41.5	£1.5	19.4	26.6	33.4	46.4	58.9	65.0	77.0	88.9	101	124	10
5.0	13.9	21.6	263	34.4	45.6	15.0	23.7	31.5	38.0	52.6	65.7	72.2	84.8	97.2	109	133	151
1.0	20.6	28.9	35.8	42.1	53.2	23.0	33.2	42.0	50.2	65.5	B0.0	\$7.0	101	114	127	153	172
	1.0	4.0	6.5	10	\geq	1.0	4.0	6.5	10	15	X	z	\sim	40	\times	65	\mathbf{X}
1.0	1.0	4.0	6.5		10	10	10 <u>t.0</u>	42.1 53.2 23.0 33.2 10 4.0 4.0	42.1 53.2 23.0 33.2 42.0 10 4.0 6.5 Acceptable Qua	42.1 53.2 23.0 33.2 42.0 50.2 10 10 4.0 6.5 10 Acceptable Quality Levels	42.1 55.2 23.0 33.2 42.0 50.2 63.3 10 4.0 6.5 10 15 Acceptable Quality Levels (tightened)	42.1 53.2 23.0 33.2 42.0 50.2 63.3 60.3 10 1.0 4.0 6.5 10 15 Acceptable Quality Levels (tightened inspection)	42.1 33.2 42.0 30.2 63.3 60.3 67.3 10 10 4.0 6.5 10 15 25 Acceptable Quality Levels (tightened inspection)	42.1 55.2 23.0 33.2 42.0 50.2 63.3 50.5 67.0 101 10 1.0 4.0 6.5 10 15 25 X Acceptable Quality Levels (tightened inspection)	42.1 55.2 23.0 33.2 42.0 50.2 65.3 50.3 67.0 101 114 10 E.0 4.0 6.5 10 15 25 40 Acceptable Quality Levels (tightened inspection)	42.1 55.2 23.0 33.2 42.0 50.2 63.3 50.0 67.0 101 114 121 10 1.0 4.0 6.5 10 15 25 40 Acceptable Quality Levels (tightened inspection)	42.1 53.2 23.0 33.2 42.0 50.2 43.3 50.0 67.0 101 110 121 133 10 1.0 4.0 6.5 10 15 25 40 65 Acceptable Quality Levels (tightened inspection)

Batian and for precost defective computations; Polouon for defects put be

TABLE X-F-2 - SAMPLING PLANS FOR SAMPLE SIZ	L CODE	LETTER: F
---	--------	-----------

	Cuma-						-			Aci	ceptal	ale Q	unlity	Lev	els (r	е	l insp	ectie	 												Cum]
Type of sampling plan	lative sample	Less thes 0.65	0.65		1.0	\times	1.5	2	2.5		1.0	6	i.S		10		15	>	<	2	25	>	<	4	0	>	<		55	Higher than 65	ative ample	
	3120	Ac Re	Ac I	te	Ac fie	Ac He	Ac He	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Ae	Ac	He	Ac	Re	Ac	Re	Ac Re	3120	
Single	20	▽	0	1				1	2	2	3	3	4	5	5	7	8	8	9	10	IJ	12	13	14	15	18	19	21	22	Δ	20	
Double	13	⊽	•		code Letter	code Letier	Code Letter	0	2	0	3	1	4	2	5	3	7	3	7	5	9	6	10	7	LI	9	14	11	16	۵	в	1
	26	1			_			I 	2	3	4	4	5	6	7	8	9	IL	12	12	13	15	16	19	19	23	24	26	27		25	
	5	▽			E	н	G		2		2		3		•	0		0		0	5	0	6	1	7	1	8	2	9	Δ	5	1
	10								2	0	3	0	3	1	5	1	6	2	1	3	8	3	9	4	10	6	12	7	14	-	10	
	15							a	2	0	3	ı	¢	2	6	3	8	4	9	6	LO	7	12	8	IJ	n	17	13	19		15	F
Multiple	20							0	3	l I	4	2	5	3	7	5	10	6	11	8	13	10	15	12	17	16	22	19	25		20	Į
	25			1				l I	3	2	4	3	6	5	6	1	u	9	12	11	15	14	17	17	20	22	25	25	29		25	lä
	30							T	3	3	5	4	6	7	9	10	12	12	14	14	17	18	20	21	23	27	29	31	33		30	Ň
	35							2	3	4	5	6	7	9	10	13	14	34	15	18	19	21	22	25	26	32	33	37	36		35	
		Less than 1.0	1.0		\times	15	2.5	•	.0	6	5.5	ľ	0	1	15	>	$\boldsymbol{\prec}$	2	s	>	<	4	0	>	<	6	S	>	<	Higher than 65	<u> </u>	1
										Ac	cepta	ble Q	velia	y Les	rels (lighte	ened i	napec	ction)													

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number

 He
 =
 Hejection number

 He
 =
 Hejection number

 *
 =
 Use single number

 *
 =
 Use single number

 *
 =
 Use single number

 *
 =
 Use single number

 *
 =
 Use single number

 *
 =
 Acceptance not permitted at this number

TABLE X-G-Tables for sample size code letter: G

QUALITY OF SUBMITTED LOTS (p. - in percent defective for AUL's \gtrless 10; in defects per hundred units for AQL's > 10) Note: Figures on curves an Acceptable Quality Levels (AQL's) for normal inspection.

TABLE X-G-1	- TABULATED	VALUES FO	R OPERATING	CHARACTERISTIC	CURVES FOR	SINGLE	SAMPLING	PLANS
-------------	-------------	-----------	-------------	----------------	------------	--------	----------	-------

							٨c	ceptable Q	Juality Lev	ela (norma	l inspectio	n)			·········			
Ρ.	0.40	1.5	2.5	4.0	6.5	10	0.40	1.5	2.5	4.0	6.5	10	$\left \times\right $	15	$\left \times\right $	25	$\left \times\right $	40
		 P	fin percen	l defective	}		[·····				p (in	defects pe	r hundred a	mits)				
99.0	0.0314	0,471	1.40	7.67	5,88	9.73	0.0314	0,464	1.36	2.57	5.58	9.08	11.0	14.9	19.1	23.4	32.3	39.3
95.0	0.160	1.12	2.60	4.38	8.50	13.1	0.160	1.11	2.56	4.27	8.17	12.4	14.7	19.3	24.0	28.9	38.9	46.5
90.0	0.329	1.67	3.49	5.56	10.2	15.1	0,329	1.66	3.44	5.45	9.8S	14.6	17.0	21.9	27.0	32.2	42.7	50.8
75.0	0.695	3.01	5.42	7.98	13.4	19.0	0.899	3.00	5.40	7.92	13.2	18.6	21.4	26.9	32.6	36.2	49.7	58.4
50.0	2.14	5.19	8.27	H.4	17.5	23.7	2.17	5.24	8.36	11.5	17.7	24.0	27.1	33.3	39.6	45.8	58.3	67.7
25.0	4.24	8.19	11.9	15.4	22.3	29.0	4.33	8.4L	12.3	16,0	23.2	30.3	33.8	40.7	47.6	54.4	67.9	78.0
10.0	6.94	11.6	15.8	19.7	27.1	34.1	7.20	12.2	16.6	20.9	29.0	35.8	40.6	40.1	\$5.6	62.9	77.4	89. 1
5.0	8.94	14.0	18.4	22.5	30.1	37.2	9.36	14.8	19.7	24.2	32.9	41.1	45.1	53.0	60.8	68.4	B3.4	94.5
1.0	13.4	19.0	Z3.8	28.1	36.0	43.2	14.4	20.7	26.3	31.4	41.0	50.0	54.4	63.0	71.3	79.5	95.6	107
	0.65	2.5	4.0	6.5	[0	Х	0.65	2.5	4.0	6.5	10	\times	15	$\mathbf{\Sigma}$	25	$\left \times\right $	40	\sim
	<u>}'</u>				·	· · · · ·	L	Acceptabl	t	Levels (tig	htened ins	pection)	4	.	L.,	A	<u></u>	

Note: Binomial distribution and far parent delective computations; Palar ماحداما. سا مننيه المشعيلا بيب

TABLE X-G-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: G

	Cuesta								Acce	ptek	ya (veli	ıy Le	vela	(aor	məİ	iaspe	ctio	n)											Curry]
Type of sampling plan	lative sample	Lens than 0.40	0.40	0.65	\times	1.0	1.9	5	2.	5	4.	0	6.	5	1	D	>	<	1	5	\geq	<	:	zs	2	<	•	ð	HigSer than 40	Intive annole	
		Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac	fle	Ac	Re	Ac	Ae	Ac	Re	Ac	Re	Åc	Re	Ac	Re	Ac	Re	Ac	He	٨c	Re	Ac	Ae	Ac Re		
Single	32	▽	01				1	2	2	3	3	4	5	6	7	8	8	9	10	11	12	13	14	15	18	19	21	22	Δ	32	
Double	20	▽	•	code	Lise code	i Uae - code	0	2	0	3	I	4	2	5	3	7	3	7	5	9		10	7))	,	И	n	16	Δ	20	1
	40			F		1	ı	2	3	•	4	5	6	7	B	9	n	12	12	13	15	16	18	19	23	24	26	27		40	
	8	V	•					2		2		3		4	0	4	0	4	0	5	0	6	1	7	1	8	2	9	Δ	8]
	16							2	0	3	0	3	1	5	ı	6	2	7	3	8	3	9	•	10	6	12	7	14		16	
	24						0	2	0	3	1	•	2	6	3	8	4	9	6	10	7	12		13	ļu.	17	13	19		24	
Multiple	32						0	3	1	•	2	5	3	7	5	10	6	n	8	13	10	15	12	17	16	22	19	25		32	
	+0						1	3	2	•	Э	6	5	8	7	11	9.	12	11	15	14	17	17	20	22	25	25	29		40	ļ
	48						1	3	3	5	4	6	7	9	10	12	12	14	14	17	18	20	21	23	27	29	31	33		48	ļ
	56						2	3	4	5	5	7	9	10	13	14	14	15	18	19	21	22	25	26	32	33	37	30		56	
		Leas then 0.65	0.65	\times	1.0	1.5	2.5	;	4.0		6.5		10		>	<	1	5	>	<	2	5	5	<	1	10	5	<	Higher than 40		-
								Ac	cepta	bje (Qual	ity L	,evel	1 (ti	ghter	red i	nspe	ction	.				-								

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.

abla = 0 use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac # Acceptance aumber,

Re # Rejection number.

G

Use single sampling plan above (or alternatively use code latter K).

TABLE X-H-1	- TABULATED	VALUES FOR	OPERATING	CHARACTERISTIC	CURVES	FOR	SINGLE	SAMPLING	PLANS
-------------	-------------	------------	-----------	-----------------------	--------	-----	--------	----------	-------

								Acc	rptable Qu	uality Lev	els (norme	l inspect	lion)							
Po	0 25	10	1.5	2.5	4.0	6.5	\times	10	0.25	1.0	L.5	2.5	4.0	6.5	$\left \times\right $	10	\times	15	\times	25
			p	in percen	t defectiv	*}) (in defec	ts per hur	dred unit	a)	•		
99.0	0.0201	0.300	0.886	1.68	3.69	6.07	7.36	10.1	0.0201	0.297	0.872	1.65	3.57	5.81	7.01	9.54	12.2	15.0	20.7	25.1
95.0	0.103	0.715	1.56	2.78	5.36	8 22	9.72	12.9	0.103	0.711	1.64	2.73	5.23	7.96	9.39	12.3	15.4	18 5	24.9	29.8
90.0	0 210	1.07	2.22	3.53	6.43	9.54	11 2	14.5	9.211	1.05	2.20	3.49	6.30	9 31	10.9	14.0	17.3	20.6	27.3	32.5
75 0	0 574	1.92	3.46	5.10	8.51	12.0	13 8	17.5	0.575	1.92	3.45	5 07	8.44	11.9	13.7	17.2	20,8	24.5	31.8	37.4
50 O	138	3.33	5.31	7.29	U.J	15 2	17 2	21 2	1.39	3.36	5.35	7.34	11,3	15.3	17.3	21.3	25.3	29 3	37.3	43.3
25.0	2.73	5. 29	7,69	10.0	t4.5	18.8	21.0	25.2	2.77	5.39	7.64	10.2	14.8	19.4	21.6	26.0	30.4	34.8	43.5	49.9
10 0	4 50	7.56	10.3	12.9	17.8	22.4	24.7	29. L	4.61	7.78	10. 6	13.4	18.5	23.5	26 0	30.8	35.6	40.3	49.5	56.4
50	5.82	9.14	12.1	14.8	199	24.7	27.0	31.6	5.99	9 49	12.6	15 5	21.0	26.3	28.9	33 9	38.9	43.8	53.4	60.5
10	B. CO	12.6	15.8	18.7	24.2	29.2	31.7	36.3	9.21	13.3	16.8	20.1	26.2	32.0	34.8	40.3	45.6	50.9	61.2	68,7
	040	1.5	25	4.0	6.5	$\left \times\right $	10	$\left \times\right $	0.40	1.5	2.5	4.0	6.5	\times	10	\times	15	$\mathbf{\times}$	25	\times
							 , -	Ace	nptable ()	uelity J.e.	vels (tight	eacd insp	ection)		·	L		.	f /	

Note: Bisamial distribution used for parcent delective computations; Painson for delects per handred upits.

TABLE X-H-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: H

								-		Acce	eptabl	le (Juniity	Lev	rels (n	orme	l ins	speci	ion)												Cumu-]
Type of sampling plan	Jutive sample	Less that 0.25	0	25	0.40	\times	0.65		1.0		1.5	Ι	2.5		4.0	6.	5	>	<		10	>	<		15	>	<	2	5	Higher than 25	lative sample aize	
	JILE .	Ac Re	Ac	Re	Ac Re	Ac Re	Ac Re	Ac	Re	Ac	: Re	•	lc fle	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	He	Ac	Re	Ac	Re	Ac Re		
Single	50	▽	0	1	lim	Line	Hae	1	2	2	3	3	3 4	5	6	7	8	8	9	10	11	12	13	14	15	15	19	21	22	Δ	50	
Double	32 64	▼		•	code Letter	code Letter	code	0	2	0	3	1	4 5	2	5	3 8	7	3	7	5	9 13	6 15	10	7	11 19	9 23	14 24	11	16 27	Δ	32 64	
	13	V	-	•	G	ĸ	1	.	2		2		, 3		4	0	4	0	4	0	5	0	6	1	7		8	2	9	Δ		
	26								2	0	3	0	3		5	1	6	2	1	3	8	з	9	4	19	6	12	7	14		26	ľ
	39							0	2	0	3	1	4	2	6	3	8	4	9	6	10	7	12	6	13	11	17	13	19		39	
Multiple	52							0	3	1	4	2	2 5	3	7	5	10	6	н	8	13	10	15	12	17	16	22	19	2 5		52	15
•	65							1	3	2	4	3	6	5	8	7	11	9	12	n	15	н	17	17	20	22	25	25	29		65	
	78				-			ŀ	3	3	5	4	6	7	9	10	12	12	14	14	17	10	20	21	23	27	29	31	33		78	
	91			:				2	3	4	5	5	i 7	9	10	13	14	14	15	18	19	21	22	25	26	32	33	37	38		91	
· · · · · · · · · · · · · · · · · · ·	L	Leas than 0 40	0	40	\times	0.65	1.0	1	1.5		2.5		4.0		6.5	>	<		0	>	<		5	>	<	2	5	>	<	Higher than 25		1
										A	lccep	tabl	le Qual	ity	Level	s (tip	hier	ed i	nape	ction	1)											

 Δ =. Use next preceding sample size code letter for which acceptance and rejection numbers are available.

👽 🍨 Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac. # Acceptance number

Re a Rejection number

* - * Acceptance not permitted at this sample size

H

^{• =} Use single sampling plan above (or alternatively use code letter 1)

TABLE X-J-Tables for sample size code letter: J

Note: Figures on curves are Acceptable Quality Levels (AQL's) for served inspection.

TABLE X-J-1	- TABULATED	VALUES FO	DR OPERATING	CHARACTERISTIC	CURVES	FOR	SINGLE	SAMPLING	PLANS
-------------	-------------	-----------	--------------	----------------	--------	-----	--------	----------	-------

									Ac	ceptable	Quality [levela (r	ionnal ins	ipection)					•			
P.	0.15	0.65	1.0	15	2.5	4.0	$\left \times\right $	6.5	$ \times$	10	0.15	0.65	1.0	1.5	2.5	4.0	$\left \times\right $	6.5	\times	10	\times	15
			-	P	(in perce	nt defecti	ve}								p (in d	rfects pe	r hundred	l units)				
99.0	0.0126	0.187	0.550	1.04	2.28	3,73	4.51	6.17	7 88	9.76	0.0126	0.186	0.545	1.03	2.23	3.63	4.38	5.96	7.62	9.35	12.9	15.7
95.0	0.0641	0.446	1.03	1.73	3.32	5.07	6.00	7.93	9 89	11.9	0.0641	0.444	1.02	1.71	3.27	4.98	5.87	7.71	9.61	11.6	15.6	18.6
90.0	0 132	0.667	1.39	2 20	3.99-	5 91	6.90	8.95	11.0	13 2	0.132	0.665	1.38	2.18	3.94	5.82	6.79	8.78	10.8	12.9	17.1	20.3
75.0	0.359	1.201	2 16	3.18	5.30	7.50	8.61	10.9	13.2	15.5	0.360	1.20	2.16	3.17	5.27	7.4S	8.55	10.6	13.0	15.3	19.9	23.4
50.0	0.863	2 09	3.33	4.57	7 06	9.55	10.8	13.3	15.8	18.3	0.866	2.10	3.34	4.59	7.09	9.59	10.8	13.3	15.8	18.3	23.3	27.1
25.0	1 72	3 33	4.84	6.30	9.14	11.9	13 3	16 0	10.6	21.3	1.73	3.37	4 90	6.39	9.28	12.1	13.5	16.3	19.0	21.7	27 2	31.2
10.0	2.84	4.78	6.52	8 16	11.3	14.3	15.7	10.6	21.4	24.2	2.68	4.86	6 65	8 35	11.6	14.7	16.2	19.3	22.2	25 2	30.9	35.2
50	3.68	5.79	7.66	9.4]	127	15.8	17.3	20.3	23.2	26.0	3.74	5.93	7 87	9.69	13.1	16.4	18.0	21.2	24.3	27.4	33.4	37.8
i.0	5.59	8.01	10.1	12 0	15.6	18.9	20 5	23 6	26.6	29.5	5 76	8.30	10.5	12.6	16.4	20.0	21.8	25 2	28.5	31.8	38.2	42.9
	0.25	1.0	1.5	25	4.0	\times	65	\times	10	\times	0.25	10	1.5	2.5	4.0	\times	6.5	\times	10	\times	15	\times
								-	Acc	eptable ()uality Et	evela (tij	chiened in	ни рес: і от	ı)	`		·····				

Hatas Alaamial distribution mod for persons defective comparations; Polanon for defects per hundrod units.

Sampling Plans.

TABLE X-J-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: J

~ •	Cumu-						4	lcce	ptabi	ie Qu	ntity	Lev	ela (i	norm	nal in	apec	tion)												Comu-
type of compling plus	lative sample	Lean than 0.15	0.15	0.25	\times	0,40	0.6	5	Ŀ.	0	1.9	5	2.9	5	4.	0	>	<	6.	5	>	<	1	0	>	<	I	5	Higher that 35	lative enepte
	411E	Ac Ae	Ac Re	Ac Re	Ac Re	Ac Re	Ac	Ae	Åc	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	٨c	Re	Ac	Rø	Ac	A.	Ac	Re	A:c	R.	Ac Re	41 2.P
Single	80	▽	0 t	-			1	2	2	3	3	٢	5	6	7	8	8	9	10	u	12	13	14	15	18	19	21	22	۵	80
	50	▽	•	- Use code	Use code	Uae code	0	z	0	3	1	•	2	5	3	1	3	7	5	9	6	10	7	n	9	14	11	16	Δ	50
Double	100			Letter	Lener	Letter	1	z	3	•	4	5	6	7		9	n	12	12	13	15	16	18	19	23	24	26	27		100
	20		•	Н	L	ĸ		2	,	2		3	,	•	0	4	0	4	ð	5	0	6	1	7	1	Ð	2	- 9	Δ	20
	40							2	0	3	G	3	ł	5	1	6	2	7	3	ŧ	3	9	•	10	6	12	7	н		40
	60		I				0	2	0	3	ł	•	2	6	Э	8	4	9	6	10	7	12	ι	13	n	17	13	19		60
Mailiple	80						0	3	ł	•	2	5	3	7	5	10	6	n		13	10	15	12	17	16	22	19	25		60
	100						I I	3	2	4	3	6	5	8	7	n,	9	12	n	15	14	17	17	20	22	25	25	29		100
	120						1	3	3	5	4	6	7	9	10	12	12	14	14	17	18	20	21	23	27	29	ગ	33		120
	140						2	3	4	5	6	7	9	10	13	14	14	15	18	19	21	22	z	26	32	33	37	36		140
	I	Leas than 0.25	0.25	\times	0.40	0.65	J .(,	1.3	5	2.5		4.0	,	>	<	6.	.5	>	<	1	0	>	<	1	15	>	<	Higher chan L5	
							Åc	cept	elde	Qua	lity E	æve	la (tij	rhter	aed i	inape	ctio)												

△ = Use sext preceding sample size code letter for which acceptance and rejection numbers are available.

🗸 🗯 Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac 🛥 Acceptance number

Re 🛥 Rejection number

• _ _ Use mingle sampling plan shows (or alternatively use code letter H)

e = Acceptance not permitted at this assople size.

K

TABLE X-K-Tables for sample size code letter: K

Hotes Figures on curves are Acceptable Quality Lavels (AQL's) for memol importion.

TABLE X-K-1 - TABULATED VALUES FOR OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

ļ	•				Accept	ble Quality Lev	eta (aorma) (nap	ection)				
P.	0.10	0.40	0.65	1.0	1.5	2.5	\times	4.0	$ \times $	6.5	$\left \times \right $	10
	p (in percen	i defective or d	efecia per hundr	ed units)								
99.0	0.00804	0.1/9	0.349	0.659	1.43	2.32	2.81	3.82	4.68	5.98	0.28	10.1
95.0	0.0410	0.284	0.654	1.09	2.09	3.16	3.76	4.94	6.15	7.40	9.95	11.9
9U.O	0.0843	0.425	0.882	1.40	2.52	3.72	4.35	5.62	6.92	8.24	10.9	13.0
75.0	0.230	0.769	1.382	2.03	3.38	4.76	5.67	6.90	8.34	9.79	12.7	14.9
50.0	0.555	1.34	2.14	2.94	4 54	6.14	6.94	8.53	10.1	11.7	14.9	17.3
25.0	LU	2.15	3.14	4.09	5.94	7.75	B.64	10.4	12.2	13.9	17.4	20.0
10.0	1.84	3.11	4.25	5.34	7.42	9.42	10.4	12.3	14.2	16.1	19.8	22.5
5.0	2.40	3.80	5.04	6.20	8.41	LO.S	11.5	13.6	15.6	17.5	21.4	24.2
1.0	3.69	5.31	6.72	8.04	10.5	12.8	18.3	16.1	18.3	20.4	24.5	27.5
	0.15	ə.65	L.O	1.5	2.5	Х	4.0	\times	6.5	\times	10	\times
					Accep	table Quality La	vels (tightened	inspection)				

Note: All veloce gives in shore table based on Peinnes distribution as an apprecipation to the Riangial.

Sampling Plans.

TABLE X-K-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: K

	C		<u></u>					Ac	ceptabl	le Q	uslity	Level	• (e c	ann al i	insp	ection	n)												Cumu	
Type of sampling plan	lative sample	Less than 0.10	0.10	0.15	$\left \times\right $	0.25	0.40		0.65		1.0	1.5		2.5		>	<	4.0		\geq	<	6.	5	>	<	1	D	Higher than 10	lative aample]
••	size	Ac fle	Ac Re	Ac Re	Ac Re	Ac fle	Ac F	10	Ac Re	- 1	c Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	He	Ac	He	Ac Re	giee	
Single	125	V	0 1			ll e	1	2	23	3	i 4	5	6	7	1	8	9	10	11	12	13	14	15	18	19	21	22	۵	125	
	80	▽		code	Code	code	0	2	0 3	1	4	2	5	3	7	3	7	5	9	6	10	7	11	9	14	u	16	Δ	60	
Double	160			Letter	Letter	Letter	l I	2	34	•	5	6	7	8	9	n	12	12	13	15	16	18	19	23	ţ.	26	27		160	
	32	V	•					2	• 2		, 3		4	0	4	0	4	0	s	0	6	I	7	ł	8	2	9	Δ	32	1
	64							2	03	0	3	1	5	ı	6	2	7	3	8	3	9	4	10	6	12	7	- 14		64	2
	96]					0	2	03	l	. 4	2	6	3	8	4	9	6	10	7	12	ß	13	11	17	13	19		96]5
Multiple	128	ļ				i	0	3	E 4	2	2 5	3	7	5	10	6	n	8	13	10	15	12	17	16	22	19	25		128	١ŧ
	160	[1	3	2 6	3	6	5	8	7	ц	9	12	n	15	14	17	17	20	22	25	25	29		160	5
	192	l					1	3	35	4	6	7	9	10	12	12	14	14	17	18	20	21	23	27	29	31	33		192	16
	224						2	3	4 5	6	57	9	10	13	14	14	15	18	19	21	22	25	26	32	33	37	38		224	
	1	Less than 0.15	0.15	\times	0 25	0.40	0.65	,	1.0		1.5	2.:	5	\geq	<	4.0)	>	<	6.	5	\geq	<	۱	0	>	<	Higher than 10		•
						- ··		Ac	ceptabl	le Q	Justicy	Level	11 (ti	ghien	ed i	ns pro	tion	.)												

△ = Use sext preceding sample size code letter for which acceptance and rejection numbers are available.

V . Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac w Acceptance number

fle - Rejection number

- Acceptance not permitted at this sample size.

K

PERCENT OF LOTS EXPECTED TO BE ACCEPTED (P.)

TABLE X-L-Tables for sample size code letter: L

Notes: Figures an entropy are Asceptable Quality Levels (AQL's) for second inspection

					Acceptab	la Quality Lave	le (someÌ isape	ction)				
Р.	C.065	0.25	0.40	0.65	1.0	1.5	\times	2.5	$\left \times \right $	4.9	$ \times $	6.5
	p (in percent	defective or de	efecta per hunde	ed unita)								
99.0	0.00503	0.075	0.218	0.417	0.893	1.65	1.75	2.39	3.05	3.74	5.17	6.29
95.0	0.0256	0.178	0.409	0.683	1.31	1.99	2.35	3.08	3.84	4.62	6.22	7.45
99.0	0.0527	0.256	0.551	0.872	1.50	2.33	2.72	3.51	4.32	5.15	6.14	8.12
75.0	0.144	0.481	0.864	1.21	2.11	2.90	3.42	4.31	5.21	6.12	7.95	9.34
50.0	0.347	0.639	1.34	1.64	2.84	3.84	4.33	5.33	6.33	7.33	9.33	LO.0
25.0	0.693	1.35	1.96	2.55	3.71	4.63	5.40	6.51	7.61	8.70	10.9	12.5
10.0	L.1 5	1.94	2.66	3.34	1.64	5.89	6.50	7.70	8.89	10.1	12.4	14.1
5.0	1.50	2.31	3.15	3.88	5.25	6.57	7.22	5.48	9.72	10.9	13.3	15.1
1.0	2.30	3.32	4.20	5.02	6.55	8.00	6.70	10.1	11.4	12.7	15.3	17.2
	0.10	0.4 0	0.65	1.0	L.5	\times	2.5	\times	4.0	\times	6,5	\times
					Accept	able Quality Le	vels (tightened	inspection)				

Notes All values gives in show table hand on Palaces distribution on an appresimation to the Obsented.

TABLE X-L-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: L

	Curou-							Ac	cepte	ble (Quel	ity L	,e vel	s (no	entel	insp	ectio	n)						<u>-</u>						Cumu-
.Type of sampling plan	lattve sample size	Less than 0.065	0.065	0.10	\times	0.15	0.3	25	Û.	40	0	65	l	.0	1.	5	$\left \right>$	<	2	.5	>	<	•	.0	>	<	6	5	Higher than 6.5	lative sample size
		Ac He	Ac Re	Ac He	Ac Re	Ac He	Åc	Re	٨c	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	fle	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac Re	
Single	200	▽	01				1	2	2	3	3	4	5	6	7	8	8	9	10	н	12	13	14	15	18	19	21	22	Δ	200
Double	125 250	▽	•	code Leiter	Code Letter	code Letter	0	2 2	0 3	3	1	4	2 6	5	3	7 9	3 11	7 12	5 12	9 13	6 15	10 16	7 18	11 19	9 23	14 24	11 26	16 27	Δ	125 250
	50	▽	•	×	Ň	×		2	•	2	*	3		4	0	4	0 2	4	0 3	5	0	6	1	7	1	0 12	2	9 14	Δ	50 100
	150						0	2	0	3	1	4	2	6	3	8	4	9	6	10	7	12	6	13	u	17	13	19		150
Nultiple	200 250						0 1	3	1 2	4	2 3	5	3 5	7 8	5 7	10 11	6 9	11 12	18	13 15	10 14	15 17	12 17	17 20	16 22	22 25	19 25	25 29		200 250
	300						1	3	3	5	٩	6	7	9	10	12	12	14	14	17	18	20	21	23	21	29	31	33		300
	350						2	3	4	5	6	1	9	10	13	14	14	15	18	19	21	22	25	26	32	33	37	38		350
		Less than 0.10	0.10	\times	0.15	0. 25	0.	40	0	65	1	0	L	5	\geq	\leq	2.	5	>	<	4	.0	>	<	•	.5	>	<	Higher rKan 6.5	
								Å	ccep	(able	Qu	ality	Lev	els (tighte	aed	inspe	ctio	n)											

I

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.

abla = 0 Use next subsequent sample nize code letter for which acceptance and rejection numbers are available.

Ac 🛥 Acceptance number

Re = Rejection number

= Use single sampling plan above (or alternatively use code letter P)

a = Acceptance not permitted at this sample size.

M

TABLE X-M-Tables for sample size code letter: M

OUALITY OF SUBMITTED LOTS (p. in percent defective for AQL's <10; in defects per hundred units for AQL's >10) Note: Figures as curves are Acceptable Quality Lovels (AQL's) for normal impection.

TABLE X-M-1	- TABULATED	VALUES FOR	COPERATING	CHARACTERSTIC	CURVES	FOR	SINGLE	SAMPLING	PLAN

					Acceptable Qu	slity Levels (80	rmel inspection)					
P.	0.040	0.15	0.25	0.40	0.65	1.0	$\left \times \right $	1.5	\times	2.5	\times	4.0
	p (in percent	defective or in (defects per hun	dred units)				-				
99.0	0.00319	0.0472	0.138	0.261	0.567	0.923	1.11	1.51	t.94	2.37	3.28	3.99
95.0	0.0163	0.113	0.260	0.434	0.830	1.26	1.49	1.96	2,44	2.94	3.95	4.73
90.0	0.0335	0.169	0.350	0.534	1.00	1.48	1.72	2.23	2.74	3.27	4.34	5.16
75.0	0.0913	0.305	0.548	0.605	1.34	1.89	2.17	2,74	3.31	3.89	5.05	5.93
50.0	0.220	0.533	0.849	1.17	1.80	2.43	2.75	3.39	4.02	4.66	5.93	6.88
25.0	0.440	0.855	1.24	1.62	2.36	3.07	3.43	4,13	4.83	5.52	6.90	7.92
10.0	0.731	1.23	1.69	2.12	2.94	3.74	4.13	4.89	5.64	6.39	7.86	8.95
5.0	0.951	1.51	2.00	2.46	3.34	4.17	4.58	5.38	6.17	6.95	8.47	9.60
1.0	1.46	211	2 67	3.19	4.16	5.08	5.52	6.40	7.24	8.08	9.71	10.9
	0.065	0.25	0.40	0.65	1.0	\times	1.5	\times	2.5	\times	4.0	\times
					Acceptat	ile Quality Leve	ls (tightened ins	pection)				

Reter All values gives in above table based on Poinces distribution on un opproximation to the Dinstale

TABLE X-M-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: M

[•					Ассері	oble	Qual	ily L	evel	s (no	mel	inspe	ctio	n)										·	Cuma.
Type of sampling plan	Lumu- Intive semple	Leas thun 0.040	0.040	0.065	\times	0.10	0.15		0.25	6	.40	0.	65	1.	0	>	<	۱.	5	>	<	2.	5	>	<	4	.0	lligher than 4.0	lative sample
	\$120	Ac Re	Ac Re	Ac Re	Ac Be	Ac Re	Ac R	• ^	ic Re	Ac	fle	Ac	Re	Ac	Re	A.c	Re	٨c	Re	Ac.	Re	Ac	Re	٨c	Re	Ac	Re	Ac Be	anze
Single	315	▽	6 1	1100	1100	lles	1	2	23	3	4	5	6	1	8	8	9	10	n	12	13	14	15	18	19	21	22	Δ	315
	200		•	code Letter	code Letter	code Letter	0	2	0 3	1	4	2	5	3	7	3	7	5	9	6	10	7	11	9	14	L)	16	Δ	200
Double	400					N	1	2	3 4	٠	5	6	7	8	9	11	12	12	13	15	16	10	19	23	24	26	27		400
	60						•	2	• 2		3		•	0	4	0	4	0	5	0	6	ı	7	1	19	2	9	Δ	80
	160							2	03	0	3	1	5	1	6	2	7	3	8	3	9	4	10	6	12	7	14		160
	240						0	2	03	1	4	2	6	3	8	٠	9	6	10	T	12	8	13	11	17	13	19		240
Multiple	320						0	3	14	2	5	3	7	5	L0	6	11	8	13	10	15	12	17	16	22	19	25		320
	400]			1	3	2 4	3	6	5	8	7	n	9	12	11	15	14	17	17	20	22	25	25	29		400
	480						I	3	35	•	6	7	9	10	12	12	14	14	17	18	20	21	23	27	29	31	33		480
	560		ľ				2	4	45	6	7	9	10	13	11	14	15	18	19	21	22	25	26	32	33	37	38		560
·	1	Less than 0.065	0.065	\times	0.10	0.15	0.25		0.40	0.	65	i.c)	Χ	<	1.5	5	>	<	2	.5	\geq	<	6 .	0	>	<	Higher than 4.0	
								Acc	eptabi	e Qu	nlity	Leve) e (l	ighter	ned i	inspec	ctio	1)											

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are svailable. ∇ = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

- Ac Acceptance number.
- He = Rejection number.
- , . . Use single sampling plan above (or alternatively use code letter Q)
- a Acceptance not permitted at this sample size.

М

N

TABLE X-N — Tables for sample size code letter: N

	T	• •			Acceptat	ole Quality Levi	ts (normal inspe	ection)	-		·	
P.	0.025	0 10	0.15	0.25	0.40	¢.65	\times	L.O	$\left \times \right $	1.5	\times	2 5
	p (in percent	defective or in	s defects per hu	ndred units)			•					
99.0	0.00201	0.0297	0.0872	0.165	0.357	0.581	0.701	0.954	1.22	1.50	2 07	2 51
95.0	0 0103	0.711	0.164	0.273	0.523	0.796	0.939	1.23	1.54	1 85	2.49	2.98
90 0	0.0211	0.106	0.220	0 349	0.630	0.931	1.09	1.40	1.73	2.06	2.73	3.25
75.0	0.0575	0.192	0 345	0.507	0 844	1.19	1.37	1.72	2.05	2.45	3.18	3.74
50.0	0.139	0.336	0.535	0.734	1.13	t.53	1.73	2.13	2.53	2.93	3.73	4.33
25.0	0.277	0.539	0 784	1.02	1.48	1.94	2.16	2.60	3.04	3.48	4.35	4.99
[0.0	0 461	0.778	1.06	1.34	1.85	2.35	2.60	3.08	3.56	4.03	4.95	5.64
50	0 599	0.949	1.26	1.55	2.10	2.63	2.69	3.39	3.89	4.38	5 34	6.05
1.0	0 921	1.33	1.68	2.01	2 62	3.20	3.48	4.03	4.56	5.09	6.12	6.87
	0.040	0 15	0 25	0.43	0.65	$\overline{}$	10	\times	1.5	\times	2.5	\sim
	<u> </u>		<u> </u>		Accep	table Quality Lo	vels (tightened	inspection)		r <u> </u>		<u>.</u>

Ruin: All unbern given in above table brand on Potonendistelbution on an approximation to the Rissonial

TABLE X-N-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: N

	Cues				·		٨	ccep	tabla (Quali	iry L	evele -	(100	uei i		ctice)	1											:	Can-
Type of sampling plan	lative sample	Lean then 0.025	0.025	0.040	\times	0.065	0.10	T	D. 15	Q.	25	0.4	2	0.0	¥۵	\geq	<	1.	0	\succ	<	1.	5	>	<	2	.5	Higher the 2.5	Intive sample
•	\$1.78	Ac Re	Ac Re	Ac Re	Ac Re	Ac Re	Ac R	e Ac	: Re	Ac	Re	Ac	8•	Ac	Re	Ac	Re	Åe	Re	Ac I	R.	Ae	Re	Ac	Re	Ac	2	Ác Ra	
Single	500	▽	0 1	lle.	N	11	1 2	2	3	3	4	5	6	7	8	8	9	10 -	11	12	13	14	15	18	19	21	22	Δ	500
Double	315 630	▽	•	code Leiter	code Letter	cede Lotter	0 2 1 2	2 0 2 3	3	1	4 5	2 6	5	3	7 9	3 11	7 12	5 12	9 13	6 15	10 16	7 18	11 19	9 23	14 24	11 26	16 27	Δ	315 630
	125	▽	•	Ň	Q	P -	• 2	: .	2	•	3		4	0	4	0	•	0	5	o	6	L	7	1		2	9	Δ	125
	250						# 2	0	3	0	3	1	5	1	6	Z	7	3	8	3	,	4	10	6	12	7	14		250
	375						0 2	2 0	3	1	4	2	6	3	8	4	9	6	10	7	12	•	IJ	11	17	13	19		375
Multiple	500						0 3	1	4	2	5	3	7	5	10	6	n	8	13	10	15	12	17	16	22	19	25		500
	625						1 3	2	•	3	6	s	8	7	n	9	12	11	15	14	17	17	20	22	25	25	29		625
	750						1 3	1 3	5	4	6	7	9	10	12	12	14	14	17	10	20	21	23	27 -	29	31	33		750
	875						23	•	5	6	7	9	10	13	14	14	15	18	19	21	22	25	26	32	33	37	38	ļ	875
···-	1	Less then 0.040	0.040	\times	0.065	9.10	0. 15		0.25	D,	40	0.6	5	>	<	1.0	,	<u> </u>	<	1.5		>	$\overline{<}$	2	.5	>	$\overline{<}$	Higher than 2.5	
				•	•			Acc	eptabl	ie Qu	ality	Leve	la (1	ighte	eed	iaape	cue	•)										-]

N

 Δ = Use sext preceding sample size code letter for which acceptance and rejection numbers are available.

abla = Use sext subsequent sample size code letter for which acceptance and rejection numbers are available.

- Ac = Acceptance number
- Re 😑 Rejection number
- _ _ Use single sampling plan above (or alternatively use code latter R)

s = Acceptance not permitted at this sample size.

P

TABLE X-P-Tables for sample size code letter: P

ABLE X-P-1 - TABULATED VALUES FO	OPERATING	CHARACTERISTIC	CURVES FOR	SINGLE	SAMPLING	PLANS
----------------------------------	-----------	----------------	------------	--------	----------	-------

					Acceptabl	e Qualisy Level	s (normal inspec	tion)				
P.	0.015	0.065	0.10	0.15	0.25	0.40	\sim	0.65	\times	1.0	\sim	1.5
	plin percent d	elective or dele	ct# per hundred 1	mita)				· · · ·				<u></u>
99.0	0.00126	0.0186	0.0545	0.103	0.223	0.363	0.438	0.596	0.762	0.935	1.29	1.57
95.0	0.00661	0.0444	0.102	0,171	0.327	D.498	9.587	0.771	0.961	1.16	1.56	1.86
90.0	0.0132	0.0665	0.138	0.218	0.394	0.582	0.679	0.878	1.08	1.29	1.71	2.03
75.0	6.0,360	0.120	0.216	0.317	0.527	0.745	0.855	1.08	1.30	1.53	1.99	2.34
50.0	0.0866	0.210	0.334	0.459	0.709	0.959	1.08	1.33	1.58	1.63	2.33	2.71
25.0	0.173	0.3.17	0.490	0.639	0.928	1.21	1.35	1.63	1.90	2.17	2.72	3.12
10.0	0.288	0 486	0.665	0.835	1.16	1.47	1.62	1.93	2.22	2.52	3.09	3.52
5.0	0.374	0.593	0.787	0.969	1.3	1.64	t.00	2.12	2.43	2.74	3.34	3.78
1.0	0.576	0.830	1.05	1.26	1.64	2.00	2.1B	2.52	2.85	3.16	3.82	4.29
	0.025	0.10	0.15	0.25	0.40	\times	0.65	\times	1.0	\times	1.5	\times
					Accep	cable Quality L	evels (tightened	inspection)				

ator. All values gives in shew rable based on Person Spiribacies as an appreximation to the Pinamial

TABLE X-P-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: P

	C							4	ccep	tuble	Qua	ilty	Leve	lı (e	07994	l ins	pecti	ve)												Curra
Type of sempling plan	lativa sample	0.010	0.015	0.025	\times	0.060	0.0	065	0.	10	0,	15	0.:	ద	0.	.40	>	<	0.0	65	>	<	1	.0	>	<	i.	.5	Higher then 1.5	lative semple
		Ac Re	Ac Re	Ac Re	Ac Re	Ac_Re	Ac	fle	Ac	fle	Ac	Re	Ac	Re	Ac	fle	Ac	Re	Ac	Re	Ac	fle	Ac	Re	Ac	Re	Åc	Re	Ac fle	
Singte	800		01				1	2	2	3	3	4	5	6	7	8		9	j0	11	12	13	14	15	18	19	21	22	Δ	800
Double	500	▽	•	Code Letter	Code Letter	Code Letter	0	2	0	3	1	4	2	5	3	7	3	7	5	9	6	10	,	11	9	14	11	16	۵	500
	1000			N	P	0	1	2	3	4	٠	5	6	7	8	9	11	12	12	13	15	16	18	19	23	24	26	27		1000
	200	▽	•			Ť		2		2		3		4	0	4	0	4	0	5	0	6	1	7	1	8	2	9	Δ	200
	400			}			•	2	0	3	0	3	1	5	1	6	2	7	3	8	3	9	+	10	6	12	7	14		400
	600						0	2	0	3	L	4	2	6	3	8	4	9	6	10	7	12	8	13	11	17	13	19		600
Nultiple	900			1			0	3	1	4	2	5	3	7	5	10	6	п	8	13	10	15	12	17	16	22	19	25		600
	1000						1	3	2	4	3	6	5	8	7	n	9	12	11	15	14	17	17	20	22	25	25	29		1000
	1200		1				Ł	3	3	5	٩	6	7	9	10	12	12	14	14	17	18	20	21	23	27	29	31	33		1200
	1400						2	3	•	5	6	1	9	10	13	14	14	15	10	19	21	22	25	26	32	33	37	38		1400
L <u>a.a</u>	Lag	Lean then 0.025	0.025	\times	0.040	0.065	0.	10	0.	15	0.	25	ů.	40	>	<	0.	65	>	<	1	.0	>	<	1	.5	>	<	Higher than 1.5	
									locep	teble	Que	lity	Leve	lo (Li	ighte	ned i	a ope	ctio	n)											}

P

 Δ = Use next preceding sample size code letter for which acceptance and rejection numbers are available.

abla = Use next subsequent sample size code letter for which acceptance and rejection numbers are available.

Ac = Acceptance number.

Re = Bejection number,

					Accepta	ble Quality Lev	els (normat isap	ection)				
Pa	0.010	0.040	0.065	0.10	9.15	0.25	\times	0.40	\times	0.65	\sim	1.0
	p (in pèrcen	i defective or d	efects per hundr	ed units								
99.0	0.000804	0.0119	0.0349	0.0659	0.143	0.232	0.281	0.382	0.488	0.596	0.829	1.01
95.0	0.00410	0.0284	0.0654	0.109	0.209	0.318	0.376	0 494	0.615	0.740	0.995	1.19
90.0	0.00643	0.0425	0.0682	0.140	0.252	0.372	0.435	0 562	0.692	0.824	1.09	1.30
75.0	0.0230	0.0769	0.138	0.203	0.339	0.476	0.547	0.690	0.834	0.979	1.27	1.49
50.0	0.0555	0.134	0.214	0.294	0.454	0.614	0.694	0.853	1.01	1.17	1.49	1.73
25.0	0.111	0.215	0.314	0.409	0.594	0.775	0.864	1.04	1.22	1.39	1.74	2.00
10.0	0.184	0.311	0.426	0.534	0.742	0.942	1.04	1.23	1.42	1.61	1.98	2.25
5.0	0.240	0.380	0.504	0.620	0.641	1.05	1.15	1.36	1.56	1.75	2.14	2.42
1.0	0.368	0.53]	0.672	0.604	1.05	1. 28	1.39	1.61	1.83	2.04	2.45	2.75
	0.015	0.065	0.10	0.15	0.25	\times	0.40	\times	0.65	\times	1.0	\times
					Accep	table Quality L	evela (tightened	inspection)	<u> </u>	<u> </u>	•	- ····

Nates All values given in above table based on Poisson distribution on an approximation to the Minandal

Sampling Plans.

TABLE X-Q-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER: Q

Tree of	Cutor-					·		Åc	cepta	ble	Qualii	iy L	avela	(30	cual	رمعة	pect	- a)	*											Cume]
sampling plan	letive semple	\times	0.010	0.015	\times	9.025 0.040		0.065		0.1	0.10		0.15		0.25		\times		0.40		\times		0.65		<	1.0		Higher Lànn L.O	lative sample also		
		Ac Re	Ac R	Ac Re	Ac Re	Ac Re	Ac	Re	Ac	Re	Åc	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	R.	Ac	Re	Ac Re		
Single	1250		0 1				1	2	2	3	3	4	5	6	7	8	8	9	18	n	12	13	14	15	18	19	21	22	۵,	1250	
Double	800	Letter		code Letter	Code Letter	code Latter	0	2	0	3	1	4	2	5	3	7	3	7	5	,	6	10	7	11	9	14	11	16	۵	8 90	1
	1800	R		P	s	R	<u> </u>	_	J			_			•					1.3	1 3									1000	
	315		•					2		2		3		4	0	4	0	4	0	5	0	6	1	7	1	8	2	9	Δ	315	
	630						•	2	0	3	0	3	1	5	1	6	2	7	3	6	3	9	•	10	6	12	7	14		630	Ē
	945						0	2	0	3	1	4	2	6	3	8	•	9	6	10	1	12	•	13	11	17	13	19		945	
Nultiple	1260			1			0	3	1	•	2	5	3	7	5	10	6	11	8	13	10	15	12	17	16	22	19	25		1260	Ĩ
	1575						1	3	2	1	3	6	5	8	7	11	9	12	II	15	14	17	17	20	22	25	25	29		1575	Ű
	1890						1	3	3	5	4	6	7	9	10	12	12	14	14	17	10	20	21	23	27	29	31	ນ		1890	
	2205						2	3	4	5	6	7	9	10	13	14	14	15	18	19	21	22	25	26	32	33	37	38		2205	
		0.010	0.015	\times	0.025	0.040	0.06	5	0.10	,	0.19	5	0.2	5	>	<	0.	60	>		0.	65	>	<	Ī	.0	5	<	Higher than 1.0		ه.
Acceptable Quelity Levels (tightened inspectios)																															

 Δ \simeq Use next preceding sample size code letter for which acceptance and rejection numbers are stailable.

Ac = Acceptance number

Re = Rejection number

• 😐 Use single sampling plan above.

= Acceptance not permitted at this sample size.

()

R

TABLE X-R-Tables for sample size code letter: R

CHART R - OPERATING CHARACTERISTIC CURVES FOR SINGLE SAMPLING PLANS

	<u> </u>			Accep	uble Quality Le	vels (normal insp	ection)				
Ρ.	0.025	0,040	0.065	0.10	0.15	$\left \times \right $	0.25	\times	0.40	\times	0.65
	p (in percent d	elective or defec	ta per hundred un	i18)		· · · · · · · · · · · · · · · · · · ·	· <u> </u>				
99.0	9.00743	0.0218	0.0412	0.0892	0.145	0.175	0.239	0.305	0.374	0.517	0.629
95.0	0.0170	0.0409	0.0683	0.131	0.199	0.235	0.309	0.384	0.462	0.622	0.745
90.0	0.0266	0.0551	0.0872	0.158	0.233	0.272	0.351	0.432	0.515	0.684	0.812
75.0	0.0481	0.0864	0.127	0.211	0.298	0.342	0.431	0,521	0.612	0.795	0.934
50.0	0.0839	0.134	0.181	0.284	0.383	0.433	0.533	0.633	0.733	0.933	1.08
25.0	0.135	0.196	0.255	0.371	0.484	0.540	0.651	0.761	0.670	1.09	1.25
10.0	0.194	0.266	0.334	0.464	0.589	0.650	0.770	0.889	1.01	1.24	1.41
5.0	0.237	0.315	0.388	0.525	0.657	0.722	0.848	0.972	1.09	1.33	1.51
1.0	0.332	0.420	0.502	0.655	0.800	0,870	1.02	1.14	1.27	1.53	1.72
.	0.040	0.065	0.10	0.15	\times	0.25	\times	0.40	\sim	0.65	\times
			r	·	Acceptable Qual	ity Levels (tighte	ned inspection)		<u> </u>		

Notes: All values given in above table based on Poinces diswibstics as an approximative in the Sizesia

TABLE X-R-2 - SAMPLING PLANS FOR SAMPLE SIZE CODE LETTER; R

							- 			,	Acce	pteble	Qua	lity L	evel	s (sor	nal i	ырес	tice)											
Type of sampling plan	lative esmple	X	\sim	0.010	0.015	\times	0.0	225	0.0	40	0.	06S	0.	10	Q.	15	>	<	0	.25	>	<	0	.40	>	<	• 0.	66	Higher than 0.65	Cunn- Intive sample
	Bite	Ac	Re	Ac Re	Ac Re	Ac Re	Ac	He	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Re	Ac	Ře	Ac	fle	Ac	Re	Ac	Re	Ac Re	aí se
Single	2006	0	1	8 144	1		1	Z	2	3	3	4	5	6	7	8	8	9	10	11	12	13	14	15	16	19	21	22	Δ	2000
	1250			code	code	code	0	2	0	3	1	4	2	5	3	7	3	7	5	9	6	tO	,	11	,	14	11	16	Δ	1250
Double	2500	•	i	Letter	Leiter	Letter	1	2	3	4	4	5	6	7	•	9	п	12	12	13	15	16	18)9	23	24	26	27		2500
				Q	P	s	-																							
	500		:				•	2	•	2		3	•	4	0	4	0	•	0	5	0	6	1	7	1	8	2	9	Δ	500
	1060						•	2	0	3	0	3	1	5	1	6	2	7	3	8	3	9	•	10	6	12	1	14		1000
	1500	ľ					0	2	0	3	1	4	2	6	3	8	4	9	6	10	7	12		13	n	17	13	19		1500
Multiple	2000	•					0	3	1	4	2	5	3	1	5	10	6	n	8	13	10	15	12	17	16	22	19	ద		2000
	2500						1	3	2	4	3	6	5	8	1	п	9	12	n	15	14	11	17	20	22	25	25	29		2500
	3000						ı	3	3	5	4	6	7	9	10	12	12	14	16	17	18	20	21	23	27	29	31	33		3000
	3500						2	3	4	5	6	7	9	10	13	14	14	15	18	19	21	22	25	26	32	IJ	37	38		1500
·	•	0.010 0.015 × 0.025 0.040 0.065 0.10 0.15 × 0.25 × 0.40 × 0.65 × Higher than 0.65																												
			Acceptable Quality Levels (tightened inspection)																											

R

🛆 🗉 Use sett preceding sample size code fetter for which acceptance and rejection numbers are sveilable.

- Ac a Acceptance number.
- Re # Rejection number.
- * w Use single asopling plan above.
- a a Acceptance not permitted at this sample size.

TABLE X-S—Tables for sample size code letter: S

S

	C	Acceptable Quality Level (normal inspection)								
Type of easepling plan	lative sample		\times							
r	eize	Ac	Re							
Single	3150	1.	2							
Double	2000	0	2							
	4000	1	2							
	600		2							
	1600	•	2							
	2400	0	2							
Multiple	3200	0	3							
	4000	1	3							
	4800	1	3							
	5600	2	3							
).025							
		Acceptable (tightened	e Quality Level inspection)							

- Ac 📼 Acceptance aumber
- Re = Rejection number
- s = Acceptance not permitted at this sample size.
6. NOTES

6.1 Intended Use. Sampling procedures and tables for inspection by attributes are intended to be used in the acquisition of Defense material.

6.2 Subject Term (Key Word) Listing.

Acceptable Quality Level (AQL)

Average Outgoing Quality (AOQ)

Defect

Defective

Lot or Batch

Process Average

Sample

Sampling Plan

Unit of Product

6.3 Changes from Previous Issue. Vertical lines or asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes. CONCLUDING MATERIAL

Custodians: Army - AR Navy - OS Air Force - 23 Review Activities: Army - NA, EA, TE, AV, ER Navy - AS, EC, MC, OM, SA, SH, TD, YD DLA - ES, GS, SS OSD - IP, SO User Activities: Army - ME DLA - ES, SS Preparing Activity: Army - AR

(Project QCIC-0085)