

# AN1895 APPLICATION NOTE

# EVAL6562-375W, 375W FOT-CONTROLLED PFC PRE-REGULATOR WITH THE L6562

This note describes an evaluation board based on the Transition-mode PFC controller L6562 (order code: EVAL6562-375W) and presents the results of its bench evaluation. The board implements a 375W, wide-range mains input, PFC pre-regulator, e.g. suitable for a 300/350W ATX12V PSU. To enable the use of a low-cost device like the L6562 at this power level, usually prohibitive for this device, the chip is operated with Fixed-Off-Time control. This allows Continuous Conduction Mode operation, normally achievable with more expensive control chips and more complex control architectures.

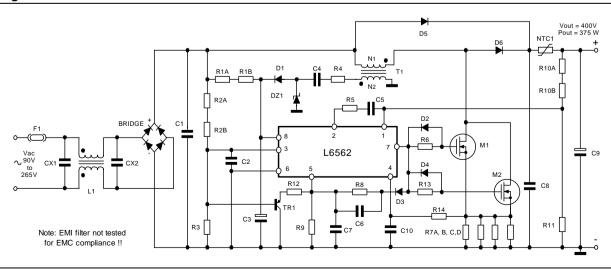

### 1 DESIGN SPECIFICATION

Table 1 summarizes the electrical specification of the application, table 2 provides the BOM and table 3 lists transformer's spec. The electrical schematic is shown in figure 1 and the PCB layout in figure 2.

Table 1. EVAL6562-375W evaluation board: electrical specification

| Parameter                                            | Value         |
|------------------------------------------------------|---------------|
| Line voltage range                                   | 90 to 265 Vac |
| Minimum Line frequency (f <sub>L</sub> )             | 47 Hz         |
| Regulated output voltage                             | 400V          |
| Rated output power                                   | 375 W         |
| Maximum 2f <sub>L</sub> output voltage ripple        | 20V pk-pk     |
| Hold-up time                                         | 17 ms         |
| Maximum switching frequency (@Vin=90Vac, Pout=375W)  | 100 kHz       |
| Minimum estimated efficiency (@Vin=90Vac, Pout=375W) | 90%           |
| Maximum ambient temperature                          | 50 °C         |

Figure 1. EVAL6562-375W evaluation board: electrical schematic

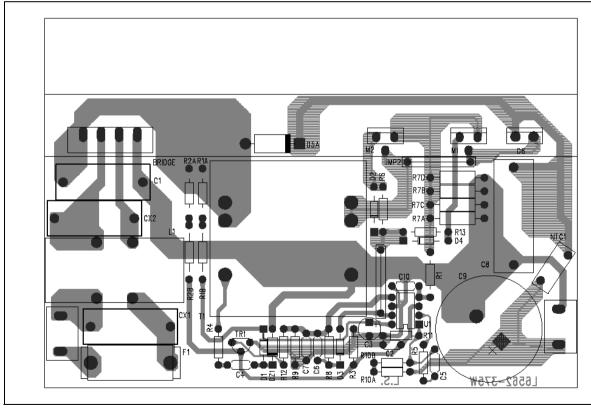


May 2004 1/10

The electrical specification is typical of a PFC pre-regulator for a 300W ATX12V PSU: it is able to deliver 375W continuous power on a regulated 400V rail from a wide range mains. This rail will be the input for the cascaded isolated DC-DC converter (typically a forward converter) that will provide the output rails of the silver box. Although the ATX specification envisages air cooling, typically realized with a fan capable of an airflow in the range of 25-35 CFM, this is not allowed for in the design of this demo board. Enough heat sinking will be provided to allow full-load operation in still air. With an appropriate airflow and without any change in the circuit the demo board can easily deliver up to 400-420W.

Table 2. EVAL6562-375W evaluation board: Bill Of Material

| Symbol                                                                                                                                                       | Value       | Note                                                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|--|--|--|
| R1A, R1B                                                                                                                                                     | 120 kΩ      |                                                                 |  |  |  |
| R2A, R2B                                                                                                                                                     | 620 kΩ      |                                                                 |  |  |  |
| R3                                                                                                                                                           | 10 kΩ       |                                                                 |  |  |  |
| R4                                                                                                                                                           | 47 Ω        |                                                                 |  |  |  |
| R5                                                                                                                                                           | 6.8 kΩ      |                                                                 |  |  |  |
| R6, R13                                                                                                                                                      | 6.8 Ω       |                                                                 |  |  |  |
| R7A, R7B, R7C, R7D                                                                                                                                           | 0.68 Ω      | Metal film, 1W                                                  |  |  |  |
| R8, R12                                                                                                                                                      | 1.5 kΩ      |                                                                 |  |  |  |
| R9                                                                                                                                                           | 12 kΩ       |                                                                 |  |  |  |
| R10A, R10B                                                                                                                                                   | 499 kΩ      |                                                                 |  |  |  |
| R11                                                                                                                                                          | 6.34 kΩ     |                                                                 |  |  |  |
| R14                                                                                                                                                          | 330 Ω       |                                                                 |  |  |  |
| CX1, CX2                                                                                                                                                     | 330 nF      | EPCOS B81131 or equivalent                                      |  |  |  |
| C1                                                                                                                                                           | 1 μF        | 400V, EPCOS B32653 or equivalent                                |  |  |  |
| C2, C4                                                                                                                                                       | 10 nF       |                                                                 |  |  |  |
| C3                                                                                                                                                           | 47 µF       | 25V electrolytic                                                |  |  |  |
| C5                                                                                                                                                           | 1 μF        |                                                                 |  |  |  |
| C6, C10                                                                                                                                                      | 330 pF      |                                                                 |  |  |  |
| C7                                                                                                                                                           | 560 pF      |                                                                 |  |  |  |
| C8                                                                                                                                                           | 470 nF      | 630V, EPCOS B32653 or equivalent                                |  |  |  |
| C9                                                                                                                                                           | 220 μF      | 450V, Electrolytic Nichicon LS or equivalent                    |  |  |  |
| C14                                                                                                                                                          | 56 nF       | 400V, polyester                                                 |  |  |  |
| C15                                                                                                                                                          | 100 pF      | 1kV, Y5P, Panasonic or equivalent                               |  |  |  |
| L1                                                                                                                                                           | TOR73       | 3.9 mH / 6A, supplied by ITACOIL s.r.l.                         |  |  |  |
| T1                                                                                                                                                           | E4218       | Boost inductor. See spec on table 3. Supplied by ITACOIL s.r.l. |  |  |  |
| BRIDGE                                                                                                                                                       | KBU8M       | 8A / 1000V, GI or equivalent                                    |  |  |  |
| D1, D2, D3, D4                                                                                                                                               | 1N4148      | 0.3A / 75V, glass case, Vishay or equivalent                    |  |  |  |
| D5                                                                                                                                                           | 1N5406      | 3A / 600V, D0201, ON Semiconductor or equivalent                |  |  |  |
| D6                                                                                                                                                           | STTH806DTI  | 8A / 600V, Tandem Hyperfast, TO220, ST                          |  |  |  |
| DZ1                                                                                                                                                          | 1N5248B     | 18V / 500mW Zener, ON Semiconductor or equivalent               |  |  |  |
| U1                                                                                                                                                           | L6562       | TM PFC controller, DIP8, ST                                     |  |  |  |
| M1, M2                                                                                                                                                       | STP12NM50FP | $0.3~\Omega$ / 500V, MDmesh <sup>TM</sup> , TO220FP, ST         |  |  |  |
| TR1                                                                                                                                                          | BC557       | PNP, 0.1A / 45V, TO92, On Semiconductor or equivalent           |  |  |  |
| NTC1                                                                                                                                                         | BS237       | NTC 2.5 Ω, EPCOS or equivalent                                  |  |  |  |
| F1                                                                                                                                                           |             | 8A, 250V                                                        |  |  |  |
| PCB                                                                                                                                                          |             | FR-4, Cu single layer 35µm, 150 x 81.5 mm                       |  |  |  |
| Heat sink                                                                                                                                                    | OS512       | 2.12 °C/W, Extrusion Profile, Aavid Thermalloy                  |  |  |  |
| Notes: if not otherwise specified, all resistors are 1%, ¼ W, all capacitors are ceramic or plastic film BRIDGE, M1, M2 and D6, all share the same heat sink |             |                                                                 |  |  |  |


The controller chip is the L6562 [1]. This device is designed for Transition-Mode (TM) operation, where the boost inductor works next to the boundary between Continuous (CCM) and Discontinuous Conduction Mode (DCM). However, with a slightly different usage, the chip can be operated so that the boost inductor works in CCM, hence surpassing the limitations of TM operation in terms of power handling capability. The gate-drive capability of the L6562 (±0.8A min.) is also adequate to drive the MOSFET's used at higher power levels.

This approach, which couples the simplicity and cost-effectiveness of TM operation with the high-current capability of CCM operation is the Fixed-Off-Time (FOT) control: the control modulates the ON-time of the power switch, while its OFF-time is kept constant. More precisely, it will be used the Line-Modulated FOT (LM-FOT) where the OFF-time of the power switch is not rigorously constant but is modulated by the instantaneous mains voltage. Please refer to [2] for a detailed description of this technique.

Table 3. EVAL6562-375W: boost inductor specification (part# E4218, made by ITACOIL s.r.l.)

| Core                     | E42/21/7, N67 Material or equivalent      |         |          |         |                                                |  |
|--------------------------|-------------------------------------------|---------|----------|---------|------------------------------------------------|--|
| Bobbin                   | Horizontal mounting, 10 pins              |         |          |         |                                                |  |
| Air gap                  | ≈ 1.9 mm for an inductance 1-10 of 550 µH |         |          |         |                                                |  |
| 14 <i>0</i> 10           | Pin Start/End                             | Winding | Wire     | Turns   | Notes                                          |  |
| Windings<br>Spec & Build | 1/10                                      | Main    | 20xAWG32 | 58 (N1) | Pins 1 & 2, pins 10 & 9 are shorted on the PCB |  |
| Opec a Balla             | 6/5                                       | Aux     | AWG32    | 6 (N2)  | Evenly spaced                                  |  |

Figure 2. EVAL6562-375W: PCB layout, silk + bottom layer (top view); size: 150 x 81.5mm



#### 2 POWER STAGE DESIGN PROCEDURE

The step-by-step procedure of an LM-FOT controlled PFC pre-regulator outlined in [2] will be followed. The design will be done on the basis of a ripple factor (the ratio of the maximum current ripple amplitude to the inductor peak current at minimum line voltage) Kr=0.3.

1) The range of k ( $k_{min} \div k_{max}$ ) associated to the line voltage range is:



$$k_{min} \, = \, \sqrt{2} \frac{Vin_{(RMS)min}}{Vout} \, = \, \sqrt{2} \frac{90}{400} \, = \, 0.318, \ \, k_{max} = \sqrt{2} \frac{Vin_{(RMS)min}}{Vout} = \sqrt{2} \frac{265}{400} = 0.937 \, .$$

2)The required T<sub>OFFmin</sub> is derived from the specification on the maximum switching frequency (on the top of the line voltage sinusoid) f<sub>swmax</sub> at minimum line voltage:

$$T_{OFFmin} = \frac{k_{min}}{f_{sw max}} = \frac{0.318}{100 \cdot 10^3} = 3.18 \mu s$$

3)The maximum expected input power Pin<sub>0</sub> = Pout<sub>0</sub>/η and the maximum line peak current, Ipk<sub>max</sub> are:

$$Pin_0 = \frac{375}{0.9} = 417W; \ Ipk_{max} = \frac{2Pin_0}{k_{min}Vout} = \frac{2 \cdot 417}{0.318 \cdot 400} = 6.56A.$$

4)The ripple amplitude on the top of the sinusoid at minimum line voltage, assuming it is 75% of the maximum specified, will be:

$$\Delta I_{Lpk} = \frac{6Kr}{8-3Kr} Ipk_{max} = \frac{6 \cdot 0.3}{8-3 \cdot 0.3} \cdot 6.56 = 1.66A$$

5)The required inductance L of the boost inductor is:

$$L \,=\, (1-k_{min}) \frac{Vout}{\Delta I_{Lpk}} T_{OFFmin} \,=\, (1-0.318) \cdot \frac{400}{1.66} \cdot 3.18 \cdot 10^{-6} \,=\, 523 \mu H$$

This value will be rounded up to 550  $\mu$ H; the resulting value of Kr will be slightly smaller than 0.3, but we will go on using the target value, this will give some additional margin.

6)The maximum inductor peak current, ILpkmax, is calculated:

$$I_{Lpkmax} = \frac{8}{8 - 3Kr} Ipk_{max} = \frac{8}{8 - 3 \cdot 0.3} \cdot 6.56 = 7.39A$$

7) The maximum sense resistor R<sub>sensemax</sub> is:

$$R_{\text{sense max}} = \frac{1.6}{I_{\text{Lpkmax}}} = \frac{1.6}{7.39} = 0.216\Omega$$

(1.6 V) is the minimum value of the pulse-by-pulse current limiting threshold on the current sense pin of the L6562). It will be realized with four  $0.68 \Omega$ , 1W-rated paralleled resistors, for a total resistance of  $0.17 \Omega$ . This provides some extra power capability. The inductor peak current that the inductor must be able to carry without saturating will be:

$$I_{Lpksat} = \frac{1.8}{0.17} = 10.6A$$

8) From the formulae in [2], table 4, the MOSFET RMS current is:

$$I_{Q(rms)} = \frac{Pin_0}{k_{min}Vout} \sqrt{2 - \frac{16k_{min}}{3 \cdot \pi}} = \frac{417}{0.318 \cdot 400} \sqrt{2 - \frac{16 \cdot 0.318}{3 \cdot \pi}} = 3.96 \text{A} \; ;$$

the diode RMS current is:

$$I_{Q(rms)} = \frac{Pin_0}{k_{min}Vout} \sqrt{\frac{16k_{min}}{3 \cdot \pi}} = \frac{417}{0.318 \cdot 400} \sqrt{\frac{16 \cdot 0.318}{3 \cdot \pi}} = 2.41A$$

the dissipation on the sense resistor will be  $0.17 \cdot 3.96^2 = 2.7 \text{W}$ , which justifies the use of four resistors; the selected MOSFET is the STP12NM50, a  $0.3\Omega/500 \text{V}$  MDmesh<sup>TM</sup> type from STMicroelectronics, housed in a TO220 package; two of them will be paralleled to handle the rated power; the selected diode is an STTH806DTI, an 8A/600V Tandem diode, again from STMicroelectronics,

housed in a TO220 package. All of them must be dissipated to keep their temperature within safe limits.

As for the inductor, the core size will be determined by saturation since the ripple is relatively low. Assuming a peak flux density Bmax=0.3T, the minimum required Area-Product is:

$$\mathsf{AP}_{\mathsf{min}} \approx 186 \left( \frac{1 - \mathsf{k}_{\mathsf{min}} \mathsf{Kr}}{\mathsf{k}_{\mathsf{min}} \mathsf{Kr}} \frac{\mathsf{Pin}_0 \mathsf{T}_{\mathsf{OFF}}}{\mathsf{B}_{\mathsf{max}}} \right)^{1.31} = 186 \left( \frac{1 - 0.318 \cdot 0.3}{0.318 \cdot 0.3} \, \frac{417 \cdot 3.18 \cdot 10^{-6}}{0.3} \right)^{1.31} = 2.92 \, [\mathsf{cm}^4]$$

An E42 core (AP =  $3.15 \text{ cm}^4$ ) has been chosen. See table 3 for the complete inductor spec.

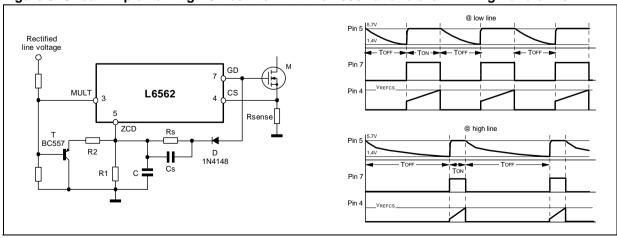
The output capacitor is determined by the hold-up time requirement. Assuming a minimum voltage of 300V after the line drop, a minimum of 180  $\mu F$  is needed and a 220 $\mu F/450V$  capacitor will be used.

9)The peak multiplier bias voltage V<sub>MULT</sub> @90V mains must meet the condition:

$$\frac{I_{Lpkmax}R_{sense}}{1.65} \le V_{MULTpk} \le 3 \frac{V_{in(RMS)min}}{V_{in(RMS)max}},$$

where 1.65 is the minimum slope of the multiplier characteristic associated to the error amplifier saturated high (see figure 9 in [1]). With the selected value for Rsense (0.17 $\Omega$ ):

$$\frac{7.39 \cdot 0.17}{1.65} = 0.761 \le V_{MULTpk} \le 3 \cdot \frac{90}{265} = 1.02$$


Choosing the ratio of the resistor divider that biases the multiplier input (pin 3, MULT)  $K_P=8\cdot10^{-3}$  lets the peak voltage on the multiplier pin will go from 1V to 3V, thus meeting the above condition. The high-side resistor of the output divider that sets the output voltage is chosen on the basis of the maximum allowed overvoltage on the output. Considering 40V overvoltage, the high-side resistor must be  $1M\Omega$  (see [3] for details, in this respect the L6561 and the L6562 are exactly equal). The low-side resistor will then be  $1M\Omega \cdot (400/2.5 - 1) = 6.29k\Omega$ ; the  $6.34k\Omega$  standard value will be used.

Based on the model given in [2], a compensation network made with an RC series (R=6.8 k $\Omega$ , C=1 $\mu$ F) guarantees a minimum of 25° phase margin (with 9 Hz bandwidth) at minimum line and a bandwidth not exceeding 20 Hz (with 50° phase margin) at maximum line.

#### 3 SETTING UP FOT CONTROL WITH THE L6562

FOT control is implemented with the L6562 with the circuit shown in figure 3, which shows some significant waveforms as well. Before starting the design the desired value of  $T_{OFF}$  at maximum line voltage has to be specified. In [2] it is shown that to reduce high-voltage distortion it must be  $T_{OFF} > 7\mu s$ , hence we choose  $T_{OFF} = 8\mu s$ .

Figure 3. Circuit implementing FOT control with the L6562 and relevant timing waveforms.



Following the design procedure given in [2], with the aid of the diagram of figure 4:

1)The ratio of the maximum Toff value to the minimum Toff value is:

$$\rho = \frac{8 \cdot 10^{-6}}{3.18 \cdot 10^{-6}} = 2.52$$

- 2)Consider the value of  $V_{MULTpk}$  at minimum line voltage ( $V_{MULTpk} = 1V$ ), in figure 4 draw an horizontal line located at  $\rho = 2.52$  (on the left vertical axis) as long as it intercepts the  $\rho$  curve relevant to the value  $V_{MULTpk} = 1V$  in P1. The abscissa of P1 gives the value K1=0.891.
- 3)From P1 draw a vertical line as long as it intercepts the K2 curve relevant to V<sub>MULTpk</sub>=1 in P2. The ordinate of P2 (on the right vertical axis) gives the value K2=4.17.
- 4)The required time constant is:

$$\tau = \frac{T_{OFFmin}}{K2} = \frac{3.18 \cdot 10^{-6}}{4.17} = 0.76 \cdot 10^{-6} s.$$

5)A capacitor C=560 pF is selected, then the associated resistance value will be:

$$R' = \frac{\tau}{C} = \frac{0.76 \cdot 10^{-6}}{560 \cdot 10^{-12}} = 1357\Omega$$
.

6)R1 and R2 will be respectively:

$$R1 = \frac{R'}{1 - K1} = \frac{1357}{1 - 0.891} = 12450\Omega$$
  $R2 = \frac{R'}{K1} = \frac{1357}{0.891} = 1523\Omega$ 

the standard values R1=12k $\Omega$  and R2=1.5k $\Omega$  will be chosen.

7)Assuming that the Vcc voltage never falls below 14-15V, the limiting resistor Rs can be selected according to:

$$Rs > \frac{V_{GDx} - V_{ZCDclamp} - V_{F}}{I_{ZCDx} + \frac{V_{ZCDclamp}R2 + (V_{ZCDclamp} - V_{MULTpkmax} - V_{BE})R1}{R1R2}}$$

where  $V_{GDx}$ =15V is the maximum clamp value of the gate drive voltage,  $V_{ZCDclamp} \approx 5.7V$  is the clamp value of the ZCD pin voltage,  $V_F \approx 0.5V$  the forward drop on the diode,  $I_{ZCDx}$ =10mA the maximum ZCD clamp current D and  $V_{BE} \approx 0.55V$  the emitter-to-base forward drop of T. Substituting:

$$Rs > \frac{15 - 5.7 - 0.5}{10 \cdot 10^{-3} + \frac{5.7 \cdot 1500 + (5.7 - 3 - 0.55) \cdot 12000}{1500 \cdot 12000}} = 739\Omega$$

in this case a  $1.5k\Omega$  resistor will be chosen

8)Cs will be selected according to the relationship:

$$Cs < C \frac{V_{ZCDclamp}}{V_{GDx} - V_{ZCDclamp} - V_F} = 560 \cdot 10^{-12} \frac{5.7}{15 - 5.7 - 0.5} = 363pF;$$

a standard value Cs=330 pF will be used.

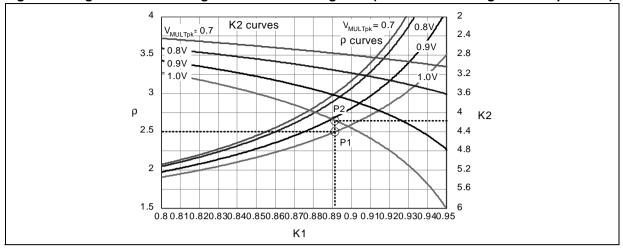



Figure 4. Diagrams for the design of the circuit of figure 3 (valid for wide-range mains operation).

#### BOARD EVALUATION: GETTING STARTED

The AC voltage, generated by an AC source ranging from 90 Vac to 265 Vac, will be applied to the input connector, located close to the bottom left-hand corner.

The 400 VDC output is located close to the bottom right-hand corner and will be connected to the load. If an electronic load is going to be used pay attention to the right polarity: the (+) output terminal is that located closer to the corner.

Like in any offline circuit, extreme caution must be used when working with the application board because it contains dangerous and lethal potentials. The application must be tested with an isolation transformer connected between the AC mains and the input of the board to avoid any risk of electrical shock.

#### 4.1 Board evaluation: bench results and significant waveforms

In the following diagrams the results of some bench evaluations are summarized. A number of waveforms under different load and line conditions are shown for user's reference.

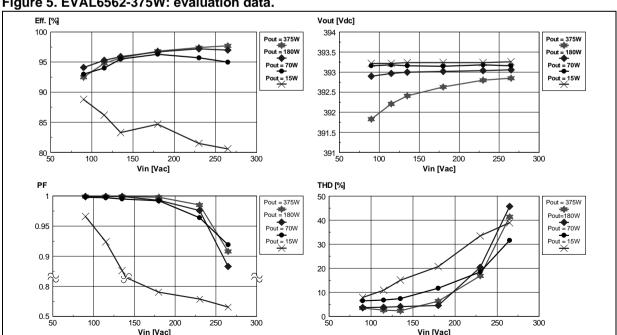



Figure 5. EVAL6562-375W: evaluation data.

Figure 6. EVAL6562-375W: conformity to JEIDA-MITI & EN61000-3-2 standards.

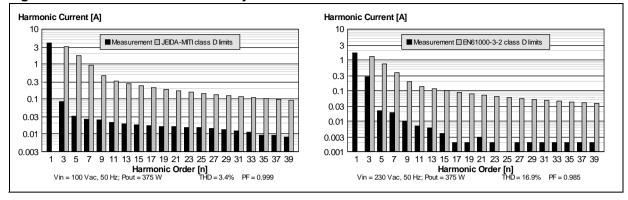



Figure 7. EVAL6562-375W: harmonic emissions at light load (70W).

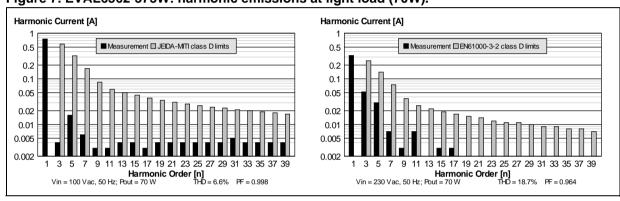
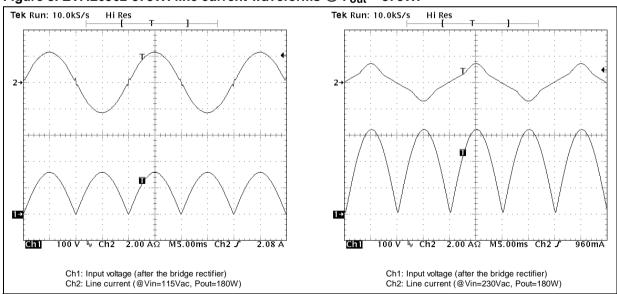




Figure 8. EVAL6562-375W: line current waveforms @ Pout = 375W.



47/

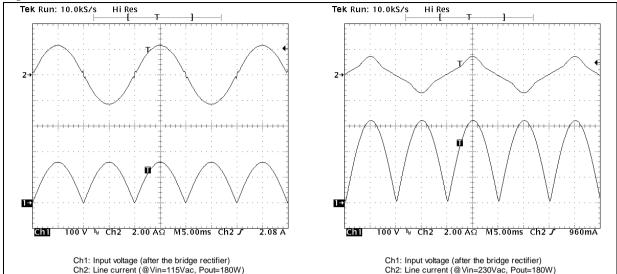
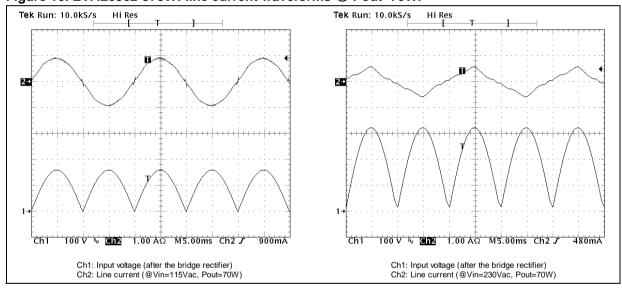




Figure 9. EVAL6562-375W: line current waveforms @ Pout=180W.

Figure 10. EVAL6562-375W: line current waveforms @ Pout=70W.



Note that input LC filter is provided only to clean the line current waveform enough to prevent the measurement system from being misled by an excessive noise level. The filter has not been designed nor tested for EMI compliance.

The board, as is, is able to handle properly an output load as low as 15 W. With lower load levels the system will not start up correctly at low line because the OVP generated at start-up lasts so long that the Vcc voltage drops below the UVLO of the L6562 (e.g. with 4W load the system would stop for 600 ms @ Vin=90Vac). Load transients from the maximum load to levels below 15W may cause the Vcc to be lost as well. Supplying the L6562 from an external source the minimum load that can be handled properly goes to virtually zero.

#### 5 REFERENCES

- [1] "L6562 Power Factor Corrector" Datasheet
- [2] "Design of Fixed-Off-Time-Controlled PFC Pre-regulators with the L6562", AN1792
- [3] "L6561, Enhanced Transition-Mode Power Factor Corrector", AN966



## **AN1895 APPLICATION NOTE**

The present note which is for guidance only, aims at providing customers with information regarding their products in order for them to save time. As a result, STMicroelectronics shall not be held liable for any direct, indirect or consequential damages with respect to any claims arising from the content of such a note and/or the use made by customers of the information contained herein in connection with their products.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

#### STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

477