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Abstract - Theoretical performance limits of two- 
phase switched-capacitor (SC) dc-dc converters are 
discussed in this paper. For a given number of capac- 
itors k, the complete set of attainable dc conversion 
ratios is found. The maximum step-up or stepdown 
ratio is given by the k t h  Fibonacci number, while the 
bound on the number of switches required in any SC 
circuit is 3k - 2. Practical implications, illustrated by 
several SC converter examples, include savings in the 
number of components required for a given applica- 
tion, and the ability to construct SC converters that 
can maintain the output voltage regulation and high 
conversion efficiency over a wide range of input volt- 
age variations. Limits found for the output resistance 
and efflciency can be used for selection and compari- 
son of SC converters. 

1 Introduction 

Power converters consisting only of switches and capacitors 
have long been known and used, mostly as diode-capacitor 
voltage multipliers [1]-[4]. Switched-capacitor (SC) dc-dc con- 
verters, such as the examples shown in Figs. 1 and 2, have 
recently received renewed interest [SI-[9]. 

Compared to power converters with both inductive and ca- 
pacitive energy storage, SC dc-dc converters have several ad- 
vantageous properties. They use no magnetic components, 
and are well suited for monolithic integration. Operation 
down to zero load is possible with no need for dummy loads or 
complex control techniques. When completely unloaded, the 
SC converter output voltage assumes a value uniquely deter- 
mined by the converter topology. Furthermore, by reducing 
the switching (clock) frequency, the total power losses can be 
reduced down to zero, while preserving good no-load output- 
voltage regulation. This is idedy  suited for battery-operated 
applications with power management, where the power con- 
verter must operate at almost zero load. 

Figure 1: An SC converter with five capacitors and the ideal 
step-up conversion ratio Mi = Vo/Vg = 5. 
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Figure 2: An SC converter with four capacitors and the ideal 
step-up conversion ratio Mi = Vo/Vg = 5. 
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A problem with SC converters is that it is difficult to ensure 
good output voltage regulation in the presence of wide load 
variations, and in particular in the presence of input voltage 
variations. Continuous voltage regulation can be achieved, 
but a t  the expense of degrading the converter efficiency [7, 81. 
Even with ideal components, SC converter has a non-zero out- 
put resistance, and losses in the SC power stage increase with 
load. Because of practical limitations on the size of capaci- 
tors and switches, applications of SC converters are limited 
mainly to  low [5, 61, and medium power levels of several tens 
of watts [9]. Switched-capacitor converters also find appli- 
cations in combination with switch-mode inductive-capacitive 
converters [IO, 11, 121. 

Fig. 1 shows a well-known SC converter that steps up the 
input voltage. The converter has 5 capacitors and 13 switches. 
The switches are controlled by a twephase, non-overlapping 
clock as shown in Fig. 1. The phase when a switch is on is 
indicated as phase 1 or phase 2. In a practical implementation, 
some of the switches may be replaced by diodes. When the 
switches 1 are on, all capacitors except the output capacitor 
across the load R are placed in parallel with the input voltage 
source V,. When the switches 2 are on, the capacitors placed 
in series with V, deliver charge to the output. When the 
converter is unloaded, the steady-state capacitor voltages are 
dc only and, by inspection, V, = 5V,. 

It is interesting that the same conversion ratio can be ob- 
tained with only 4 capacitors and 10 switches, as shown in 
Fig. 2.  A practical application of this SC converter has been 
described in [5]. 

The variety of SC configurations, as illustrated by the exam- 
ples of Figs. 1 and 2, prompted the investigation of theoretical 
limits for attainable conversion ratios for a given number of 
elements. I t  is the main objective of this paper is to estab- 
lish these limits two-phase switched-capacitor (SC) dc-dc con- 
verters using tools of linear algebra and graph theory. These 
tools can also be used for systematic synthesis of SC DC-DC 
converters. However, instead of attempting to enumerate all 
possible SC topologies, we enumerate the set of attainable 
conversion ratios. Practical implications of the presented the- 
oretical results are also discussed. 

Section 2 of the paper shows how the ideal conversion ratio 
of an unloaded SC converter can be found efficiently using 
the incremental one-graph formulation [ I l l .  The incremental 
one-graph formulation is also used as a tool to derive other 
properties of SC converters. The main results on the realizable 
conversion ratios, and about the number of switches needed 
for implementation are presented in Section 3. Limits for the 
SC converter output resistance and efficiency are discussed 
in Section 4. Contributions of the paper are summarized in 
Section 5. 

2 Ideal Voltage Conversion Ratio 

The ideal dc conversion ratio, Mi = Vo/Vg, when the con- 
verter is unloaded, can be obtained from a description of the 
converter topology. The example of Fig. 2 is used to illustrate 
the discussion. The two switched networks of this converter, 
corresponding to  the two clock phases, are shown in Fig. 3.  
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Figure 3: The two switched networks of the SC converter 
in Fig. 2, corresponding to the clock phases 1 and 2. Twig 
branches are highlighted. 

For an unloaded SC converter, the conversion ratio takes 
the form 

Mt = K/Vg = P / Q ,  (1) 
where P and Q are integer values that depend only on how the 
capacitors are interconnected in the two switched networks. 
Dependencies on the values of capacitances, esr and switch 
resistances, switching frequency, clock duty ratios, etc., are 
removed and the problem of finding the deal  conversron ratgo 
reduces to pure topological aspect. 

To find a general expression for the ideal conversion ratio, 
it is convenient to choose the fundamental loop matrices to 
describe the capacitor interconnections in the two switched 
networks. The total number of elements is k + 1, k capaci- 
tors and one dc voltage source V,. In each switched network 
( j  = 1, 2) we have kt(j) capacitor twigs that form a tree to- 
gether with the source V, twig, while h ( j )  = k - k t ( j )  ca- 
pacitor branches are links. One can write k~(j) independent 
voltage-loop equations for each of the two networks. To get 
unique solution for k capacitor voltages, we need a total of 
k independent equations, so that the two switched networks 
must satisfy: 

In the example of Fig. 3, where the twig branches are high- 
lighted in the switched networks, we have kl = 2 capacitor 
links and kt = 2 capacitor twigs in each of the two networks. 
Now we consider the system of two fundamental-loop matri- 
ces: Bf(l), for the network in phase 1, and Bf(2 )  for the 
network in phase 2. The dimensions of the matrix Bf(j) are 
kl(j) x (k + 1).  If we order the elements as: kl(j) capacitor 
links first, kt(j) capacitor twigs next, and the V, twig last, we 



have the fundamental loop matrix for each of the two networks 
in the form 

BfM = [ W) BtW b(j) ] ? (3) 

where U(j) is a kt(j) x kt(j) identity matrix, Bt(j) is a 
kt(j) x kt ( j )  matrix of twig-capacitor connection coefficients, 
and the coefficients in the b(j) vector show the connections of 
V,. Finally, the combined system of KVL equations becomes 

B [  ~] = o ,  (4) 

where B = [ Bf(1 )  Bf (2 )  1' is the system matrix, and 
vc is the vector of capacitor voltages. For any given SC net- 
work, the system (4) can be solved for all capacitor voltages in 
terms of V,, as in [2]. Instead, we apply the efficient method 
of solving (4) based on the incremental representationof loop 
equations that combines the twegraph formulation into incre- 
mental one-graph formulation [ll]. In this formulation, link 
voltages are eliminated from (4) so that the resulting smaller 
system can be solved for twig voltages. 

As an example, consider the case when k is even, and the 
number of twigs is the same in both switched networks, so 
that kt(1) = kt(2) = kt(1) = kt(2) = k/2. The system (4) 
becomes 

where vCl and vCt are the vectors of capacitor link and the 
capacitor twig voltages, respectively. In the incremental one- 
graph form, the system becomes 

[ ABt A b ]  [ ~] = O ,  

where 

Note that the system is of order k/2 x (k/2 + 1) and yields all 
capacitor twig voltages vct in terms of V,, 

Vct = - ( A B t ) - l A b V ,  (9) 

In the example of Figs. 2, and 3, we have: 

v . t = [  ' - I = - [  -2 1 0  1 ] - 1 [  :;]vg=[ #,. 
vc4 

(10') 
- I  

Since Vo = vc4, we conclude that the converter of Fig. 2 has 
indeed the ideal conversion ratio equal to Mi = 5. 

The incremental one-graph formulation for degenerate 
switch-mode converters (such as switched-capacitor convert- 
ers) plays the role of averaging for nondegenerate converters 
consisting of switches, inductors and capacitors 1111. The for- 
mulation significantly reduces the size of the system to be 
solved, and it also serves as a tool for deriving other converter 
properties, as discussed next. 

3 Bounds on Synthesis 

With the efficient tool for finding the ideal dc conversion ra- 
tio, we can enumerate all possible SC converter networks for 
a given number of capacitors k, in search for a particular de- 
sired conversion function. However, the brute-force synthesis 
method can only be applied for small k because the size of 
the problem quickly increases beyond available computational 
resources when the number of capacitors k increases. 

Instead, we tackled the problems of finding the theoretical 
limits on the realizable conversion ratios for a given number 
of capacitors k, and for the number of switches needed for re- 
alization. The results are given in the following: 
Theorem 1. (Bounds on Voltage Ratio). The realizable con- 
version ratio of a two-phase switched-capacitor dc-dc converter 
with a single dc voltage source V, i s  given by a common frac- 
tion in the form 

k i s  the total number of capacitors, and Fk i s  the k-th Fi- 
bonacci number. 

A formal proof can be found in [13]. Some elements of the 
proof are given here to aid understanding origins of the limits 
found in Theorem 1. First, from Eq. (9), it is clear that all 
possible P[k] or Q[k] in Mi = P[k]/Q[k] can be found as all 
possible values of the determinant det[ABt]  of the incremen- 
tal loop matrix defined by Eq. (7), subject to the constraint 
that matrices B t ( j )  with elements -1, 0, or 1, correspond 
to realizable networks. The realizability constraint calls for 
regular matrices, which is equivalent here to the condition of 
unimodularity of B t ( j ) ,  i.e., to the requirement that all mi- 
nors (determinants of square submatrices) of B t ( j )  can only 
be equal to -1, 0, or 1. 

Assume that we have an even number of capacitors k ,  and 
that kt = ki = k/2. Starting with 

the determinant det[ABt] of the product is expanded using 
the Binet-Cauchy formula into a sum of products of minors 

over all kt x kt submatrices. In the sum, there are 

components. Take, for example, the case with k = 4 capaci- 
( ? )  

tors, with kt = kt  = 2: 

r 
-l 0 -1 O 1  

1 

-1 bir(2) 
0 -1 
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Figure 4: An SC converter 

(2) 

with k = 4 capacitors and the - 
ideal conversion ratio Mi = Vo/Vg = 115. Twig branches are 
highlighted. 

where the form of Bt(1) and Bt(2)  is selected to maximize 
det[ABt], preserve unimodularity, and leave the largest num- 
ber of elements undetermined. In this case, b23(1) and b14(2) 
are arbitrary. The sum of products in the Binet-Cauchy for- 
mula has 6 terms, 2 of which are equal to zero, and 3 of which 
are equal to 1: 

det[ABt] = 3 + det [ i1 ] det [ b23(1) ] . -1 b i 4 ( 2 )  

(16) . ,  
The maximum value of 5 is for b23(1) . bll(2) = 1. The incre- 
mental loop matrix corresponding to the maximum possible 
det[ABt][k = 41 = 5 is given by: 

(17) 
An SC converter corresponding to this case is shown in Fig. 4. 
It can be recognized as the stepdown version of the con- 
verter in Fig. 2, with the ideal conversion ratio equal to 
Mi = Vo/Vg = 115. 

For even k, proceeding in the same manner, and by expand- 
ing the determinants in terms of cofactors of the first column, 
a recursive formula is found for the maximum determinant 
values, 

det[ABt[k]] = 2det[ABt[k - 211 + det[ABt[k - 411 + 
+. . . + det[ABt[k = 211 + 1. (18) 

A similar formula is found for k odd, so that in general 

det[ABt[k]] = det[ABt[k - 113 + det[ABt[k - 231 (19) 
which gives the maximum limit for the attainable conversion 
ratio in Theorem 1. It is then shown how any voltage ratio 
constrained by Theorem 1 is realizable. 

A by-product of the proof of Theorem 1 is the following: 
Theorem 2: (The Number of Switches Required). The num- 
ber of switches ns required to realize the maximum attainable 
voltage ratio Mm,,(k) with k capacitors is given by 

I 
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Figure 5: Another SC converter with k = 4 capacitors and 
the ideal conversion ratio Mi = Vo/Vs = 5 .  

This is also the bound on the number of switches required 
for any SC circuit configuration with k switches. A proce- 
dure has been developed to determine the number of switches 
required for any converter directly from the incremental one- 
graph formulation [13]. 

3.1 Practical implications 

Theorem 1 states that the maximum (absolute value) attain- 
able conversion ratio' (step-up or stepdown) of two-phase SC 
dc-dc converter is given by Fibonacci number, i.e., by the re- 
cursive definition: 

Mmaz(0) = FO = 1 ,  (21) 

Mmaz(1) = FI = 1 , (22) 
Mma,(k) = F k  = F k - 2  + F k - 1 ,  for k > 1. (23) 

This gives the sequence: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55,  89, . .. (24) 

where each number is the sum of the previous two. Note 
that, as k increases, significantly higher conversion ratios are 
available than with well known SC converters with M ; ( k )  = 
k [8, 91. For example, for k = 5 and ns = 13, the (step- 
up or stepdown) conversion ratio Mi = 8 can be obtained, 
compared to Mi = 5 of the converter in Fig. 1. Conversely, for 
a specified conversion ratio, a converter with M,,, requires 
less capacitors and switches, as illustrated by the examples in 
Fig. 1 and Fig. 2. 

The example of Fig. 2 has the maximum possible step-up 
conversion ratio Mi = 5, and the number of switches equal 
to 10, as predicted by Theorem 2. The Fibonacci realization 
of Fig. 2 is canonical because one can easily construct the 
Fibonacci SC converter for any k by adding more stages in 
the same pattern. It is interesting, however, that the SC con- 
figuration with the maximum conversion ratio is not unique. 
For example, Fig. 5 shows another 4-capacitor converter with 
the ideal conversion ratio equal to 5 .  A disadvantage of the 
Fibonacci converters is that the capacitors do not carry the 
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Figure 6: Switched circuits corresponding to the ideal s t e p  
down conversion ratios: (a) M ,  = 113, (b) M, = 112, and (c) 
M ,  = 213, achievable with 3 capacitors. 

same dc voltages. The capacitor voltages in a given Fibonacci 
converter also follow the Fibonacci sequence. 

Another important practical implication of Theorem 1 is 
that it specifies the complete set of realizable conversion ratios 
for a given number of capacitors. For example, for k = 2, 
the set consists of 112, 1 and 2, plus conversion ratios with 
negative sign. For k = 4, neglecting sign, we have 19 distinct 
realizable ratios: 115, 114, 113, 215, 112, 315, 213, 314, 415, 
1, 514, 413, 312, 513, 2, 512, 3, 4, and 5. 

The availability of a number of distinct conversion ratios 
gives a possibility to achieve active output voltage regulation 
in the presence of wide input voltage variations, without com- 
promising conversion efficiency. The idea is to on-line select 
the SC configuration so that the output voltage is closest to 
the nominal value for a given input voltage. 

As an example, Fig. 6 shows the switched circuits corre- 
sponding to the three stepdown conversion ratios 113, 112, 
and 213 with k = 3 capacitors. The three configurations can 
be combined into SC dc-dc converter as shown in Fig. 7. The 
configurations are coded by two logic-level signals A and B,  
and the appropriate control signals for the switches are indi- 
cated. A feedforward scheme can easily be constructed where 
the control code A B  is generated by sensing the input volt- 
age V,. Neglecting load variations, the converter of Fig. 7 
can maintain the output voltage within *lo% for about 3-to- 
1 range of input voltages. Unlike with other control schemes 
for SC converters, the conversion efficiency is not directly af- 
fected. In a monolithic implementation, the increased number 
of switches and the control complexity may not be a strong 
disadvantage. 

VoIVg 113 1 f 2  213 

A 0 1 1  
B 1 1 0  

CK2 1 n r P1 = CK1 + CK2 6 
P2 = C K 1  A 
P3 = CK2 B 

Figure 7: An SC converter with 3 capacitors and adjustable 
stepdown conversion ratio. 

4 Output Resistance and Efficiency 

With a non-zero load at the output of an SC converter, the 
steady-state output voltage (in absolute value) is lower than 
the ideal unloaded value V, = M,V,. This is because all capac- 
itors in the converter are periodically charged and discharged 
in order to supply the output current to the load. As a result, 
capacitor voltages now have an ac ripple component. Energy 
is lost on the capacitor esr’s and the switch on-resistances dur- 
ing each charge transfer to or from a capacitor. The energy 
loss is smaller if the ac components in capacitor voltages are 
smaller. 

In general, precise knowledge of all network parasitics is 
necessary in order to estimate the converter power losses and 
efficiency. Depending on the values of network “parasitic” 
time constants r, with respect to the switching period T,, 
we can distinguish three different cases, and identify three 
possible analysis methods. 

If r, >> T,, the capacitor voltage ripples are approximately 
linear, and the method of state-space averaging can be a p  
plied to determine the converter steady-state and dynamic 
responses [8, 121. As r, becomes closer to T,, the ripple non- 
linearity can no longer be neglected. The method of modified 
state-space averaging can be used to handle this case [9, 141. 
Finally, if r, << T,, the chargeldischarge transients are com- 
pleted within each clock cycle. In this limiting case, the con- 
verter efficiency and the converter output resistance reach the 
best possible limits. These limits can be used for initial SC 
converter comparison and selection, and can be derived di- 
rectly from the converter topological description, as in [a]. 
The results depend on capacitance values and the switching 
frequency f, = l/Ts, but the exact knowledge of the network 
parasitic resistances is not required, as long as the condition 
r, << T, is satisfied. 

The 
model consists of an ideal dc transformer with the turns ratio 
1 : M , ,  and the output resistance R,. To determine the output 

A DC model for SC converters is shown in Fig. 8. 
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Figure 8: A DC model. 
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resistance, we consider the SC network with Vg = 0 and with 
an ideal test voltage source V, applied between the output 
terminals. The output resistance is then determined from 

( 2 )  (25) 
R vo 

O -  q/Ts ’ 
where q is the charge supplied to the source V, during one 
switching period, in steady state. Fig. 9 shows the two 
switched networks corresponding to the example of Figs. 2 
and 3, and the setup described above. The goal is to find 
q = q(1) + q ( 2 ) .  The charge vectors in the two switched net- 
works are given by: 

Figure 9: The networks for finding the output resistance Ro = 
-V,Ts/(q(l)+q(2)) in the SC converter example of Fig. 2. The 
twig branches are highlighted as in Fig. 3. Note that Vg is set 
to zero. 

Next, the two sets of fundamental cut-set equations, 

can be solved for charges q(1)  in terms of the total charge 
q = q(1) + q(2) through the generator V,, 

q(1) = a!?. (29) 

In the example of Fig. 9, aT = [ 2 1 -1 0 1. Finally, 
the fundamental-loop equations, 

L o J  
(30) 

are solved for q as a function of Vo, to obtain the output 
resistance R, from Eq. (25). If all capacitances have the same 
value C, the output resistance takes the form: 

but it has one more capacitor and three more switches. From 
the model of Fig. 8 it follows that the stepdown versions of 
the converters in Figs. 1 and 2, have the output resistances 
R, = 6Ts/25C, and R, = 4Ts/25C, respectively. 

The above procedure can be used to determine the lower 
limit for the output resistance of any SC converter, for a 
given switching frequency fs. It is important to note that 
the limit for output resistance is reached if r, << T,. Unfor- 
tunately, the output resistance cannot be reduced arbitrarily 
by increasing the switching frequency. Fig. 10 compares the 
theoretical limit 6T,/C with values obtained by simulation, 
for a range of ratios R,C/T, in the example of Fig. 2. Ron is 
the switch on-resistance. The numerical values are R, = 2Q 
and C = l p F ,  and the switching frequency is varied between 
f., = l/TJ = 5KHz and f a  = 250kHz. The converter output 
resistance follows the limit for low R,,C/T,, but then levels 
off a t  about R, = 10052. 

An upper limit for the SC power-stage efficiency 71 can be 
determined from the model of Fig. 8, 

As expected, the best possible SC power-stage efficiency (for 
a given switching frequency) decreases with increasing load 
current. 

(31) 5 Conclusions 

where p and q are positive integers that depend only on the 
converter topology. For the SC converter example of Fig. 2, 
we get R, = 6Ts/C. The converter of Fig. 1 has R, = 4Ts/C, 

The main result of the paper is the set of realizability condi- 
tions on dc conversion ratio of twephase switched-capacitor 
dc-dc converters (Theorems 1 and 2). Incremental one-graph 
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Figure 10: Output resistance limit R ,  = 6/CT,, and the R, 
values found by simulation of the SC converter in Fig. 2, as 
functions of R, ,C/T, ,  R, = 252, C  = 1pF. 

formulation is used to determine efficiently the dc conversion 
ratio of any SC converter, and also as a tool to derive the 

For a given number of capacitors I, the maximum attain- 
able conversion ratio is given by the kth  Fibonacci number. 
The number of switches required for the Fibonacci realiza- 
tion is also determined, and is equal to 3k - 2. Fibonacci 
SC converters offer the highest possible s tepup or stepdown 
dc conversion ratio for a given number of components in a 
two-phase converter, but the capacitor voltages are unequal. 

The fact that a range of distinct dc conversion ratios is 
available with a given number of capacitors can be utilized to 
construct SC converters with on-line adjustable voltage gain. 
Such converters can maintain output voltage regulation and 
high conversion efficiency over a wide range of input voltage 
variations. Feedforward or feedback control techniques can be 
applied. 

It is shown how limits on the SC converter output resistance 
and efficiency can also be found from the converter topological 
description. These results can be used for initial comparison 
and selection of the converter best suited for a given applica- 
tion. 

general SC converter properties. [111 

p21 

[131 

[14] 

References 

J. S. Brugler, “Theoretical performance of voltage multi- 
plier circuits,” IEEE Journal of Solid-state Circuits, June 
1971. 

P. M. Lin, L. 0. Chua, “Topological generation and anal- 
ysis of voltage multiplier circuits,” IEEE Trans. on Cir- 
cuits and Systems, CAS-24, No. 10, October 1977. 

L. Malesani, R. Piovan, “Theoretical performance of 
capacitor-diode voltage multiplier fed by a current 
source,” IEEE Trans. on Power Electronics, Vol. 8, No. 2, 
April 1993. 

1221 

A. Lamantia, P. G. Maranesi, L. Radrizzani, “Small- 
signal model of the Cockcroft-Walton voltage multiplier,” 
IEEE Trans. on Power Electronics, Vol. 9, No. 1, January 
1994. 

F. Ueno, T. Inuoe, 1. Oota, and I. Harada, “Emergency 
power supply for small computer systems,” IEEE ISCAS, 

F. Ueno, T. Inuoe, I. Oota, and I. Harada, “Power supply 
for electroluminescence aiming integrated circuits,” IEEE 

S. V. Cheong, H. Chung, and A. Ionovici: Inductorless 
D G t e D C  Converter with High Power Density, IEEE 
Tran. on Industrial Electronics, vo1.41, No.2, April 1994. 

K. D. T. Ngo, R. Webster, “Steady-state analysis and 
design of a switched-capacitor DC-DC converter,” IEEE 
PESC, 1992 Record. 

W. S. Harris, K. D. T. Ngo, “Operation and design of 
a switched-capacitor DC-DC converter with improved 
power rating,” IEEE APEC, 1994. 

T. Umeno, et.al. “A new approach to low ripple-noise 
switching converters on the basis of switched-capacitor 
converters,” IEEE ISCAS, 1991, pp. 1077-1080. 

M. S. Makowski, “On topological assumptions on PWM 
converters - a re-examination,” IEEE PESC, 1993 
Record. 

D. Zhou, A. Pietkiewicz, S. Cuk, “A three-switch high- 
voltage converter,” IEEE APEC, 1995 Proc., pp. 283-289. 

M. S. Makowski, “On Topological Synthesis of PWM DC- 
DC Power Converters, Ph.D. Thesis, Technical Univer- 
sity of Gdarisk, Poland, November 1994. 

R. J. Dirkman, “Generalized state-space averaging,” 
IEEE PESC, 1983 Record, pp. 283-294. 

1991, pp. 1065-1068. 

ISCAS, 1992, pp. 1057-1060. 


