中华人民共和国国家标准

设备可靠性试验 成功率的验证试验方案

UDC 621. 3-192 . 001. 4 : 001. 5 : 519. 2 GB 5080. 5—85 IEC 605-5—1982

Equipment rellability testing compliance test plans for success ratio

1 范围

本标准通常在用成功率表示产品可靠性要求的情况下使用。所规定的成功率是一个产品将完成所要求的功能的概率或是产品在规定的条件下试验成功的概率。观测的成功率可以定义为在试验结束时未失效的产品数对试验产品总数的比值或成功的试验次数对试验总次数的比值。这些试验方案是基于假设每次试验在统计意义上来说是独立的。

本标准中规定的试验方案适用于可以重复使用的设备,也适用于不可重复使用 (一次发射)的设备。对于重复使用的设备在两次相继的试验之间是可以进行维修的,只要它们在每次试验开始时的状况和性能都是相同的。对不可重复使用的设备,每件受试产品只可用于一次试验。

本标准等同于国际电工委员会推荐标准 IEC 605-5 (1982)《设备可靠性试验 第五部分:成功率的验证试验方案》。

2 符号说明

本标准使用的符号如下:

- $D_{\mathbf{R}}$ 成功率鉴别比 $\frac{1-R_1}{1-R_0}$;
- h 在序贯试验图的垂线上的接收、拒收线的截距(见图 1);
- *n*_{*} 接收所要求的固定试验数;
- n。 序贯试验方案中的累积试验数;
- n_t 截尾试验数 (见图 1);
- r 累积失效数;
- r_{RE} 拒收失效数;
- r_t 截尾失效数 (见图 1);
- R 成功率真值;
- R_0 可接收的成功率;
- R_1 不可接收的成功率;
- s 序贯试验图中接收和拒收线的斜率 (见图 1);
- α 生产方风险 (标称的), 即当 $R=R_0$ 时的拒收概率;
- β 使用方风险 (标称的), 即当 $R=R_1$ 时的接收概率。

3 统计试验方案和一般试验程序

试验方案以下列两种试验形式给出:

a. 截尾序贯试验;

b. 定数试验。

试验可定义为详细的可靠性试验规范中所规定的操作或循环。

这些试验方案以二项分布为基础,并且具有参数 R_0 、 D_R 、 α 和 β 。由于对所有的序贯试验的截尾数值进行了必要的近似,因此试验方案中实际的生产方风险和使用方风险 α 和 β 与标称的理论特征值稍微有点不同。

详细的可靠性试验规范应规定使用的试验形式和试验方案。当可靠性特征量是时间的函数时,对于截尾序贯和定数的可靠性试验,其试验形式选择的指南见附录 A。

按照有关试验方案规定的试验数对受试产品进行试验。对于可重复使用和可以维修的产品,详细的可靠性试验规范应进一步规定试验产品的数量以及对每个受试产品的最多试验次数。可能试验的总数必须符合试验方案的规定。计算关联失效数(见 GB 3187—82《可靠性基本名词术语及定义》的2. 2. 19款)并与这个试验方案的判据进行比较。

4 截尾序贯试验方案

表 1 对各种规定的 R_0 、 D_R 、 α 和 β 值给出了适用的试验方案。表中包括每种试验方案的 h、s、 n_t 、 r_t 等数值。这些参数符号的意义见图 1,其判决准则为:

当r≤ sn_s -h 时,接收;

当 $r \geqslant sn_s + h$ 时, 拒收;

当 $sn_s-h < r < sn_s+h$ 时,继续试验。

序贯试验到截尾线截止,截尾数值由表1给出。因此,接收或拒收判决准则需按下述条件:

在 $n_s = n_t$ 时,若 $r < r_t$,接收;

若 $r > r_t$, 拒收。

每次试验后将累积的检查结果与判决准则进行比较,若需要继续试验时,则开始进行另一次试验。

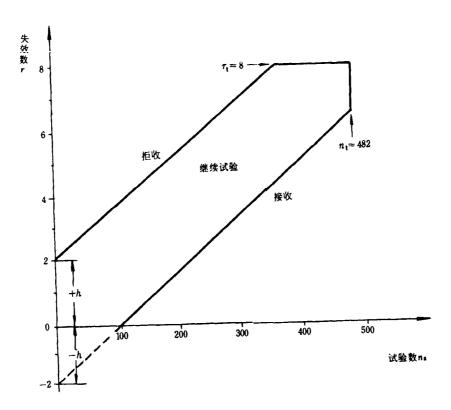


图 1 截尾序贯试验示例

$$R_0=0.99$$
, $D_R=3.0$ ($R_1=0.97$), $\alpha=\beta=0.10$, $n_t=482$, $r_t=8$

注: 截尾影响了 α 和 β 的真值,然而,对于标称值 0.05, 0.10, 0.20 和 0.30 来说,表 1 中的截尾值使得 α 和 β 的 最大值分别小于 0.055, 0.105, 0.205 和 0.305。该表中的截尾值是根据计算机程序,逐渐增加 n_t 和 r_t 值,直 到计算得到的 α 和 β 真值不超过上述界限为止。

4.1 工作特性曲线 (OC 曲线)

对于任何截尾序贯试验,下表给出了工作特性曲线的近似点。

成功率真值 R	接收概率						
1.0	1. 0						
R_0	1-a						
1-s	0. 5						
R_1	β						
0	0						

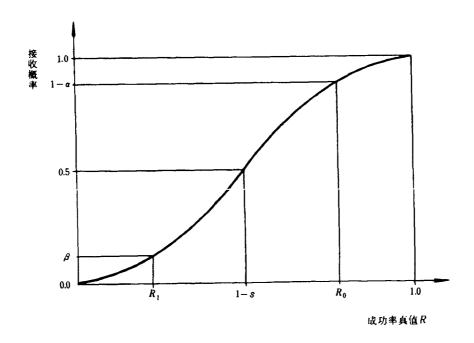


图 2 OC 曲线

4.2 作出判决的期望试验数

对于任何截尾序贯试验方案,成功率真值与作出判决的期望试验数的关系曲线的近似点确定如下。

成功率真值R	期望试验数n。
1. 0	h s
R_0	$\frac{h}{s-} \frac{(1-2a)}{(1-R_0)}$

续表

<i>→</i>	~~
成功率真值R	期望试验数n。
(1-s)	$\frac{h^2}{s \ (1-s)}$
R_1	$\frac{h (1-2\beta)}{(1-R_1)-s}$
0. 0	$rac{h}{1-s}$

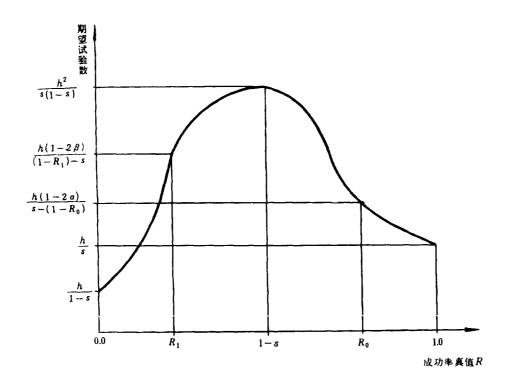


图 3 期望试验数曲线

4.3 其他试验方案

在表 1 中没有给出而又需要的试验方案,可以用下面的公式计算试验方案中的 s 和 h 值 (但只限于 $\alpha = \beta$ 的情况)。

$$s = \frac{\ln\left(\frac{R_0}{R_1}\right)}{\ln\left(\frac{R_0}{R_1}\right) - \ln\left(\frac{1 - R_0}{1 - R_1}\right)}$$

$$h = \frac{\ln\left(\frac{1-\beta}{\alpha}\right)}{\ln\left(\frac{R_0}{R_1}\right) - \ln\left(\frac{1-R_0}{1-R_1}\right)}$$

截尾值可以从表中的数值中用内插法得到,但超过表 1 中所给出的 R_0 、 D_R 、 α 和 β 的范围的数值不能用外推法。

5 定数试验方案

表 2 对规定的 R_0 、 D_R 、 α 和 β 的各种值给出了近似的试验方案。该表包含作出接收判决时所要求的试验数 n_t 和作出拒收判决时所要求的失效数 r_{RE}

例: R_0 =0.99, D_R =3.0 (R_1 =0.97),

 $\alpha = \beta = 0.10$, 从表 2 中查出所要求的试验数

 n_t =308, 拒收失效数 r_{RE} =6。如果观察到的失效数 $r \ge$ 6, 则作出拒收判决。

GB 2828—81*《逐批检查计数抽样程序及抽样表(适用于连续批的检查)》可用于成功率的验证试验。然而,GB 2828—81 并不是以固定的风险为基础,如果GB 2828—81 用于可靠性试验,则试验方案的生产方风险将在 0.001 至 0.20 之间,并且规定的成功率 R₀ 正好等于 1—AQL (可接收质量水平)值。试验方案给出了所要求的试验数(即样本大小)以及接收和拒收数。GB 2828—81 不采用使用方风险作为确定试验数的基础风险。

6 试验方案表

^{*} IEC 605-5 标准在这里引用的是 IEC 410 号标准。

表 1 截尾序贯试验方案

70	_			$\alpha = \beta = 0.05$			α=β=0.10			a=β=0.20			a=β=0.30		
R_0	D ₂	8	h	nt	$r_{\rm t}$	h	nt	$r_{ m t}$	h	n,	η	h	n,	η	
0. 9995	1.50	0.00062	7. 2574	207850	122	5. 4157	125370	73	3. 4169	50249	29	2. 0884	17641	10	
	1.75	0.00067	5. 2580	97383	60	3. 9237	58035	36	2. 4756	22665	14	1. 5131	8201	5	
	2.00	0.00072	4. 2449	57176	38	3. 1676	33121	22	1. 9986	13361	9	1. 2215	4396	3	
	3. 00	0.00091	2. 6777	17223	14	1. 9982	9873	8	1. 2607	3434	3	0. 7705	1945	2	
0. 9990	1. 50	0. 00123	7. 2529	102220	121	5. 4123	61291	72	3. 4148	25125	29	2. 0871	8819	10	
	1.75	0.00134	5. 2545	47677	60	3. 9210	29040	36	2. 4739	11334	14	1. 5120	4093	5	
	2.00	0.00144	4. 2418	28536	38	3. 1654	16563	22	1. 9971	6930	9	1. 2206	2197	3	
	3.00	0.00182	2. 6753	8609	14	1.9964	4932	8	1. 2596	1718	3	0. 7698	973	2	
0. 995	1. 50	0. 00617	7. 2171	20038	119	5. 3856	12037	71	3. 3979	5025	29	2. 0768	1766	10	
	1.75	0.00670	5. 2263	9269	59	3. 9000	5561	35	2. 4606	2269	14	1. 5039	817	5	
	2.00	0.00722	4. 2173	5458	37	3. 1471	3296	22	1. 9856	1384	9	1. 2136	439	3	
	3. 00	0.00911	2. 6557	1540	13	1. 9818	971	8	1. 2504	342	3	0.7642	194	2	
0.990	1.50	0. 01233	7. 1723	9803	117	5. 3522	5912	70	3. 3769	2508	29	2. 0639	883	10	
	1.75	0.01341	5. 1910	4530	58	3. 8737	2765	35	2. 4440	1129	14	1. 4938	406	5	
	2.00	0.01444	4. 1866	2634	36	3. 1242	1638	22	1. 9711	691	9	1. 2047	220	3	
	3. 00	0.01824	2. 6313	767	13	1. 9635	482	8	1. 2388	173	3	0. 7572	97	2	
0.980	1. 50	0. 02467	7. 0827	4173	113	5. 2853	2856	68	3. 3347	1196	28	2. 0381	439	10	
	1.75	0. 02682	5. 1204	2169	56	3. 8210	1329	34	2. 4108	560	14	1. 4735	204	5	
	2.00	0. 02889	4. 1252	1263	35	3. 0784	767	21	1. 9422	340	9	1. 1871	108	3	
	3. 00	0. 03655	2. 5822	374	13	1. 9269	234	8	1. 2157	83	3	0. 7431	48	2	
0. 970	1. 50	0. 03701	6. 9931	3015	109	5. 2184	1833	66	3. 2925	760	27	2. 0123	291	10	
	1.75	0.04025	5.0498	1389	54	3. 7683	827	32	2. 3775	371	14	1. 4531	134	5	
	2.00	0.04336	4. 0637	817	34	3. 0325	481	20	1. 9133	193	8	1. 1694	73	3	
	3. 00	0. 05498	2. 5329	228	12	1. 8901	152	8	1. 1925	57	3	0. 7289	32	2	
0.960	1.50	0. 04936	6. 9034	2220	107	5. 1515	1356	65	3. 2503	571	27	1. 9865	216	10	
	1.75	0.05369	4. 9791	1017	53	3. 7155	619	32	2. 3442	255	13	1. 4328	101	5	
	2.00	0. 05785	4. 0022	589	33	2. 9865	361	20	1.8843	146	8	1. 1517	55	3	
	3. 00	0. 07339	2. 4835	170	12	1. 8532	99	7	1. 1693	43	3	0. 7146	24	2	
0. 950	1. 50	0.06171	6. 8137	1721	105	5. 0846	1047	63	3. 2080	436	26	1. 9607	176	10	
	2. 75	0.06714	4. 9085	781	51	3. 6627	476	31	2. 3109	201	13	1. 4124	79	5	

续表 1

	D _R			a=β=0.05			<i>α</i> =β=0.10			a=β=0. 20			α=β=0.30		
R ₀	R ₀ D ₂ s	h	n _t	r _t	h	n	$r_{ m t}$	h	nt	n	h	n _t	n		
0. 950	2. 00	0. 07236	3. 9406	455	32	2. 9406	286	20	1. 8553	116	8	1. 1339	43	3	
	3. 00	0. 09193	2. 4337	133	12	1. 8161	79	7	1. 1459	32	3	0. 7003	19	2	
0. 940	1. 50	0. 07407	6. 7240	1419	103	5. 0176	857	62	3. 1658	363	26	1. 9349	126	9	
	1.75	0.08060	4. 8375	636	50	3. 6099	383	30	2. 2776	167	13	1. 3920	65	5	
	2.00	0. 08699	3. 8788	366	31	2. 8945	238	20	1. 8262	94	8	1. 1162	36	3	
	3. 00	0. 11057	2. 3838	103	11	1. 7789	62	7	1. 1223	26	3	0. 6860	16	2	
0. 930	1. 50	0. 08643	6. 6342	1177	100	4. 9506	722	61	3. 1235	299	25	1. 9091	108	9	
	1.75	0.09407	4. 7666	533	49	3. 5570	327	30	2. 2442	143	13	1. 3716	56	5	
	2.00	0. 10144	3.8170	303	30	2. 8484	192	19	1. 7971	82	8	1.0984	31	3	
	3. 00	0. 12930	2. 3336	86	11	1.7414	54	7	1. 0987	23	3	0. 6715	13	2	
0. 920	1. 50	0. 09880	6. 5444	1008	98	4. 8836	609	59	3. 0812	249	24	1. 8832	93	9	
	1.75	0. 10755	4. 6956	455	48	3. 5040	276	30	2. 2108	115	12	1. 3512	48	5	
	2.00	0. 11602	3. 7551	264	30	2. 8022	158	18	1.7680	70	8	1.0806	26	3	
	3. 00	0. 14814	2. 2831	74	11	1. 7037	46	7	1.0749	19	3	0. 6570	11	2	
0.910	1. 50	0. 11117	6. 4546	881	96	4. 8166	509	57	3. 0389	220	24	1. 8574	85	9	
	1.75	0. 12105	4. 6246	395	47	3. 4510	236	29	2. 1774	102	12	1. 3308	43	5	
	2.00	0.13062	3. 6931	234	30	2. 7559	132	17	1. 7388	63	8	1.0627	22	3	
	3. 00	0. 16709	2. 2323	64	11	1. 6658	39	6	1. 0510	17	3	0. 6424	10	2	
0.900	1. 50	0. 12355	6. 3647	772	94	4. 7495	461	56	2. 9966	190	23	1. 8315	75	9	
	1.75	0. 13456	4. 5535	343	46	3. 3980	212	28	2. 1439	92	12	1. 3103	38	5	
	2.00	0. 14524	3. 6309	204	28	2. 7095	119	17	1.7095	49	7	1. 0448	20	3	
	3. 00	0. 18617	2. 1812	54	10	1. 6277	32	6	1. 0269	15	3	0. 6277	9	2	
0.850	1. 50	0. 18555	5. 9144	457	84	4. 4135	278	51	2. 7846	114	21	1. 7020	43	8	
	1.75	0. 20236	4. 1968	204	41	3. 1318	119	24	1. 9759	55	11	1. 2077	21	4	
	2.00	0. 21882	3. 3184	115	25	2. 4763	69	15	1. 5624	31	7	0. 9549	13	3	
	3. 00	0. 28379	1. 9195	31	9	1. 4324	19	6	0. 9038	9	3	0. 5524	6	2	
0.800	1. 50	0. 24774	5. 4628	304	75	4. 0765	187	46	2. 5720	77	19	1. 5720	28	7	
	1.75	0. 27063	3. 8376	137	37	2. 8637	81	22	1.8068	36	10	1. 1043	13	4	
	2.00	0. 29330	3. 0020	78	23	2. 2402	44	13	1. 4134	20	6	0.8639	10	3	
	3.00	0. 38685	1.6433	17	7	1. 2263	12	5	0. 7737	5	2	0. 4729	4	2	

表 2 定数试验方案

		α=0.05	β=0.05		$\beta=0.10$	α=0.20	β=0.20	α=0.30	$\beta = 0.30$
R_{0}	D_{R}	n _f	$r_{ m RE}$	n _f	$ au_{ ext{RE}}$	n_t	$r_{ ext{RE}}$	n_t	$ au_{ ext{RE}}$
0. 9995	1.50	108002	67	65849	41	28584	18	10814	7
	1. 75	51726	35	32207	22	14306	10	5442	4
	2.00	31410	23	20125	15	9074	7	3615	3
	3. 00	10467	10	6181	6	2852	3	1626	2
0. 9990	1. 50	53998	67	32922	41	14291	18	5407	7
	1. 75	25861	35	16102	22	7152	10	2721	4
	2.00	15703	23	10061	15	4537	7	1807	3
	3. 00	5232	10	3090	6	1426	3	813	2
0. 9950	1.50	10647	66	6581	41	2857	18	1081	7
	1. 75	5168	35	3218	22	1429	10	544	4
	2.00	3137	23	1893	14	906	7	361	3
	3. 00	1044	10	617	6	285	3	162	2
0. 9900	1.50	5320	66	3215	40	1428	18	540	7
	1. 75	2581	35	1607	22	714	10	272	4
	2.00	1567	23	945	14	453	7	180	3
	3. 00	521	10	308	6	142	3	81	2
0. 9800	1.50	2620	65	1605	40	713	18	270	7
	1. 75	1288	35	770	21	356	10	136	4
	2.00	781	23	471	14	226	7	90	3
	3. 00	259	10	153	6	71	3	40	2
0. 9700	1.50	1720	64	1044	39	450	17	180	7
	1. 75	835	34	512	21	237	10	90	4
	2.00	519	23	313	14	150	7	60	3
	3. 00	158	9	101	6	47	3	27	2
0. 9600	1.50	1288	64	782	39	337	17	135	7
	1. 75	625	34	383	21	161	9	68	4
	2. 00	374	22	234	14	98	6	45	3
	3. 00	117	9	76	6	35	3	20	2
0. 9500	1.50	1014	63	610	38	269	17	108	7
	1. 75	486	33	306	21	129	9	54	4
	2.00	298	22	187	14	78	6	36	3
	3. 00	93	9	60	6	28	3	16	2

续表 2

R_0	$D_{ {f R}}$	a=0.05	β=0.05	a=0.10	$\beta = 0.10$	a = 0.20	$\beta = 0.20$	a = 0.30	$\beta = 0.5$
100	D R	n _f	$r_{ m RE}$	n _f	$r_{ m RE}$	n_t	$r_{ m RE}$	n_t	$r_{ m RE}$
0.9400	1.50	832	62	508	38	224	17	90	7
	1.75	404	33	244	20	107	9	45	4
	2.00	248	22	155	14	65	6	30	3
	3. 00	77	9	50	6	23	3	13	2
0. 9300	1. 50	702	61	424	37	192	17	77	7
	1.75	336	32	208	20	92	9	38	4
	2.00	203	21	125	13	55	6	25	3
	3. 00	66	9	42	6	20	3	11	2
0. 9200	1. 50	613	61	371	37	168	17	67	7
	1.75	294	32	182	20	80	9	34	4
	2.00	177	21	109	13	48	6	22	3
	3. 00	57	9	37	6	17	3	10	2
0. 9100	1. 50	536	60	329	37	149	17	60	7
	1.75	253	31	154	19	71	9	30	4
	2.00	157	21	96	13	43	6	20	3
	3. 00	51	9	33	6	15	3	9	2
0. 9000	1. 50	474	59	288	36	134	17	53	7
	1.75	227	31	138	19	64	9	27	4
	2.00	135	20	86	13	39	6	18	3
	3. 00	41	8	25	5	14	3	8	2
0. 8500	1. 50	294	55	181	34	79	15	35	7
	1. 75	141	29	87	18	42	9	18	4
	2.00	85	19	53	12	21	5	12	3
	3. 00	26	8	16	5	9	3	5	2
0. 8000	1.50	204	51	127	32	55	14	26	7
	1.75	98	27	61	17	28	9	13	4
	2.00	60	18	36	11	19	6	9	3
	3.00	17	7	9	4	4	2	4	2

附录 A 试验形式选择的指南 (参考件)

A.1 截尾序贯试验

A.1.1 优点

- a. 做出判断所要求的平均失效数最少;
- b. 做出判断所要求的平均累积试验数最少;
- c. 这种试验在累积试验数和累积失效数方面具有一定的最大值。

A.1.2 缺点

- **a.** 失效数和继而产生的受试产品费用变动幅度比相似的定数截尾试验的要大。因而在安排受试产品、试验设备和人力的管理等方面将会出现一些问题;
 - **b.** 最大的累积试验数和失效数可能会超过等效的定数截尾试验的累积试验数和失效数。

A.2 定数截尾试验

A. 2.1 优点

- **a.** 最多的累积试验数得到了固定。因此,在试验之前,受试产品和人力的最高需要量可以确定下来;
- **b.** 在试验之前确定了最大的失效数。因此,在没有修复和更换的情况下,受试产品的最大数量也可以确定下来;
 - c. 最多的累积试验数要比类似的截尾序贯试验所需要的最多累积试验数要少。

A. 2. 2 缺点

- a. 平均失效数与平均累积试验数要比类似的截尾序贯试验的多;
- **b.** 为了作出判断,质量很好的产品和质量很坏的产品都要经历最多的累积试验数或失效数,而类似的截尾序贯试验做出这种判断就要快一些。

附加说明:

本标准由中华人民共和国电子工业部、航天工业部共同提出。

本标准由电子工业部标准化研究所和航天工业部708所负责起草。