
□关 山

大功率稳压逆变电源的设计与制作

标称功率 300W 的逆变电源,用 干家庭电风扇、电视机,以及日常照明 等是不成问题的。笔者曾用过 300W 逆变器,利用 12V/60AH 蓄电池向上述 家用电器供电,一次充满电后,可使用 近5小时。不过,即使蓄电池电压充 足, 启动 180 立升的电冰箱仍有困难, 因启动瞬间输出电压下降为不足 180V 而失败。电冰箱压缩机标称功率多为 100W 左右,实际启动瞬间电流可达 2A 以上, 若欲使启动瞬间降压不十分 明显,必须将输出功率提高至 600VA。 如在增大输出功率的同时,采用 PWM 稳压系统,可使启动瞬间降压幅度明显 减小。无论电风扇还是电冰箱,应用逆 变电源供电时,均应在逆变器输出端增 设图 1 中的 LC 滤波器,以改善波形, 避免脉冲上升沿尖峰击穿电机绕组。

采用双极型开关管的逆变器,基板驱动电流基本上为开关电流的 1/β,因此大电流开关电路必须采用多级放大,不仅使电路复杂化,可靠性也

变差,而且随着输出功率的增大,开关管驱动电流需大于集电极电流的 $V\beta$,致使普通驱动 IC 无法直接驱动。虽说采用多级放大可以达到目的,但是波形

逆变电源由蓄电池供电、一般应 用于照明、风扇、甚至电冰箱均不加稳 压系统。因为蓄电池充满电后,即使每 单元电压达到 2.4V,12V 蓄电池电压 也不过 14.4V, 而且此电压的保持时间 极短,随即降低为 13.2V,在正常的放 电时间内维持 12V 的电压。所以,逆变 后的交流输出不会超过额定值的 +20%,处于国内电网电压误差的上限, 一般电器设备在短期内可以承受,而不 致损坏。至于蓄电池电压低于 12V 以 后,从不损坏电池的角度着想,不应再 继续放电,而必须进行充电。蓄电池放 电电压低于 12V 以后, 即使逆变器有 稳压系统,也不可能在额定负载下保持 输出电压稳定。因为蓄电池电压降低, 逆变器稳压系统通过脉宽调制器增大 开关管的导通时间, 使输出电压稳定。 脉宽增大后,意味着蓄电池负载电流平 均值增大,蓄电池放电电压进一步下 降,稳压成了无本之木。

铅酸蓄电池几乎和所有的电池一样,在正常放电期间,端电压在其额定

容量以内,电压和时间的关系大部分范围内是一条水平线,当放电终了,电压低于 12V 以后,则放电电压随时间延长呈斜率很大的斜线下降。所以,逆变器的稳压对此几乎无意义。

当然、不是说逆变电源都无需加 入稳压系统,对某些特殊用途要求供电 电压误差不超过±10%, 甚至是±5%的 情况下,为避免蓄电池充电后使逆变电 压升高,还是需要加入稳压系统。如电 脑用 UPS、测试仪器用备用电源等,均 设有稳压系统。再者,对某些自激变换 器组成的逆变电源,也必须加入稳压系 统。自激式小功率逆变器,由开关管和 变压器组成自激振荡逆变电路,由变压 器送至开关管基极的正反馈脉冲,并不 完全取决于变换器的供电电压。实际 上,当供电电压不变时,由于负载电流 的改变,将使开关管的负载阻抗产生变 化, 感应的正反馈脉冲也随之而变,结 果导致输出电压的改变。因此,自激式 逆变电源不能在完全空载时开机,欲使 用逆变电源,需先接入负载,再启动逆

变器,否则开关管或变压器将被击穿。 加入稳压系统后,不仅能使自激型逆变 器稳定输出电压,而且还能抵消负载电 流的变化。

相对而言,它激式逆变器开关管驱动脉冲并非取自变压器的正反馈脉冲,由于负载变动引起的变压器初级阻抗改变,只反映开关管负载阻抗的变化,只要逆变器的供电和前级驱动脉冲不变,不可能导致输出电压大范围升高。即使输出电压随负载改变,其变化范围也极小,属于变压器正常的铜损功耗与负载电流之间的关系。

其实,它激式逆变器本身大多采用开关电源通用型驱动控制集成电路,其本身具有完善的稳压系统和保护功能,当用于逆变器时只是未使用稳压电路而已。若增设稳压系统,只需外加极简单电路和少数元器件即可。以本文前述用 SG3525A 组成的逆电源 为例,用 SG3525A 代换SG3526N 后,其逆变器的制作见本专集另一篇文章。

Special Focus

Electronics DIY ***

失真却明显增大,从而导致开关管的 导通/截止损耗也增大。目前解决大功 率逆变电源及 UPS 的驱动方案,大多 采用 MOS FET 管作开关器件。

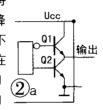
一、MOSFET 管的应用

近年来,金属氧化物绝缘栅场效应管的制造工艺飞速发展,使之漏源极耐压(V_{DS})达 kV 以上,漏源极电流(I_{DS})达 50A 已不足为奇,因而被广泛用于高频功率放大和开关电路中。

除此而外,还有双极性三极管与MOS FET 管的混合产品,即所谓IGBT 绝缘栅双极晶体管。顾名思义,它属 MOS FET 管作为前级、双极性三极管作为输出的组合器件。因此,IGBT 既有绝缘栅场效应管的电压降小和耐压高的输出特性,其关断时间达到 0.4 µ s 以下,Vcco 达到 1.8kV,IcM 达到 100A 的水平,目前常用于电机变频调速、大功率逆变器和开关电源等电路中。

一般中功率开关电源逆变器常用 MOS FET 管的并联推挽电路。MOS FET 管漏 - 源极间导通电阻,具有电阻 的均流特性,并联应用时不必外加均流 电阻,漏源极直接并联应用即可。而栅 源极并联应用,则每只 MOS FET 管必 须采用单独的栅极隔离电阻,避免各开 关管栅极电容并联形成总电容增大,导 致充电电流增大,使驱动电压的建立过 程被延缓,开关管导通损耗增大。

二、MOSFET 的驱动


近年来,随着 MOS FET 生产工艺的改进,各种开关电源、变换器都广泛采用 MOS FET 管作为高频高压开关电路,但是,专用于驱动 MOS FET 管的集成电路国内极少见。驱动 MOS FET 管的要求是,低输出阻抗,内设灌电流驱动电路。所以,普通用于双极型开关管的驱动 IC 不能直接用于驱动场效应管。

目前就世界范围来说,可直接驱动 MOS FET 管的 IC 品种仍不多,单端驱动器常用的是 UC3842 系列,而用于推挽电路双端驱动器有 SG3525A(驱动 N 沟道场效应管)、SG3527A(驱

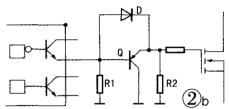

动 P 沟道场效应管)和 SG3526N(驱动 N 沟道场效应管)。然而在开关电源快速发展的近 40 年中,毕竟有了一大批优秀的、功能完善的双端输出驱动 IC。同时随着 MOS FET 管应用普及,又开发了不少新电路,可将其用于驱动MOS FET 管,解决 MOS FET 的驱动无非包括两个内容:一是降低驱动 IC的输出阻抗;二是增设 MOS FET 管的灌电流通路。为此,不妨回顾SG3525A、SG3527A、SG3526N 以及单端驱动器 UC3842 系列的驱动级。

图 2a 为上述 IC 的驱动输出电路 (以其中一路输出为例)。振荡器的输出脉冲经或非门,将

脉冲上升沿和下降。沿输出两路时序不同的驱动脉冲。在脉冲正程期间,Q1号通,Q2截止,Q1

发射极输出的正向脉冲,向开关管栅极电容充电,使漏一源极很快达到导通阈值。当正程脉冲过后,若开关管栅一源极间充电电荷不能快速放完,将使漏源极驱动脉冲不能立即截止。为此,Q1截止后,或非门立即使Q2导通,为栅源极电容放电提供通路。此驱动方式中,Q1提供驱动电流,Q2提供灌电流(即放电电流)。Q1为发射极输出器,其本身具有极低的输出阻抗。

图 2b 中接入了 PNP 型三极管 Q 和二极管 D, 其作用是分别使驱动 电流和灌电流分路。前级驱动 IC 内部

否则其近似无穷大的高输入阻抗极容易被干扰电平所击穿。采用此方式对用普通双端输出集成电路,驱动 MOS FET 开关管,可以达到比较理想的效果。为了降低导通/截止损耗,D应速用快速开关二极管。Q的集电高流出功率,每路输出采用多只 MOS FET 管并联应用,则应选择 Icm 足够大的灌流三极管和高速开关二极管。

三、TL494 应用

目前所有的双端输出驱动 IC 中,可以说美国德克萨斯仪器公司开发的 TL494 功能最完善、驱动能力最强,其 两路 时序不同的输出总电流为 SG3525的两倍,达到 400mA。仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC 变换器、逆变器,几乎无一例外地采用 TL494。虽然 TL494设计用于驱动双极型开关管,然而目前绝大部分采用 MOS FET 开关管的设备,利用外设灌流电路,也广泛采用 TL494。为此,本节中将详细介绍其功能及应用电路。其内部方框图如图 3 所示。其内部电路功能、特点及应用方法如下:

A.内置 RC 定时电路设定频率的 独立锯齿波振荡器,其振荡频率 fo $(kHz)=1.2/R(k\Omega)\cdot C(\mu F)$,其最高振荡

Special Focus

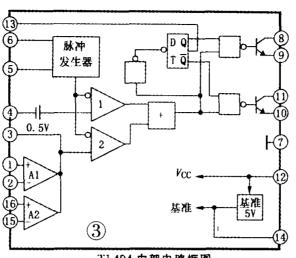
频率可达 300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOS FET 开关管。

B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。当第4脚电平升高时,死区时间增大。

C. 触发器的两路输出设有控制电路, 使 Q1、

Q2 既可輸出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。

D. 内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。


E. 输出驱动电流单端达到 400mA, 能直接驱动峰值电流达 5A 的开关电路。双端输出脉冲峰值为 2× 200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。

TL494的各脚功能及参数如下: 第 1、16 脚为误差放大器 A1、A2的同相输入端。最高输入电压不超过 Vcc+0.3V。

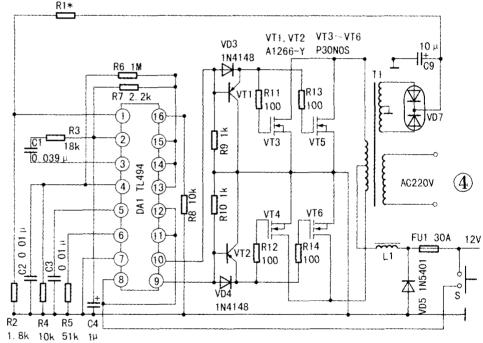
第 2、15 脚为误差放大器 A1、A2 的反相输入端。可接入误差检出的基准电压。

第 3 脚为误差放大器 A1、A2 的 1.8k 输出端。集成电路内部用于控制 PWM 比较器的同相输入端,当 A1、A2 任一输出电压升高时,控制 PWM 比较器的输出脉宽减小。同时,该输出端还引出端外,以便与第 2、15 脚间接入 RC 频率校正电路和直接负反馈电路,一则稳定误差放大器的增益,二则防止其高频自激。另外,第 3 脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。

第 4 脚为死区时间控制端。当外加 1V 以下的电压时,死区时间与外加

TL494 内部电路框图

电压成正比。如果电压超过 1V,内部比较器将关断触发器的输出脉冲。


第5脚为锯齿波振荡器外接定时 电容端,第6脚为锯齿波振荡器外接 定时电阻端,一般用于驱动双极性三极

第 14 脚为内部基准电压精密稳压电路端。输出 5V±0.25V 的基准电压,最大负载电流为 10mA。用于误差检出基准电压和控制模式的控制电压。

TL494 的极限参数:最高瞬间工作电压 (12 脚)42V,最大输出电流 250mA,最高误差输入电压 Vcc+0.3V,测试 / 环境温度 \leq 45℃,最大允许功耗 1W,最高结温 150℃,使用温度范围 0~70℃,保存温度 -65~+150℃。

TL494 的标准应用参数:Vcc (第 12 脚) 为 7~40V,Vcc1 (第 8 脚)、Vcc2 (第 11 脚)为 40V,Ic1、Ic2 为 200mA,R_T 取 值 范 围 $1.8 \sim 500 k\Omega$, C_T 取 值 范 围 4700pF~10 μ F,最高振荡频率 (f_{∞}) \leq 300kHz。

图 4 为外刊介绍的利用 TL494

管时需限制振荡频率小于 40kHz。

第7脚为接地端。

第 8、11 脚为两路驱动放大器 NPN 管的集电极开路输出端。当第 8、11 脚接 Vcc,第 9、10 脚接入发射极负载电阻到地时,两路为正极性图腾柱式输出,用以驱动各种推挽开关电路。当第 8、11 脚接地时,两路为同相位驱动脉冲输出。第 8、11 脚和 9、10 脚可直接并联,双端输出时最大驱动电流为2×200mA,并联运用时最大驱动电流为400mA。

组成的 400W 大功率稳压逆变器电路。它激式变换部分采用 TL494,VT1、VT2、VD3、VD4 构成灌电流驱动电路,驱动两路各两只 60V/30A 的 MOS FET 开关管。如需提高输出功率,每路可采用 3~4 只开关管并联应用,电路不变。TL494 在该逆变器中的应用方法如下:

第 1、2 脚构成稳压取样、误差放大系统,正相输入端 1 脚输入逆变器次级取样绕组整流输出的 15V 直流电压,经 R1、R2 分压,使第 1 脚在逆变器正常工作时有近 4.7~5.6V 取样电压。反

□周锡春

100-200W 逆变电源的制作

频繁停电给日常生活及文化娱 乐,带来严重影响。电瓶虽能点亮灯炮 和电珠,但无力打开电风扇和影视设 备: 想看电视, 听音乐, 只有望机兴叹: 电脑也会因停电而丢掉某些存储数据。 (信息)小型发电机发电有噪音,又需 监管,少量用电不合算,应用逆变电源 即可解决以上问题,逐渐成为家庭的 "备用电源"。制作逆变器,报刊杂志已 有多次介绍,现介绍一种应用普通、易 购的常用低价的电子元件,制作不复杂 的逆变电源,供有兴趣的爱好者,参考 制作。如需增大为300-500W,只要增 加功率管数量即可(或选用大功率管、 场效应管),正常使用时,功率管不烫手 即可。

工作原理:V1、V2、C1、C2、R2、R3组成多谐振荡电路,频率为50Hz,输出波形经C3、C4、R5、R6、D2、D3形成上下对称的方波信号,由V3、V4放

大,V5、V6 激励,推动上、下两组功放管工作,由变压器 T 输出 200-250V 电压,供负载工作。充电流时,由次级输入200V交流电源,经初级 L1、L2 输出至 D4、D5,全波整流后给电瓶充电,充电时,前面的晶体管都不工作。

制作和代用: 国内家用电器,要求电源频率为 50Hz,如果远离 50Hz 频率,家用电器就不能正常工作。制作逆变电源,成功与否的关键之一是要不够率必须达到 50Hz 左右,是否符合这要求,简单的测试方法是在负载上接电风扇,电风扇会正常运转,频率在 50Hz 左右了。具体测试用频率表,接在 V2 的集电极与发射极上,看频率是否符合,有差距时,可调整 C1、C2、R2、R3 的数值来解决。为使频率稳定不飘移,V1、V2 选用配对管,C1、C2 用 CBB 电容,R2、R3 用金属膜精密电阻。如一时无0.33 μ F 电容,可改用 0.47 μ F 电容,但

R2、R3 也要同时换上 15k 左右的电阻,以确保频率在50Hz 左右。

激励管 V5、V6 以后的功率管,为压低制作成本,可用 3DD15D 并联使用,100W需 4只,200W需 8只,应选用上下特性一致的。由于多只并联,管子有离散性,较难选配一致,差的管子易击穿,形成故障,可在各功放管等分别放上串接 0.2Ω/5W 的电阻(用 3DD15时),以减小影响。最好是选用总功率满足要求的大功率管或场效应管,可在报刊上或二只,便于安装,可不用发射极电阻,廉价的大功率管或场效应管,可在报刊上寻找邮购,散热片可用铝排,铝合金角料代用,安装处涂上硅脂,以利传热散发。

电源变压器的制作,业余搞到的变压器铁芯,质量不一,选用的安/匝,线径不同,实际输出电压会有差距,负载大小也影响到输出电压的高低,建议在次级多抽几个线头,供实际调节输出

相輸入端 2 脚輸入 5V 基准电压(由 14 脚輸出)。当輸出电压降低时,1 脚电压降低,误差放大器輸出低电平,通过PWM 电路使输出电压升高。正常时 1 脚电压值为 5.4V,2 脚电压值为 5V,3 脚电压值为 0.06V。此时输出 AC 电压为 235V(方波电压)。

第 4 脚外接 R6、R4、C2 设定死区 时间。正常电压值为 0.01V。

第 5、6 脚外接 C_T 、 R_T 设定振荡器 三角波频率为 100Hz。正常时 5 脚电 压值为 1.75V,6 脚电压值为 3.73V。

第7脚为共地。

第8、11 脚为内部驱动输出三极管集电极,第12 脚为 TL494 前级供电端,此三端通过开关 S 控制 TL494 的启动 / 停止,作为逆变器的控制开关。当 S1 关断时,TL494 无输出脉冲,因此开关管 VT4~VT6 无任何电流。S1 接通时,此三脚电压值为蓄电池的正极电压。

第9、10 脚为内部驱动级三极管

发射极,输出两路时序不同的正脉冲。 正常时电压值为 1.8V。

第 13、14、15 脚其中 14 脚输出 5V 基准电压,使 13 脚有 5V 高电平,控 制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第 15 脚外接 5V 电压,构成误差放大器反相输入基准电压,以使同相输入端 16 脚构成高电平保护输入端。此接法中,当第 16 脚输入大于 5V 的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆变器中输出超压的可能性几乎没有,故该电路中第 16 脚未用,由电阻 R8 接地。

该逆变器采用容量为 400VA 的工频变压器,铁芯采用 45×60mm²的 在钢片。初级绕组采用直径 1.2mm 的漆包线,两根并绕 2×20 匝。次级取样绕组采用 0.41mm 漆包线绕 36 匝,中心抽头。次级绕组按 230V 计算,采用 0.8mm 漆包线绕 400 匝。开关管

VT4~VT6 可用 60V/30A 任何型号的 N沟道 MOS FET 管代替。VD7 可用 1N400X 系列普通二极管。该电路几平 不经调试即可正常工作。当 C9 正极端 电压为 12V 时,R1 可在 3.6~4.7kΩ 之间选择,或用 10kΩ 电位器调整,使 输出电压为额定值。如将此逆变器输 出功率增大为近 600W, 为了避免初级 电流过大,增大电阻性损耗,宜将蓄电 池改用 24V, 开关管可选用 V_{ns} 为 100V 的大电流 MOS FET 管。需注意 的是,宁可选用多管并联,而不选用单 只 los 大于 50A 的开关管, 其原因是: 一则价格较高,二则驱动太困难。建议 选用 100V/32A 的 2SK564,或选用三 只 2SK906 并联应用。同时,变压器铁 芯截面需达到 50cm2, 按普通电源变 压器计算方式算出匝数和线径,或者 采用废 UPS-600 中变压器代用。如为 电冰箱、电风扇供电,请勿忘记加入 LC 低通滤波器。