Via C. Olivetti, 2

## )/ INDUSTRIAL \& POWER CONVERSION DIV.

## SMPS PROTOTYPE REPORT

## 19V-90W ADAPTER BOARD

## WITH PFC

## USING L6599 AND L6563

PRELIMINARY

Rev. 1

## 1. Scope

This document describes the performances of a reference board designed for Consumer applications like laptop PC adapters. High-efficiency and low stand-by power are main features of the circuit. This is a preliminary document that will be completed with more detail very soon.

## 2. Main characteristics

> UNIVERSAL INPUT MAINS RANGE:
> OUTPUT VOLTAGE:
> MAINS HARMONICS:
> ST-BY MAINS CONSUMPTION:
> OVERALL EFFICIENCY:
$>$ EMI:
> SAFETY:
> LOW PROFILE DESIGN:
> PCB SINGLE LAYER :

## 3. Circuit description

The circuit is composed by two stages, a front-end PFC implementing the L6563 and a resonant DC/DC converter based on the new resonant controller, the L6599.
The PFC stage delivers a stable 400 Vdc and provides for the reduction of the mains harmonic, allowing to meet the European norm EN61000-3-2. The controller is the L6563 (U1), working in transition mode and integrating all functions needed to control the PFC and interface the downstream resonant converter. The power stage of the PFC is a conventional boost converter, connected to the output of the rectifier bridge. It includes the coil L2, the diode D4 and the capacitor C9. The boost switch is represented by the power mosfet Q1. The L2 secondary winding (pins $8-10$ ) is dedicated to provide to the L6563 the information about the PFC coil core demagnetization, necessary to the controller for the TM operation. The divider R1, R2 and R14 provides to the L6563 the information of the instantaneous voltage that is used to modulate the boost current, and to derive some further information like the average value of the AC line, used by the $\mathrm{V}_{\mathrm{FF}}$ (voltage feed-forward) function. This function allows keeping almost independent the output voltage by the mains one. The divider R7, R8, R9, R10 is dedicated to sense the output voltage. The second divider R11, R12, R13 and R28 is dedicated to protect the circuit in case of voltage loop fail.
The second stage is a resonant converter, half bridge topology, working in ZVS. The controller is the new L6599, incorporating the necessary functions to drive properly the Halfbridge by a 50 percent fixed duty cycle with dead-time, working with variable frequency. Main features of the L6599 are a non linear soft-start, a new current protection pin allowing to program the hiccup mode timing, a dedicated pin for sequencing or brown-out (LINE) and a stand-by pin (STBY) allowing the burst mode operation at light load. The transformer uses the integrated magnetic approach, incorporating the resonant series inductance. Thus, no any external additional coil is needed for the resonance. The transformer configuration chosen for the secondary winding is centre tap, using two Schottky rectifiers, type STPS10L60FP. The feedback loop is implemented by means of a classical configuration using a TL431 to adjust the current in the optocoupler diode. The optocoupler transistor modulates the current from pin 4 , so the frequency will change accordingly, thus achieving the output voltage regulation. The resistor R34 fixes the maximum operating frequency and the load at which the controller starts work in burst mode. In case of short circuit the current into the primary winding is sensed by the lossless circuit R41, C27, D11, D10, R39, and C25 and it is fed into the pin 6. In case of overload the voltage on pin \#6 will overpass an internal threshold that will trigger a protection sequence via pin \#2, keeping the current flowing in the circuit at a safe level. In case of output voltage loop fail the intervention of the zener diode connected to pin \#8 (DIS) will activate the latched protection of the L6599. The DIS pin can be also activated by the L6563 via the PWM_LATCH pin in case of PFC loop fail. In both cases the circuit is disabled till a power recycle.

| $11 / 05 / 05$ | $2 / 16$ | Author: C. Spini |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc |  | Tel.: +390396035106 |
|  | Fax: +390396035654 |  |
|  |  | E-mail: claudio.spini@st.com |

Figure 1: Electrical diagram


Ind. \& Power Conversion Div.

## 4. Test Results

### 1.1. Efficiency measurements

In the table below there are the output voltage measurements at nominal mains with different load conditions. Efficiency is then calculated.

| Vin $=115 \mathrm{Vac}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Vout | lout | Pout | Pin | Eff. |
| $[\mathrm{V}]$ | $[\mathrm{A}]$ | $[\mathrm{W}]$ | $[\mathrm{W}]$ | $\%$ |
| 18.95 | 4.71 | 89.25 | 99.13 | $\mathbf{9 0 . 0 4}$ |
| 18.95 | 3.72 | 70.49 | 78.00 | 90.38 |
| 18.97 | 2.7 | 51.22 | 56.55 | 90.57 |
| 18.98 | 1.71 | 32.46 | 36.00 | 90.16 |
| 18.99 | 1.0 | 18.99 | 21.70 | 87.51 |
| 18.99 | 0.5 | 9.50 | 11.30 | 84.03 |
| 19.00 | 0.25 | 4.75 | 5.86 | 81.06 |


| Vin $=230$ Vac |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Vout | lout | Pout | Pin | Eff. |
| $[\mathrm{V}]$ | $[\mathrm{A}]$ | $[\mathrm{W}]$ | $[\mathrm{W}]$ | $\%$ |
| 18.95 | 4.71 | 89.25 | 97.23 | $\mathbf{9 1 . 8 0}$ |
| 18.96 | 3.72 | 70.53 | 76.74 | 91.91 |
| 18.97 | 2.7 | 51.22 | 55.85 | 91.71 |
| 18.98 | 1.71 | 32.46 | 35.57 | 91.24 |
| 18.99 | 1.0 | 18.99 | 21.30 | 89.15 |
| 19.00 | 0.5 | 9.50 | 10.87 | 87.40 |
| 19.00 | 0.25 | 4.75 | 5.77 | 82.32 |

Table 1: Efficiency measurements


In the table 1 and in figure 3 the overall circuit efficiency is measured for different loads, at the nominal input mains range, after 30 minutes of circuit warmup at maximum load. The high efficiency of the PFC working in transition mode and the very high efficiency of the resonant stage working in ZVS, provides for an overall efficiency better than $\mathbf{9 0 \%}$, which is a significant high number for a two stage converter with 4.7 amps of output current, especially at low input mains voltage. Even at lower load the efficiency remains still high.

Figure 2: Efficiency vs. Pout

The global efficiency at full load has been measured even at the limits of the input voltage range, with good results:

Vin $=90 \mathrm{Vac}$ Full Load $\quad$ Pin $=100.5 \mathrm{~W} \quad$ Efficiency $=88.9 \%$
Vin $=264 \mathrm{Vac}$ Full Load
Pin $=96.3 W \quad$ Efficiency $=92.6 \%$

## 5. Resonant stage operating waveforms

Figure 3: Resonant circuit primary side waveforms


In figure 6 are reported some waveforms during steady state operation at full load of the circuit. The CH 2 trace is the oscillator signal at pin \#3 of the L6599, while the CH3 trace is the PFC output voltage, powering the resonant stage. The CH 1 trace is the half bridge waveform, driving the resonant circuit. In the picture it is not evident, but the switching frequency is normally slightly modulated following the PFC 100 Hz ripple that is rejected by the resonant control circuitry. The switching frequency has been chosen around 90 KHz , in order to have a good trade off between transformer losses and its dimensions. The transformer primary current wave shape is the CH 4 trace. As visible it is almost sinusoidal, because the operating frequency is very close to the resonance of the leakage inductance and the resonant capacitor (C28). In this condition the circuit has a good margin for ZVS operations providing good efficiency and the sine wave shape provides for an EMI generation extremely low.

Figure 4: Resonant circuit secondary side waveforms

frequency is 130 mV at maximum load and any line condition.

In figure 4 are represented some waveforms relevant to the secondary side: the rectifiers reverse voltage is measured by CH3 and the peak to peak value is indicated on the right of the picture. It is a bit higher than the theoretical value that would be 2(Vout+Vf), then about 40 V . It is possible to notice there is a small ringing on the bottom side of the wave form, responsible for this difference. Thanks to the advantages of the resonant converter the high frequency ripple and noise of the output voltage is only 70 mV ( $0.37 \%$ ) including spikes, while the residual ripple at mains

| 11/05/05 | $5 / 16$ | Author: C. Spini |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc | Tel.: +390396035106 |  |
|  | Fax: +390396035654 |  |
|  | E-mail: claudio.spini@st.com |  |

### 1.2. Stand-by \& No load power consumption

The circuit has been designed for light load and zero load operation, like during operation with load disconnected. The results are reported in the diagram of figure 6, here following. The input power at zero load is always below 0.4W at any input mains voltage.


Figure 5: Input power without load vs. mains voltage

Thanks to the L6599 stand-by function, at light load conditions both the resonant converter and the PFC work skipping switching cycles, according to the load. Moreover, the L6599 via the PFC_STOP pin (\#9) stops the operation of the L6563 during the burst mode off time. The result is visible in figure 6: the two converters are now working for a very short time, the output voltage is perfectly regulated at its nominal value, with only a small residual ripple over imposed $\quad(\sim 140 \mathrm{mV})$. Thanks to the burst mode and the reduced number of switching cycles and related losses, the input power drawn from the mains is very low. However, if the output voltage has a sudden load change both converters are ready to react immediately, thus avoiding output voltage drops.

Figure 6: Resonant circuit secondary side waveforms


In table 2 are reported the measurements of the input power during operation at reduced output power. Even with this load condition the circuit efficiency is very good.

| $11 / 05 / 05$ | $6 / 16$ | Author: C. Spini |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc |  | Tel.: +390396035106 |
|  | Fax: +390396035654 |  |
|  | E-mail: claudio.spini@st.com |  |


| Vin $=115 \mathrm{Vac}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Vout | lout | Pout | Pin |
| $[\mathrm{V}]$ | $[\mathrm{mA}]$ | $[\mathrm{W}]$ | $[\mathrm{W}]$ |
| 19.01 | 80 | 1.5 | 3 |
| 19.01 | 53 | 1 | 2 |
| 19.01 | 27 | 0.5 | 1.08 |
| 19.01 | 13 | 0.25 | 0.66 |


| Vin $=230$ Vac |  |  |  |
| :---: | :---: | :---: | :---: |
| Vout | lout | Pout | Pin |
| $[\mathrm{V}]$ | $[\mathrm{A}]$ | $[\mathrm{W}]$ | $[\mathrm{W}]$ |
| 19.01 | 80 | 1.5 | 2.4 |
| 19.01 | 53 | 1 | 1.68 |
| 19.01 | 27 | 0.5 | 1 |
| 19.01 | 13 | 0.25 | 0.67 |

Table 2: Stand-by consumption

## Short circuit protection

The L6599 is equipped with a current sensing input (pin \#6, ISEN) and a dedicated overcurrent management system. The current flowing in the circuit is sensed and the signal is fed into the ISEN pin. It is internally connected to the input of a first comparator, referenced to 0.8 V , and to that of a second comparator referenced to 1.5 V . If the voltage externally applied to the pin by either circuit in figure 8 exceeds 0.8 V the first comparator is tripped and this causes an internal switch to be turned on and discharge the soft-start capacitor $\mathrm{C}_{\text {ss }}$. Under output short circuit, this operation results in a nearly constant peak primary current. With the L6599 the designer can program externally the maximum time (TSH) that the converter is allowed to run overloaded or under short circuit conditions. Overloads or short circuits lasting less than TSH will not cause any other action, hence providing the system with immunity to short duration phenomena. If, instead, TSH is exceeded an overload protection (OLP) procedure is activated that shuts down the L6599 and, in case of continuous overload/short circuit, results in continuous intermittent operation with a user-defined duty cycle. This function is realized with the pin DELAY (\#2), by means of a capacitor C45 and the parallel resistor R24 connected to ground. As the voltage on the ISEN pin exceeds 0.8 V the first OCP comparator, in addition to discharging $C_{S S}$, turns on an internal current generator that via the DELAY pin charges C45. As the voltage on C45 is 3.5 V , the L6599 stops switching and the PFC_STOP pin is pulled low. Also the internal generator is turned off, so that C45 will now be slowly discharged by R24. The IC will restart when the voltage on C45 will be less than 0.3 V . Additionally, if the voltage on the ISEN pin reaches 1.5 V for any reason (e.g. transformer saturation), the second comparator will be triggered, the L6599 will shutdown and the operation will be resumed after an on-off cycle.

Figure 7: Output short circuit waveforms


The L6599 short circuit protection sequence described above is visible in the picture: the on off operation is controlled by the voltage on pin \#2 (DELAY), providing for the hiccup mode of the circuit, keeping the average output current at a safe level.

## Over voltage protections

Both circuit stages, PFC and resonant are equipped with their own over voltage protection. The PFC controller L6563 is internally equipped with a dynamic and a static over voltage protection circuit sensing the error amplifier via the voltage divider dedicated to the feedback loop to sense the PFC output voltage. In case the internal threshold is exceeded the IC limits the voltage to a programmable, safe value. Moreover, in the L6563 there is an additional protection against loop failures using an additional divider (R11, R12, R13, R28) connected to a dedicated pin (PFC_OK, \#7) protecting the circuit in case of loop failures or disconnection or deviation from the nominal value of the feedback loop divider. Hence the PFC output voltage is always under control and in case a fault condition is detected the PFC_OK circuitry will latch the L6563 operations and, by means of the PWM_LATCH pin (\#8) it will latch the L6599 as well via the pin \#8 (DIS). The pin DIS is also used to protect the resonant stage against over voltage or loop disconnections. In fact, the zener diode D8 connected to pin DIS senses the voltage and in case of open loop it will conduct and voltage on pin DIS will exceed the internal threshold. Then the IC will be immediately shut down and its consumption reduced at a low value. This state will be latched and will be necessary to let the voltage on the Vcc pin go below the UVLO threshold to reset the latch and restart the IC operation.

## 6. Start-up sequence

Figure 8: Start-up @115Vac - Full load


In figure 8 are reported the waveforms during the start at 90 Vac and full load. It is possible to note the sequence of the two stages: at power on the L6563 and L6599 Vcc voltages increase up to the turn-on thresholds of the two ICs. The PFC starts and its output voltage increases from the mains rectified voltage to its nominal value, with a small overshoot. In the meantime the L6599 is kept inactive by the LINE pin (\#7) until the PFC voltage reaches the threshold set by the divider R11, R12, R13, R28. As soon as it reaches the L6599 LINE pin threshold, the resonant starts to operate. Hence the output voltage rises according to the soft-start and reaches the nominal level. This sequence provides for the advantages of a perfect sequencing of the circuit at start-up with the PFC acting as master and avoids complex additional circuitry for the correct start-up of the circuit in all conditions. The circuit has been tested in all line and load conditions showing a correct start-up sequence. The used high voltage start-up circuit used avoids useless power dissipation during light load operation and provides for an almost constant wake-up time of the circuit.

| 11/05/05 | $8 / 16$ | Author: C. Spini |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc |  | Tel.: +390396035106 |
|  | Fax: +390396035654 |  |
|  | E-mail: claudio.spini@st.com |  |

## 7. Thermal tests

In order to check the design reliability, a thermal mapping by means of an IR Camera was done. Here below the thermal measures of the board, component side, at nominal input voltage are shown. Some pointers visible on the pictures have been placed across key components or components showing high temperature. The correlation between measurement points and components is indicated below, for both diagrams.


All other components of the board are working within the temperature limits, assuring a reliable long term operation of the power supply.

| 11/05/05 | $9 / 16$ | Author: C. Spini |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc |  | Tel.: +390396035106 |
|  |  | Fax: +390396035654 |
|  |  | E-mail: claudio.spini@st.com |

## Conducted emission pre-compliance test

The limits indicated on both diagrams at 115 Vac and 230 Vac are according to EN55022 Class-B. The measures have been done in peak detection mode.


Figure 11: CE peak measure at 115Vac and full load


Figure 12: CE peak measure at 230Vac and full load

## 8. Bill of material

| Des. | Part Type/ Part Value | Description | Supplier |
| :---: | :---: | :---: | :---: |
| C1 | 470N-X2 | X2 FILM CAPACITOR - R46-I 3470--M1- | ARCOTRONICS |
| C10 | 22N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C11 | 10N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C12 | 470N | 25V CERCAP - GENERAL PURPOSE | AVX |
| C13 | 1uF | 25V CERCAP - GENERAL PURPOSE | AVX |
| C14 | 100N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C15 | 10uF-50V | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C16 | 2N2 | 50V CERCAP - GENERAL PURPOSE | AVX |
| C17 | 470PF | 50V-5\% - C0G - CERCAP | AVX |
| C18 | 2uF2-6.3V | 25V CERCAP - GENERAL PURPOSE | AVX |
| C19 | 100N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C2 | 2N2 | Y1 SAFETY CAP. | MURATA |
| C20 | 2N2-Y1 | DE1E3KX222M - Y1 SAFETY CAP. | MURATA |
| C21 | 2N2-Y1 | DE1E3KX222M - Y1 SAFETY CAP. | MURATA |
| C22 | 220PF | 50V CERCAP - GENERAL PURPOSE | AVX |
| C23 | 10N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C24 | 220uF-35V | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C25 | 100N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C26 | 10uF-50V | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C27 | 220PF | 500V CERCAP - 5MQ221KAAAA | AVX |
| C28 | 22N | 630V - PHE450MA5220JR05 | EVOX-RIFA |
| C29 | 470uF-35V YXF | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C3 | 2N2 | Y1 SAFETY CAP. | MURATA |
| C30 | 470uF-35V YXF | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C31 | 100uF-35V YXF | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C32 | 100N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C34 | 220N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C36 | 1uF-50V | ALUMINIUM ELCAP - YXF SERIES - $105^{\circ} \mathrm{C}$ | RUBYCON |
| C39 | 100N | 50V CERCAP - GENERAL PURPOSE | AVX |
| C4 | 470N-X2 | X2 FILM CAPACITOR - R46-I 3470--M1- | ARCOTRONICS |
| C40 | 100N | 50 V CERCAP - GENERAL PURPOSE | AVX |
| C43 | 4N7 | 50V CERCAP - GENERAL PURPOSE | AVX |
| C44 | 3N9 | 50V CERCAP - GENERAL PURPOSE | AVX |
| C45 | 220NF | 25V CERCAP - GENERAL PURPOSE | AVX |
| C46 | 68PF | 25V CERCAP - GENERAL PURPOSE | AVX |
| C5 | 470N-400V | PHE426KD6470JR06L2 - POLYPROP. FILM CAP | EVOX-RIFA |
| C9 | 47uF-450V | ALUMINIUM ELCAP - TSUP SERIES - $85^{\circ} \mathrm{C}$ | PANASONIC |
| D1 | GBU4J | SINGLE PHASE BRIDGE RECTIFIER | VISHAY |
| D10 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| D11 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| D12 | STPS10L60FP | POWER SCHOTTKY RECTIFIER | STMICROELECTRONICS |
| D13 | STPS10L60FP | POWER SCHOTTKY RECTIFIER | STMICROELECTRONICS |
| D15 | BZV55-C18 | ZENER DIODE | VISHAY |
| D16 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| D17 | BZV55-C12 | ZENER DIODE | VISHAY |


| 11/05/05 | Author: C. Spini |  |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc | $11 / 16$ | Tel.: +390396035106 |
|  |  | Fax: +390396035654 |
|  | E-mail: claudio.spini@st.com |  |


| D18 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| :---: | :---: | :---: | :---: |
| D19 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| D20 | BZV55-B15 | ZENER DIODE | VISHAY |
| D3 | 1N4005 | GENERAL PURPOSE RECTIFIER | VISHAY |
| D4 | STTH2L06 | ULTRAFAST HIGH VOLTAGE RECTIFIER | STMICROELECTRONICS |
| D7 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| D8 | BZV55-B24 | ZENER DIODE | VISHAY |
| D9 | LL4148 | FAST SWITCHING DIODE | VISHAY |
| F1 | FUSE 4A | FUSE T4A - TIME DELAY | WICHMANN |
| HS1 |  | HEAT SINK FOR D1\&Q1 | DWG |
| HS2 |  | HEAT SINK FOR Q3\&Q4 | DWG |
| HS3 |  | HEAT SINK FOR D12\&D13 | DWG |
| J1 | MKDS 1,5/ 3-5,08 | PCB TERM. BLOCK, SCREW CONN.- 3 W . | PHOENIX CONTACT |
| J2 | MKDS 1,5/ 2-5,08 | PCB TERM. BLOCK, SCREW CONN.- 2 W . | PHOENIX CONTACT |
| L1 | 86A-5163 | INPUT EMI FILTER | DELTA ELECTRONICS |
| L2 | 86A-5158C | PFC INDUCTOR | DELTA ELECTRONICS |
| L3 | RFB0807-2R2 | 2u2 - RADIAL INDUCTOR | COILCRAFT |
| Q1 | STP12NM50FP | N-CHANNEL POWER MOSFET | STMICROELECTRONICS |
| Q10 | BC847C | NPN SMALL SIGNAL BJT | STMICROELECTRONICS |
| Q2 | BC847C | NPN SMALL SIGNAL BJT | STMICROELECTRONICS |
| Q3 | STP9NK50ZFP | N-CHANNEL POWER MOSFET | STMICROELECTRONICS |
| Q4 | STP9NK50ZFP | N-CHANNEL POWER MOSFET | STMICROELECTRONICS |
| Q5 | BC847C | NPN SMALL SIGNAL BJT | STMICROELECTRONICS |
| Q6 | BC847C | NPN SMALL SIGNAL BJT | STMICROELECTRONICS |
| Q7 | BC857C | PNP SMALL SIGNAL BJT | STMICROELECTRONICS |
| Q8 | STQ1HNK60R | N-CHANNEL POWER MOSFET | STMICROELECTRONICS |
| Q9 | BC847C | NPN SMALL SIGNAL BJT | STMICROELECTRONICS |
| R1 | 1M0 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R10 | 15K | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R11 | 3M0 | MBB0207 AXIAL FILM RES - $0.4 \mathrm{~W}-1 \%-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R12 | 3M0 | MBB0207 AXIAL FILM RES - $0.4 \mathrm{~W}-1 \%-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R13 | 8K2 | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R14 | 18K | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R15 | 150K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R18 | 56K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R19 | 56K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R2 | 1M2 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R20 | 10K | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R21 | 39R | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R22 | 0R47 | SFR25 AXIAL STAND. FILM RES - $0.4 \mathrm{~W}-5 \%-250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R23 | OR47 | SFR25 AXIAL STAND. FILM RES - $0.4 \mathrm{~W}-5 \%-250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R24 | 1M0 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R25 | 56R | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R26 | 240K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R27 | 470R | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R28 | 24K9 | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R29 | 1K0 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R3 | 2M4 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R30 | 10R | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R31 | 15K | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |


| R32 | 47R | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| :---: | :---: | :---: | :---: |
| R34 | 3K3 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R35 | OR0 | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R37 | 100K | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R38 | 56R | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R39 | 130R | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R4 | 2M4 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R40 | 6R8 | SFR25 AXIAL STAND. FILM RES -0.4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R41 | 100R | SFR25 AXIAL STAND. FILM RES - $0.4 \mathrm{~W}-5 \%-250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R42 | 5K6 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R43 | 51R | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R44 | 2K7 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R46 | 100K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R47 | 1K0 | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R48 | 47K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R49 | 39K | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R50 | 6K2 | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R51 | 120K | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R52 | 6K8 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R53 | OR0 | ORO JUMPER | BC COMPONENTS |
| R54 | OR0 | ORO JUMPER | BC COMPONENTS |
| R55 | ORO | ORO JUMPER | BC COMPONENTS |
| R56 | 1K8 | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R57 | OR0 | ORO JUMPER | BC COMPONENTS |
| R58 | 100K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R59 | 100K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R6 | NTC_10R S236 | NTC RESISTOR P/N B57236S0100M000 | EPCOS |
| R60 | 10K | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R62 | 4K7 | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R65 | 47K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R66 | 2K2 | SMD STANDARD FILM RES - 1/4W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R67 | 100K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R69 | 4K7 | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R7 | 1M0 | MBB0207 AXIAL FILM RES - $0.4 \mathrm{~W}-1 \%-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R70 | 100K | SMD STANDARD FILM RES - 1/8W-5\%-250ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R71 | 12K | SMD STANDARD FILM RES - 1/4W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R72 | OR0 | ORO JUMPER | BC COMPONENTS |
| R8 | 1M0 | MBB0207 AXIAL FILM RES - 0.4W-1\%-50ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| R9 | 82K | SMD STANDARD FILM RES - 1/8W-1\%-100ppm/ ${ }^{\circ} \mathrm{C}$ | BC COMPONENTS |
| T1 | 86A-5166A | RESONANT POWER TRANSFORMER | DELTA ELECTRONICS |
| U1 | L6563 | TRANSITION-MODE PFC CONTROLLER | STMICROELECTRONICS |
| U2 | L6599D | HIGH VOLTAGE RESONANT CONTROLLER | STMICROELECTRONICS |
| U3 | SFH617A-2 | OPTOCOUPLER | INFINEON |
| U4 | TL431AIZ | PROGRAMMABLE SHUNT VOLTAGE REFERENCE | STMICROELECTRONICS |

## 9. PFC COIL SPECIFICATION

- APPLICATION TYPE:
- TRANSFORMER TYPE:
- COIL FORMER:
- MAX. TEMP. RISE:
- MAX. OPERATING AMBIENT TEMP.:
- MAINS INSULATION:


## ELECTRICAL CARACTERICSTICS

- CONVERTER TOPOLOGY:
- CORE TYPE:
- MIN.

OPERATING FREQUENCY:

- TYPICAL OPERATING FREQ:
- PRIMARY INDUCTANCE:
- PEAK PRIMARY CURRENT
- RMS PRIMARY CURRENT

Consumer, Home Appliance
Open
Vertical type, $6+6$ pins
$45{ }^{\circ} \mathrm{C}$
$60{ }^{\circ} \mathrm{C}$
N.A.

## Boost, Transition mode

RM14-PC40 or equivalent
20 KHz

$$
\begin{equation*}
700 \mu \mathrm{H} \pm 10 \% @ 1 \mathrm{KHz}-0.25 \mathrm{~V} \tag{1}
\end{equation*}
$$

5 Apk
1.8 Arms
[1]: Measured between pins \#2 \& \#5

## ELECTRICAL DIAGRAM



WINDING CHARACTERISTICS

| PINS: | WINDING | RMS <br> CURRENT: | NUMBER OF <br> TURNS | WIRE TYPE |
| :---: | :---: | :---: | :---: | :---: |
| $5-2$ | PRIMARY | 1.8 ARMS | 53 | STRANDED 7 x $\phi 0.28 \mathrm{~mm}$ |
|  |  |  |  |  |
| $8-11$ | AUX [1] | 0.05 A RMS | 4 SPACED | TBD |

[1]: Aux winding is wound on top of primary winding

## MECHANICAL ASPECT AND PIN NUMBERING

MAXIMUM HEIGHT FROM PCB: 22 mm
COIL FORMER TYPE: VERTICAL, 6+6 PINS
PIN DISTANCE: $\quad 5.08 \mathrm{~mm}$
PINS \#1, 3, 4, 6, 7, 9, 10 are removed - Pin 9 is for polarity key.

- EXTERNAL COPPER SHIELD: Around the ferrite core and including the coil former. Height is 7 mm . Connected by a solid wire soldered to pin 11 .


DELTA ELECTRONICS 86A-5158C

BOTTOM WIEV

## 10. RESONANT POWER TRANSFORMER

- APPLICATION TYPE:
- TRANSFORMER TYPE:
- COIL FORMER:
- MAX. TEMP. RISE:
- MAX. OPERATING AMBIENT TEMP.:
- MAINS INSULATION:

Consumer, Home Appliance
Open
Horizontal type, 7+7 pins, 2 Slots
$45{ }^{\circ} \mathrm{C}$
$60{ }^{\circ} \mathrm{C}$
ACC. WITH EN60065

## ELECTRICAL CARACTERICSTICS

- CONVERTER TOPOLOGY:
- CORE TYPE:
- MIN. OPERATING FREQUENCY:
- TYPICAL OPERATING FREQ:
- PRIMARY INDUCTANCE:
- LEAKAGE INDUCTANCE:

Half-bridge, resonant
EER28L - PC40 or equivalent
60 Khz
100 KHz
$810 \mu H \pm 10 \% @ 1 K H z-0.25 V$
$200 \mu H \pm 10 \% @ 1 K H z-0.25 V$
[1]-[2]
[1]: Measured between pins 1-4
[2]: Measured between pins 1-4 with ONLY a secondary winding shorted

| 11/05/05 | $15 / 16$ | Author: C. Spini |
| :--- | ---: | ---: |
| File: L6599\&L6563 Adapter board with PFC.doc |  | Tel.: +390396035106 |
|  | Fax: +390396035654 |  |
|  |  | E-mail: claudio.spini@st.com |

- ELECTRICAL DIAGRAM

- WINDING CHARACTERISTICS

| PINS: | WINDING | RMS <br> CURRENT: | NUMBER <br> OF TURNS | WIRE TYPE |
| :---: | :---: | :---: | :---: | :---: |
| $2-4$ | PRIMARY | 1 A AMS | 60 | MULTISTRAND -TBD |
|  |  |  |  |  |
| $14-13$ | SEC. A [1] | 4 A $_{\text {RMS }}$ | 6 | MULTISTRAND -TBD |
| $12-11$ | SEC. B [1] | 4 A RMS | 6 | MULTISTRAND -TBD |
|  |  |  |  |  |
| $5-6$ | AUX [2] | 0.05 A AMS | 5 SPACED | TBD |

[1]: Secondary windings A and B must be wound in parallel
[2]: Aux winding is wound on top of primary winding

## - MECHANICAL ASPECT AND PIN NUMBERING

MAXIMUM HEIGHT FROM PCB: 22 mm
COIL FORMER TYPE: HORIZONTAL, $7+7$ PINS (PIN $1 \& 7$ ARE REMOVED)
PIN DISTANCE: 5 mm
ROW DISTANCE: $\quad 30 \mathrm{~mm}$
PIN LAY-OUT, TOP VIEW


DELTA ELECTRONICS 86A-5166A

