25 Watt DC/DC converter using integrated Planar Magnetics

Let's make things better.

25Watt DC/DC converter using integrated Planar Magnetics

Contents

Introduction 2
Converter description 3
Converter specification 4
Performance of the converter 4
D esign of planar magnetics 6
PCB layout 8
Circuit diagram 11
Components list 12

25 Watt DC/DC converter using integrated Planar M agnetics (designed in cooperation with PEI Technologies, I reland)

Introduction

Planar magnetics are an attractive alternative to conventional core shapes when a low profile of magnetic devices is required. Basically this is a construction method of inductive components whose windings are fabricated using printed circuit tracks or copper stampings separated by insulating sheets, or constructed from multilayer circuit boards. These windings are placed in low profile ferrite EE-or E/PLT-core combinations. Planar devices can be constructed as stand alone components or integrated into a multilayer board with slots cut to accept the ferrite Ecore (fig.1).

The aim of this demonstration board is to demonstrate the capability of Philips' planar E cores (see D ata H andbook M A01). O ne of these cores is used in the design of a high frequency 25 W DC/D C converter. A 6 layer PCB is used to facilitate the integration of the transformer and output inductor windings into the multilayer PCB structure.
The board demonstrates the advantages over standard wire wound solutions in terms of cost, size, simplicity and reliability. It will also show that the electrical performance of the converter is excellent.

Features such as input filtering, output voltage and long term short circuit protection have been omitted from the design as the use of planar magnetics does not have an impact on these features.

The chosen topology is the forward converter with resonant reset. A basic description of the operation of a forward converter can be found in most textbooks on switch-mode power supplies.

Converter description

The schematic for the forward converter with resonant reset is shown on page 10. This converter design differs from a standard design in two ways:

- It employs a resonant reset technique to reset the power transformer, T 1
- It uses synchronous rectifiers Q 2 and Q 3, low voltage, low Rds (on) M O SFETS on the secondary side of the transformer for rectification.

In a standard forward converter a separate winding can be used to reset the transformer to ensure the flux returns to zero on each cycle. The resonant reset technique allows for the elimination of this winding which is an attractive benefit when using planar magnetics. Reset is achieved during the off time by imposing a resonant voltage on the primary winding using parasitic circuit elements.

The frequency of this resonance is approximately equal to:

$$
f_{\text {res }} \approx \frac{1}{2 \pi \sqrt{ } L_{p} \cdot C_{Q 1}}
$$

where L_{p} is the transformer primary inductance and $C_{Q 1}$ is the MOSFET parasitic capacitance.

The advantage of this technique is that it iseasy to implement at low cost. The disadvantage is that it is a lossy solution compared to soft switching techniques. This loss is not dramatic at voltages lower than 100 V , and will lead to a decrease in efficiency of approximately 1% at 48 V input and 2% at 72 V input voltage.

The second difference in comparison with a conventional converter is the implementation of synchronous rectification. This is cost competitive with Schottky diodes at a current rating of less than 10A.

At 48 V input, synchronous rectification will increase the efficiency by approximately 3% to 6% depending on the Rds (on) of the M OSFETS used and the switching frequency. Low Rds(on) M O SFETS increase efficiency but are more expensive.

Increased frequency will reduce the efficiency of the synchronous rectifiers due to the charging of the input capacitance once every cycle.

To keep the circuit simple and low cost. the synchronous rectifiers are self driven. This means that they are driven directly with the voltage from the transformer secondary. This is not the most efficient solution particularly when the 'dead' time is large as at high input voltage. To counteract this, diode D 1 is added in parallel to Q3. This diode will conduct during the 'dead' time.

Fig. 1 Exploded view of a PCB transformer

Converter specification

Low-profile DC/DC converter (25 W)
Featuring:
-planar ferrite E cores
-multilayer FR 4 printed circuit board(6layers)
-integrated windings for transformer and output choke.

Input voltage	$36-72 \mathrm{~V}$
M ax input current (no load)	50 mA
M ax input current (full load)	620 mA
O utput voltage	$5 \mathrm{VDC} \pm 1 \%$
O utput current (min)	0 A
O utput current (max)	5 A
O utput ripple and noise	50 mVpp
Efficiency	$85 \% \mathrm{typ}$
Line regulation	$\pm 0.1 \%$
Load regulation	$\pm 1 \%$
Isolation voltage	500 VD C
Switching frequency	420 kH z
O perating temperature-	$25^{\circ} \mathrm{C}$ to50 ${ }^{\circ} \mathrm{C}$

All Specifications are typical at nominal line voltage(48V), full load and $25^{\circ} \mathrm{C}$ unless otherwise stated.

Input capacitor required for operation: $10 \mu \mathrm{~F}, 100 \mathrm{~V}$.

Pin	Pin connection
J1	Vin +
J2	Vin -
J3	+0 utput
J4	-0 utput

Dimensions: $60 \times 57 \times 6 \mathrm{~mm}$

Performance of the converter

Fig. 2 Efficiency as a function of input voltage at full load

Fig. 3 Efficiency as a function of output current $\left(\mathrm{V}_{\text {in }}=48 \mathrm{~V}\right)$

Oscillograms

| \ldots | | | | |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |

Fig. 4 Primary M OSFET (Q1) gate voltage(TP6)

Fig. 6 Synchronous rectifier (Q2) drain voltage (TP3)

Fig. 8 C ontrol IC oscillator (TP5)

Fig. 5 Primary M OSFET (Q1) drain voltage(TP2)

Fig. 7 Synchronous rectifier (Q3) drain voltage (TP4)

Fig. 9 Output voltage ripple and noise (bandwidth 20 M hz)

Design of planar magnetics

Transformer design (T 1)
In designing the power transformer the optimisation of a number of design parameters has been investigated. These are discussed here.

The primary to secondary turns ratio should be approximately 4.5:1 to guarantee a secondary voltage of 5 V at a minimum input voltage of 36 V using a forward converter operating at a maximum duty cycle of 70%. Three turns ratios have been investigated ($4: 1,4.5: 1,5: 1$) in order to determine the minimum tran sformer losses. The number of primary turns has been selected on the basis of a trade off between minimising core losses and copper losses. Consideration was al so given to being able to accommodate the transformer windings in a 6 -layer PCB construction. H ence three values of primary turns were investigated (5,8 and 9 turns).

C opper losses in the transformer have been calculated for DC only, which appears to be accurate enough for this application. M ethods to predict AC losses will be treated in a.seperate application note on the winding design for planar transformers.

Ferrite core: E18/4/10-3F3 + PLT 18/10/2-3F3			
Turns ratio	9:2	8:2	5:1
Track width (mm)			
primary	1.0	1.0	2.0
secondary	4.5	4.5	4.5
Number of PCB layers			
primary	3 or 4	3 or 4	3 or 4
econdary	2	2	1
auxiliary	1 or 2	1 or 2	1 or 2
Total	6 to 8	6 to 8	5 to 7
DC resistance (m Ω)			
primary	110	110	30
secondary	6	6	3
Primary inductance ($\mu \mathrm{H}$)	243	192	75
	table		

N ote 1: 20 copper ($70 \mu \mathrm{~m}$) is used in all cases.
The primary windings can be split in such a manner that the secondary is embedded between two primary windings. This technique, known as sandwiching or interleaving, reduces leakage inductance.

Transformer losses
Losses in the ferrite core and windings are estimated for a switching frequency of 400 kHz and an output current of 5 A.

Turns ratio	$9: 2$	$8: 2$	$5: 1$
Primary current	0.8	0.85	0.75
Primary resistance	0.11	0.11	0.03
Primary loss	0.07	0.08	0.017
Secondary current	3.61	3.39	3.77
Secondary resistance	0.006	0.006	0.003
Secondary loss	0.08	0.07	0.043
T otal copper loss	0.15	0.15	0.06
C ore loss	0.56	0.77	2.1
T otal losses (W)	0.71	0.91	2.15
	table 2		

The lowest overall losses are predicted for the turns tatio of $9: 2$, which is chosen for the design.

0 ptimisation of switching frequency

The choice of a switching frequency close to 400 kHz follows from an estimation of the total loss balance between semiconductors and magnetics. A higher frequency increases the loss in the switches, but ferrite losses are lower. A higher frequency also reduces the ripple current in the output inductor.

$\begin{aligned} & f \\ & (k H z) \end{aligned}$	Vin (V))	Semicond. losses (W)	M agnetics losses (W)	Total (W)
300	36	2.11	1.34	3.45
	48	2.38	1.27	3.65
	72	3.19	1.19	4.38
400	36	2.13	1.20	3.33
	48	2.52	1.13	3.65
	72	3.58	1.05	4.63
500	36	2.33	1.16	3.49
	48	2.67	1.09	3.76
	72	3.98	1.01	4.99
600	36	2.61	1.22	3.83
	48	2.84	1.15	3.99
	72	4.39	1.07	5.46
700	36	3.05	1.22	4.27
	48	3.01	1.15	4.16
	72	4.81	1.07	5.88
		table 3		

Design of planar inductor (L1)

The peak-to-peak ripple current in the output inductor is designed to be approximately 20% of the full load output current for the nominal input voltage of 48 V .
The inductance to achieve this can be calculated from the formula:

$$
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{sec}} \cdot \mathrm{t}_{\mathrm{on}}}{\Delta \mathrm{l}}=\frac{10.66 \cdot 1.38 \mu \mathrm{~S}}{1}=14.7 \mu \mathrm{H}
$$

where
$\mathrm{V}_{\text {sec }}=$ Peak secondary voltage $=\mathrm{Ns} / \mathrm{Np}$. Vin
$=2 / 9.48 \mathrm{~V}=10.66 \mathrm{~V}$
$\mathrm{t}_{\mathrm{on}}=$ Primary M OSFET on time $=1.38 \cdot 10^{-6} \mathrm{~s}$
$\Delta I=$ Inductor ripple current
So ideally the inductance value should be $14.7 \mu \mathrm{H}$. W ith 5 turns this means an inductance per turn of:
H owever, a check on the flux density shows that with a
peak current of 5.5 A this is too high, since:

$$
A_{L}=\frac{L}{N^{2}}=\frac{14.7 \cdot 10^{-6}}{25}=588 \mathrm{nH}
$$

Using the standard core E18/4-3F3-A315-P, a check on the flux density shows that with a peak current of 5.5A, the maximum value is:

$$
\mathrm{B}_{\max }=\frac{\mathrm{N} \cdot \mathrm{I}_{\mathrm{p}} \cdot \mathrm{~A}_{\mathrm{L}}}{\mathrm{~A}_{\mathrm{e}}}=\frac{5 \cdot 5.5 \cdot 588 \cdot 10^{-9}}{39.5 \cdot 10^{-6}}=409 \mathrm{mT}
$$

where
Ip =Peak inductor current
B. =M aximum flux density
$\mathrm{N}=$ Number of turns
$A_{L}=$ Inductance per turn
$A_{e}=C$ ross sectional area of core
This maximum flux density of 388 mT is excessive for $3 F 3$ material. To reduce the maximum flux density using the same core, the air-gap needs to be increased.
Consequently, the maximum flux density is set to 300 mT . U sing this figure and working backwards to cal culate the required A_{L} with $N=5$ turns and $I p=5.5$ A gives:

$$
\begin{aligned}
& A_{L}=\frac{B \cdot A_{e}}{N \cdot I_{p}}=\frac{0.3 \cdot 39.5 \cdot 10^{-6}}{5 \cdot 5.5}=431 \mathrm{nH} \\
& L=A_{L} \cdot N^{2}=431 \cdot 10^{-9} \cdot 25=10.8 \mu \mathrm{H}
\end{aligned}
$$

The increased ripple current will cause an increase in ΔB which will lead to somewhat higher losses in the output inductor.

O utput capacitor design

O utput ripple voltage is calculated using the formula:

$$
\Delta \mathrm{Vo}=\frac{1}{\mathrm{C}} \int \mathrm{dl}_{\mathrm{L}} \mathrm{dt}+\Delta \mathrm{l}_{\mathrm{L}} \cdot \mathrm{ESR}
$$

where ΔI_{L} is the ripple current in the output inductor and $E S R$ is the equival ent series resistance of the output capacitors.

The first term is much smaller than the second due the high capacitance of the output capacitors so that the ripple voltage can be expressed as:

$$
\Delta \mathrm{Vo}=\Delta \mathrm{l}_{\mathrm{L}} \cdot \mathrm{ESR}
$$

The worst case will be at maximum input voltage.

$$
\begin{aligned}
\mathrm{V} \text { sec } & =2 / 9 \cdot 72 \mathrm{~V}=16 \mathrm{~V} \\
\mathrm{~L} & =10.8 \mu \mathrm{H}
\end{aligned}
$$

M aximum ripple current follows from:

$$
\Delta I_{\max }=\frac{\mathrm{V}_{\mathrm{sec}} \cdot \mathrm{t}_{\mathrm{on}}}{\mathrm{~L}}=\frac{16 \cdot 0.92 \mu \mathrm{~s}}{10.8 \cdot 10^{-6}}=1.35 \mathrm{~A}
$$

For a ripple voltage of less than 40 mV , the equivalent ESR should be less than $30 \mathrm{~m} \Omega$. The capacitors chosen meet this requirement.

PCB layout

The multilayer FR4 PCB with $70 \mu \mathrm{~m}$ of copper comprises all windings of the transformer and output inductor.
These windings are divided over the separate layers in the following way:

transformer

primary (9turns):
secondary (2 turns):
sense (2 turns):
-5 turns in layer 1 -4 turns in layer 6
-1 turn in layer 2
-1 turn in layer 5
-1 turn in layer 3
-1 turn in layer 4

Fig. 10 C omponent location

Fig. 11 Solder mask layer 1

Fig. 12 Solder mask layer 6

Fig. 13 PCB layer 1

Fig. 15 PCB layer 3

Fig. 17 PCB layer 5

Fig. 14 PCB layer 2

Fig. 16 PCB layer 4

Fig. 18 PCB layer 6

The complete converter

Fig. 19 Circuit diagram

Components list

Reference	Part No. Series	Description	Package	Manufacturer
TR1	E18/4/10-3F3	Planar E Core		Philips
	PLT 18/10/2-3F3	Plate		Philips
LI	E18/4/10-3F3	Planar E C ore		Philips
	PLT 18/10/2-3F3	Plate		Philips
Q1	IRF630S	200V, $0.4 \Omega, \mathrm{M} \mathrm{OSFET}$	SM D-220	I.R.
Q2	Si9410D Y	$30 \mathrm{~V}, 30 \mathrm{~m} \Omega$, M O SFET	SO-8	Siliconix
Q 3	IRF7401	20V, 22m Ω, M O SFET	SO-8	I.R.
Q4	BC P56	80V, 1A, N PN T rans.	SOT 223	-
Q5	BC 848A	30V, 100mA,N PN T rans	SOT 23	Philips
DI	M BRD 320	20V, 3A, Schottky D iode	D-Pak	M otorola
D 3	BAV70	70V, 250mA D ual Diode	SOT-23	P.S.
Z1	BZX84C 12	12V Zener D iode	SOT-23	P.S.
UI	AS3843	PWM Controller	S0-8	Astec
U2	IL206A	opto-isolator	S0-8	Siemens
U3	T 1431	Prog. Reference	S0-8	T.I.
R1	WCR	100K, 0.1W	0805	W elwyn
R2	RC-01	1K, 0.125W	1206	Philips
R4,R5,R18	RC-01	1R, 0.25W	1206	Philips
R6	WCR	1K5, 0.1W	0805	W elwyn
R8	WCR	2K2, 0.1W	0805	Welwyn
R7,R9	WCR	3K3, 0.1W	0805	W elwyn
R11,R14,R15	WCR	1K, 0.1W	0805	Welwyn
R10	WCR	10K, 0.1W	0805	W elwyn
R12	WCR	220R, 0.1W	0805	W elwyn
R16	WCR	15K, 0.1W	0805	W elwyn
$\begin{aligned} & \text { C 1,C 21,C 22, } \\ & \text { C 23,C } 24 \end{aligned}$		100nF,100V	1812	Syfer
C 3,C 4, C 18	T AJ	$100 \mu \mathrm{~F}, 10 \mathrm{~V}$	D	AVX
C5,C 11, ${ }^{\text {c }} 12$	CG,2R	100nF, 63V	1206	Philips
C6		220nF	1206	AVX
C 7, C10		22nF	0805	Philips
C9		22pF	0805	Philips
C13		15nF	0805	Kemet
C2		10nF 500V	1206	AVX

Magnetic Products NAFTA Sales Offices

Alabama
Alaska
Arizona
Arkansas
California - Northern
California - Southern
Colorado
Connecticut
Deleware
Florida
Georgia
Hawaii
Idaho - Northern
Idaho - Southern
Illinois - Northern
Illinois - Quad Cities
Illinois - Southern
Indiana - Northern
Indiana - Central and Southern
lowa - All except Quad Cities
Kansas - Northeast
Kansas - All except Northeast
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri - Eastern
Missouri - Western
Montana
Nebraska
Nevada - Central and Northern
Nevada - Sourthern
New Hampshire
New Jersey
New Mexico
New York - Western
New York - All other
North Carlolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania - Western
Pennsylvania - Eastern
Rhode Island
South Carolina
South Dakota
Tennesse
Texas
Utah
Vermont
Virginia
Washington
Washington DC
West Virginia
Wisconsin
Wyoming
Canada
Mexico
Puerto Rico
Virgin Islands

Alaska
Arizona
Arkansas
fornia - Northern

Colorado
Connecticut
Deleware
Florida
Georgia
Idaho - Northern
Idaho - Southern
Illinois - Northern

- Quad Cities
ndiana
Indiana - Central and Southern
Iowa - All except Quad Cities
Kansas - Northeast
Kansas - All except Northeas
Louisian
Maine
Maryland
Massachusetts
Mingan
Mississippi
Isouri-Eastern

Montana
Nebraska
Nevada - Central and Northern
Nevada - Sourthern
Hampshire

New Mexi
New York - Western
New York - All other
North Carlolina

Ohio
Oklahoma
Oregon
Pennsylvania - Western
Rhode Island
South Carolina
South Dakota
Tennesse
Texas
Vermont
Virginia
Washington DC
West Virginia
Wisconsin
Wyoming
Canada
Puerto Rico
Virgin Islands

Over and Over, Inc., Charlotte, NC
Eclipse Marketing Group, Redmond, WA
Harper and Two, Tempe, AZ
Philips Components, Willoughby, OH
Criterion Sales, Santa Clara, CA
Harper and Two, Signal Hill, CA
Philips Components, Willoughby, OH
Philips Components, Woburn, MA
Philips Components, Woburn, MA
Over and Over, Charlotte, NC
Over and Over, Charlotte, NC
Harper and Two, Signal Hill, CA
Eclipse Marketing Group, Redmond, WA
Electrodyne, Inc., Salt Lake City, UT
Philips Components, Willoughby, OH
Lorenz Sales, Cedar Rapids, IA
Lorenz Sales, St. Louis, MO
Corrao Marsh, Fort Wayne, IN
Corrao Marsh, Greenfield, IN
Lorenz Sales, Cedar Rapids, IA
Lorenz Sales, Overland Park, KS
Lorenz Sales, Wichita, KS
Corrao Marsh, Greenfield, IN
Philips Components, Willoughby, OH
Philips Components, Woburn, MA
Philips Components, Willoughby, OH
Philips Components, Woburn, MA
Philips Components, Willoughby, OH
Electronic Component Sales, Minneapolis, MN
Over and Over, Charlotte, NC
Lorenz Sales, St. Louis, MO
Lorenz Sales, Overland Park, KS
Electrodyne, Inc., Salt Lake City, UT
Lorenz Sales, Cedar Rapids, IA
Criterion Sales, Santa Clara, CA
Harper and Two, Tempe, AZ
Philips Components, Woburn, MA
Philips Components, Woburn, MA
Harper and Two, Tempe, AZ
Philips Components, Willoughby, OH
Philips Components, Woburn, MA
Over and Over, Charlotte, NC
Electronic Component Sales, Minneapolis, MN
Philips Components, Willoughby, OH
Philips Components, Willoughby, OH
Eclipse Marketing Group, Beaverton, OR
Philips Components, Willoughby, OH
Philips Components, Woburn, MA
Philips Components, Woburn, MA
Over and Over, Charlotte, NC
Electronic Component Sales, Minneapolis, MN
Over and Over, Charlotte, NC
Philips Components, Willoughby, OH
Electrodyne, Inc., Salt Lake City, UT
Philips Components, Woburn, MA
Philips Components, Willoughby, OH
Eclipse Marketing Group, Redmond, WA
Philips Components, Willoughby, OH
Philips Components, Willoughby, OH
Philips Components, Willoughby, OH
Electrodyne, Inc., Salt Lake City, UT
Philips Components, Scarborough, ON
Philips Components, El Paso, TX
Max Anderson Co., Caperra Heights, PR
Max Anderson Co., Caperra Heights, PR
(708) 583-9100
(206) 885-6991
(602) 804-1290
(440) 269-8585
(408) 988-6300
(801) 264-8050
(440) 269-8585
(617) 932-4748
(617) 932-4748
(704) 583-9100
(704) 583-9100
(310) 424-3030
(206) 885-6991
(801) 264-8050
(440) 269-8585
(319) 377-4666
(314) 997-4558
(219) 482-2725
(317) 462-4446
(319) 377-4666
(913) 469-1312
(316) 721-0500
(317) 462-4446
(440) 269-8585
(617) 932-4748
(440) 269-8585
(617) 932-4748
(440) 269-8585
(612) 946-9510
(704) 583-9100
(314) 997-4558
(913) 469-1312
(801) 264-8050
(319) 377-4666
(408) 988-6300
(602) 804-1290
(617) 932-4748
(617) 932-4748
(602) 804-1290
(440) 269-8585
(617) 932-4748
(704) 583-9100
(612) 946-9510
(440) 269-8585
(440) 269-8585
(503) 642-1661
(440) 269-8585
(617) 932-4748
(617) 932-4748
(704) 583-9100
(612) 946-9510
(704) 583-9100
(440) 269-8585
(801) 264-8050
(617) 932-4748
(440) 269-8585
(206) 885-6991
(440) 269-8585
(440) 269-8585
(440) 269-8585
(801) 264-8050
(416) 292-5161
(915) 772-4020
(809) 783-6544
(809) 783-6544

Philips Components - a worldwide company

Australia: Philips Components Pty Ltd., NORTH RYDE, Tel. +6129805 4455, Fax. +61298054466
Austria: Österreichische Philips Industrie GmbH, WIEN, Tel. +43 16010112 41, Fax. +43 1601011211

Belarus: Philips Office Belarus, MINSK,
Tel. +375 172200 924/733, Fax. +375 172200773
Benelux: Philips Nederland B.V., EINDHOVEN, NL,
Tel. +31 402783 749, Fax. +31 402788399
Brazil: Philips Components, SÃO PAULO,
Tel. +55 11821 2333, Fax. +55 118291849
Canada: Philips Electronics Ltd., SCARBOROUGH,
Tel. +1 416292 5161, Fax. +1 4167546248
China: Philips Company, SHANGHAI,
Tel. +86216354 1088, Fax. +862163541060
Denmark: Philips Components A/S, COPENHAGEN S,
Tel. +45 32883 333, Fax. +45 31571949
Finland: Philips Components, ESPOO,
Tel. +3589615 800, Fax. +3589615 80510
France: Philips Composants, SURESNES,
Tel. +33 14099 6161, Fax. +33 140996493
Germany: Philips Components GmbH, HAMBURG,
Tel. +49 40 2489-0, Fax. +49 4024891400
Greece: Philips Hellas S.A., TAVROS,
Tel. +30 14894 339/+30 14894 239, Fax. +30 14814240
Hong Kong: Philips Hong Kong, KOWLOON,
Tel. +852 2784 3000, Fax. +852 27843003
India: Philips India Ltd., MUMBAI,
Tel. +91 224930 311, Fax. +91 224930 966/4950 304
Indonesia: P.T. Philips Development Corp., JAKARTA,
Tel. +62 21794 0040, Fax. +62 217940080
Ireland: Philips Electronics (Ireland) Ltd., DUBLIN,
Tel. +353 17640 203, Fax. +353 17640210
Israel: Rapac Electronics Ltd., TEL AVIV,
Tel. +972 36450 444, Fax. +972 36491007
Italy: Philips Components S.r.I., MILANO,
Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Japan Ltd., TOKYO,
Tel. +81 33740 5135, Fax. +81337405035
Korea (Republic of): Philips Electronics (Korea) Ltd., SEOUL, Tel. +82 2709 1472, Fax. +82 27091480

Malaysia: Philips Malaysia SDN Berhad, Components Division, PULAU PINANG,
Tel. +60 3750 5213, Fax. +60 37574880
Mexico: Philips Components, EL PASO, U.S.A., Tel. +52 915772 4020, Fax. +52 9157724332
New Zealand: Philips New Zealand Ltd., AUCKLAND,
Tel. +64 9815 4000, Fax. +64 98497811
Norway: Norsk A/S Philips, OSLO,
Tel. +472274 8000, Fax. +4722748341
Pakistan: Philips Electrical Industries of Pakistan Ltd., KARACHI, Tel. +92 21587 4641-49, Fax. +92 21577 035/+92 215874546

Philippines: Philips Semiconductors Philippines Inc., METRO MANILA, Tel. +63 2816 6345, Fax. +63 28173474
Poland: Philips Poland Sp. z.o.o., WARSZAWA, Tel. +48 22612 2594, Fax. +48 226122327

Portugal: Philips Portuguesa S.A., Philips Components: LINDA-A-VELHA, Tel. +351 1416 3160/416 3333, Fax. +351 1416 3174/416 3366
Russia: Philips Russia, MOSCOW, Tel. +7 95755 6918, Fax. +7 957556919
Singapore: Philips Singapore Pte Ltd., SINGAPORE, Tel. +65350 2000, Fax. +653551758
South Africa: S.A. Philips Pty Ltd., JOHANNESBURG, Tel. +27 11470 5911, Fax. +27 114705494
Spain: Philips Components, BARCELONA, Tel. +34 9330163 12, Fax. +34 933014243
Sweden: Philips Components AB, STOCKHOLM, Tel. +46 85985 2000, Fax. +46 859852745

Switzerland: Philips Components AG, ZÜRICH, Tel. +41 148822 11, Fax. +41 14817730
Taiwan: Philips Taiwan Ltd., TAIPEI, Tel. +88622134 2900, Fax. +886 221342929
Thailand: Philips Electronics (Thailand) Ltd., BANGKOK, Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Türk Philips Ticaret A.S., GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
United Kingdom: Philips Components Ltd., DORKING, Tel. +44 1306512 000, Fax. +441306512345

United States:

- Display Components, ANN ARBOR, MI, Tel. +1 734996 9400, Fax. +1 7347612776
- Magnetic Products, SAUGERTIES, NY, Tel. +1 914246 2811, Fax. +1 9142460487
- Passive Components, SAN JOSE, CA, Tel. +1 408570 5600, Fax. +1 4085705700

Yugoslavia (Federal Republic of): Philips Components, BELGRADE, Tel. +381 11 625344/373, Fax. +381 11635777

Internet:

- Display Components: www.dc.comp.philips.com
- Passive Components: www.passives.comp.philips.com

For all other countries apply to:
Philips Components, Building BF-1, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. $+31-40-2723903$.
COD19 Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

Document order number: 93982362601 I

