
EMControl User Guide

Product Version 14.2
January 2002

 1999-2000 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

EMControl User Guide

January 2002 3 Product Version 14.2

Preface . 9

About This Guide . 9
How to Use This Guide . 9
Brief Outline of Different Chapters . 10
Typographic and Syntax Conventions . 11

1
Introduction to EMControl . 13

EMControl Overview . 13
EMControl Users . 15
EMControl Tasks . 16
Checking for EMC Rule Violations . 17

Tasks to be Performed . 18
Using SigNoise with EMControl . 19

2
Setting Up the EMControl Environment. 21

Default EMControl Installation Directory Structure . 21
The EMControl Mapping File . 22
EMControl Basics . 23

Accessing EMControl . 23
Initializing EMControl . 24
Initializing SigNoise . 26

EMControl Properties . 27
Assigning EMControl Property Values . 30
Automatically Attaching Properties to Design Objects . 31
Viewing the Log File for Automatic Property Tagging . 33

Header Information . 33
Information About Critical Nets . 34
Information About Components on Critical Nets . 35

Contents

EMControl User Guide

January 2002 4 Product Version 14.2

Information About Critical Regions . 36
Summary of Tagging . 36

Manually Attaching Properties to Selected Design Objects . 37
Component Properties . 37
Net Properties . 39
Room Properties . 40

EMControl Variables . 42
Customizing EMControl Rule Variable . 47

3
Performing EMControl Rule Checking . 55

EMC Rules . 55
Checking for EMC During Placement . 55

Initial Placement Checks . 56
Detailed Placement Checks . 56

Checking for EMC While Routing . 57
Checking for EMC After Routing . 57
Rule Checking Tasks . 57

Setting Up the EMControl Run . 58
Defining the Scope of the Check . 62
Auditing EMControl Rules . 63
Executing EMControl Rules . 65
Viewing Results . 66
Saving Run Results . 66

4
Resolving EMC Rule Violations in Your Design. 69

Overview of Rule-Checking . 69
Viewing the Results of Rule-Checking . 69

Viewing a Violation . 70
Highlighting Objects . 71
Filtering Violations . 72
Cross-Probing Multiple Violations . 75

EMControl User Guide

January 2002 5 Product Version 14.2

Loading a Markers File . 75
Hiding a Violation Message . 76
Saving a Markers File . 76
Reading an Execute Report . 76

Header Information . 76
Rule-Specific Information . 77

5
Writing Rules . 79

Overview . 79
Developing Rules in EMC . 80
Predicates . 81

Adding a New Predicate . 81
Deleting a Predicate . 81
Editing a Predicate . 82

Parameters . 82
Adding a Parameter . 82
Deleting a Parameter . 83
Exporting a Parameter . 83

Rules . 84
Editing a Rule File . 84
Compiling a Rule File . 84
Writing a Rule . 84
Sample unconnected_critIC_pins Rule . 87
Sample check_via_count Rule . 88

Setting Violation Severity Levels of Rules . 89
To specify objects to associate with a violation . 89

Creating a Help File for a Rule . 90
Running New Rules . 90

A
ARL Training Guide. 93

Introduction . 93
Language Highlights . 93

EMControl User Guide

January 2002 6 Product Version 14.2

EMControl Objects . 93
EMControl Predicates . 94

Getting a Feel for the Language . 95
Basic Language Constructs . 95
Variables and Base Objects . 96
Base Objects and Implied Looping . 97
Predicate Calls . 97
Variable Typing . 98
ARL Operators . 98
Exercises . 99

List Manipulation . 100
What are Lists . 101
List Manipulation Routines . 101
Foreach Construct . 104
Saving Intermediate Results Within a Foreach construct . 104
If Construct . 105
Exercise . 106

Dissection of an existing rule . 107
Rule critical_net_via_count . 107
Rule conn_in_low_freq_regions . 108

Laboratory Exercises . 110
Basic Rules . 110
Modifying existing EMControl rule (conn_in_low_freq_regions) 110
Custom EMC rule writing . 111

B
EMControl Rules. 113

Overview . 113
Placement Rules . 114

central_clock . 114
comp_not_conn_dist . 115
comp_to_conn_dist . 116
conn_in_low_freq_regions . 117
gnd_screw_between_clock_and_conn . 118

EMControl User Guide

January 2002 7 Product Version 14.2

Bypass Rules . 118
bypass_cap_type . 119
bypass_critical_IC . 120
bypass_drvr_rcvr_bidir . 121
bypass_fast_sw_trans . 122
critical_IC_3caps_C_2C_4C . 123
critical_IC_loop_area . 125
decouple_emc_regions . 128
fence_off_emc_regions . 129

Power and Ground Plane Rules . 130
gnd_under_clock . 130
pwr_gnd_plane_separation . 131

DC Routing Rules . 132
bypass_pwr_trace . 132
filters_to_clean_ground . 133
max_pwr_gnd_resistance . 134
pwr_gnd_trace_width . 135

Signal Routing Rules . 136
critical_net_card_edge_dist . 137
critical_net_exp_length . 138
critical_net_man_ratio . 138
critical_net_via_count . 139
critical_net_via_pin_ratio . 140
filtered_IO_signals . 140
max_critical_net_xtalk . 141
nets_over_clean_gnd . 142
no_critical_net_thru_IO_comps . 143
shield_clock_nets . 144
return_path_near_signal_via . 145

Signal Quality Rules . 146
clock_spectral_content . 147
critical_net_ringing . 149
critical_net_termination . 150
single_diff_mode_EMI . 151
sum_diff_mode_EMI . 152

EMControl User Guide

January 2002 8 Product Version 14.2

C
EMControl Predicates . 155

Overview . 155
Physical Environment Objects and Predicates . 155

General-Purpose Predicates . 156
Design Predicates . 160
Component Predicates . 162
Net Predicates . 167
Pin Predicates . 172
Via Predicates . 178
Shape Predicates . 178
Polygon Predicates . 181

Index.. 185

EMControl User Guide

January 2002 9 Product Version 14.2

Preface

This preface discusses the following:

■ About This Guide

■ How to Use This Guide

■ Brief Outline of Different Chapters

■ Typographic and Syntax Conventions

About This Guide

This user guide shows you how to use the EMControl tool to check the electromagnetic
compliance of systems. This ensures that electronic systems operate in their environment
without affecting any other system.

The user guide explains all the necessary concepts and procedures required for using the
rules of the EMControl tool.

The EMControl tool checks for electromagnetic compliance through a set of rules. This guide
describes these rules and also explains the language (ARL) in which these rules are written.
An understanding of ARL enables the user to write his own rules as well as edit the existing
rules to suit his requirements.

How to Use This Guide

The user guide is organized in a way that it begins with a brief introduction of the EMControl
tool followed by one chapter each on the various high level tasks that can be performed by
the tool.

The purpose behind this guide is to:

■ provide conceptual understanding of the tool

■ explain the various rules and predicates which are used in EMControl

■ enable the user to use the rules according to his design requirements

EMControl User Guide
Preface

January 2002 10 Product Version 14.2

■ enable the user to write new rules

If you are a new user and do not have any prior working experience with the EMControl tool,
then start your learning process from the first chapter and continue exploring the different
tools in the sequence as covered in the user guide. If you are using the user guide as
reference, then you may directly reference any chapter corresponding to a particular topic.
Refer details in the Brief Outline of Different Chapters section.

Brief Outline of Different Chapters

This guide is organized into five chapters:

1. Chapter 1: Introduction to EMControl

This chapter gives a brief introduction to the EMControl tool. It discusses the use model
for EMControl, the various tasks that can be performed by EMControl and the tasks
performed by different users of the tool.

2. Chapter 2:Setting Up the EMControl Environment

This chapter describes the EMControl environment, And also talks about how you can
go about changing the default settings. It discusses the basic concepts required to use
the tool.

3. Chapter 3: Performing EMControl Rule Checking

This chapter discusses the various stages at which the various rules of the EMControl
rule can be used. Then, it also talks about the tasks to be performed for checking the
design for electromagnetic compliance.

4. Chapter 4: Resolving EMC Rule Violations in Your Design

This chapter discusses various steps after the rules have been executed on the design.
It talks of how the results are displayed and what information about the execution results
to find where.

5. Chapter 5: Writing Rules

This chapter describes the steps for writing new rules, how to write predicates,
manipulate parameters, and get a rule working. It also lists some sample rules.

EMControl User Guide
Preface

January 2002 11 Product Version 14.2

Typographic and Syntax Conventions

This list describes the syntax conventions used for tools used in the CheckPlus User Guide.
literal (LITERAL) Nonitalic or (UPPERCASE) words indicate key words that you

must enter literally. These keywords represent command
(function, routine) or option names.

argument Words in italics indicate user-defined arguments for which you
must substitute a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument. They take precedence over any other character.

For example, command argument | argument

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices. You can choose one argument
from the list.

{ } Braces are used with OR-bars and enclose a list of choices. You
must choose one argument from the list.

... Three dots (...) indicate that you can repeat the previous
argument. If they are used with brackets, you can specify zero or
more arguments. If they are used without brackets, you must
specify at least one argument, but you can specify more.

argument...: specify at least one argument, but more are
possible

[argument]...: you can specify zero or more arguments

,... A comma and three dots together indicate that if you specify
more than one argument, you must separate those arguments by
commas.

Courier font Indicates command line examples.

EMControl User Guide
Preface

January 2002 12 Product Version 14.2

EMControl User Guide

January 2002 13 Product Version 14.2

1
Introduction to EMControl

EMControl Overview

Systems can adversely impact each other due to electromagnetic interference (EMI), or due
to unwanted coupling of energy between conductors, components, and systems.
Electromagnetic compatibility (EMC) is the ability of electronic systems to function as
expected within their intended environment without adversely affecting other systems.

An effective way to help meet EMC requirements is to use EMC design guidelines or EMC
rules to screen the design for potential problems. You can use the EMControl tool to detect
problem areas in your design early in the design cycle and take immediate steps to resolve
those problems.

EMControl provides this capability of detecting problems by enabling you to repeatedly check
your design against selected sets of EMC rules chosen by a user who has expertise in EMC.

The EMControl product includes several default sets of EMC rules. You can also write your
own rules to verify specific design, environment, and regulatory requirements. Running
EMControl early in the design cycle often helps to detect potential EMC problems before they
can significantly impact product development.

The typical use model for EMControl to check electromagnetic compatibility (EMC) in high-
speed printed circuit board (PCB) design is:

■ Initialize

■ Property Setup

■ Rule Select

■ Customize Rule Parameters

■ Audit

■ Execute

■ Results/Reports

EMControl User Guide
Introduction to EMControl

January 2002 14 Product Version 14.2

Initialize

■ Specifies EMC run directory.

Property Setup

■ Sets the critical components, nets, and regions. The setup can be done automatically or
interactively.

■ Identifies EMC components by attaching the EMC_COMP_TYPE property.

Rule Select

■ Specifies the parameter paths and rule paths.

■ Writes new rules, if required.

■ Selects the rules to be run.

■ Customizes the rule parameters, if required.

■ Specifies the scope of the design to be checked.

Customize Rule Parameters

■ Sets rule parameters.

Audit

■ Performs a check to verify whether or not the required properties are setup.

Execute

■ Executes the selected rules on the specified design.

Results/Reports

■ Views the execute and audit reports.

■ Cross probes the EMC violations using the markers utility.

EMControl User Guide
Introduction to EMControl

January 2002 15 Product Version 14.2

EMControl Users

EMC verification tasks can be performed by three types of EMControl users:

■ EMC expert

■ Design engineer

■ Layout designer

The EMC expert determines the EMC requirements that must be met by the completed
design and then maps these requirements to EMC rules. A combination of past experience
and knowledge of the requirements of the design influence the EMC expert in determining:

■ which EMC rules can be used as is

■ which Cadence-supplied EMC rules must be modified

■ whether or not any new EMC rules must be implemented in order to ensure that the
design meets EMC requirements.

After the EMC expert has identified the EMC rule sets to be used to verify the design, the
design engineer can set up the EMControl tool. The design engineer then implements the
required EMC rule set(s) and associated variables; classifies the components, nets, and
regions in the design according to their various levels of criticality; and attaches the Allegro
and EMControl properties required by the selected EMC rules.

Once the rule set has been identified and property assignments are made, the layout
designer can set up and run EMC rule checks. The layout designer identifies and correct any
EMC rule violations reported during EMC rule checking.

After a prototype is prepared using this method, the EMC expert can verify the design and
identify new sets of EMC rules for further EMC rule checking.

The use of EMControl for design development an iterative process. Throughout design
development, the EMC expert, the design engineer, and the layout designer confer to ensure
that all constraints are being met. They also define trade-offs between constraints, and verify
whether or not the completed design will meet all EMC requirements.

Figure 1-1 on page 16 illustrates a typical workflow that you might use when designing for
EMC.

EMControl User Guide
Introduction to EMControl

January 2002 16 Product Version 14.2

Figure 1-1 EMC Checking Flow

EMControl Tasks

EMControl enables the design engineer and the layout designer to perform the following
tasks:

■ Select specific EMC rule sets to check against the design.

■ View a help file for each rule to determine:

❑ Whether or not the rule should be used for an EMC rule-checking run.

❑ Whether or not the rule should be customized.

❑ The properties and the property values required by the rule.

Prepare
(Design Engineer)

Check
(Layout Designer)

Test
(EMC
Expert)

Define the EMC rule sets and
criteria, based on past practices, new
technologies and changing needs

Rule Set

Categorize ICs and signals by class.
Attach properties.

Identify and correct violations and
document violations

Perform checking and verification.
Specify new rules for further checking.

Prototype

New Rules Define
(EMC Expert)

EMControl User Guide
Introduction to EMControl

January 2002 17 Product Version 14.2

❑ The variables and their values required by the rule.

■ Select the scope of the design that requires checking.

■ Use Audit commands to verify that the properties required by the selected rules have
been properly defined.

■ Run the EMC rule checker to search for EMC violations.

■ View the results of the check in a list of rule violations.

■ Highlight an individual violation within the design.

■ View the feedback from the Markers for correcting the EMC violations.

An EMC expert can use EMControl to customize the default rule-checking in the following
ways:

■ Customizing default EMC rules locally by editing variable values through the
emc_custom.par file.

■ Customizing default EMC rules for an entire site of users by editing variable values in the
emc_param.par site parameter file.

■ Writing and compiling new EMC rules, in the Cadence Advanced Rule Language (ARL).
These rules can be applied in EMC rule checking.

Checking for EMC Rule Violations

The EMC expert, design engineer, and the layout designer have specific tasks to perform for
verifying whether or not a design is EMC compliant.

EMControl can be used during:

■ placement (pre-route) stage

■ routing stage

■ post-route stage

EMControl User Guide
Introduction to EMControl

January 2002 18 Product Version 14.2

Tasks to be Performed

 EMC expert

❑ Use established EMC standards and past experience to determine the EMC
requirements for the design.

❑ Specify or develop project-specific, customized EMC rules and modify system-
provided default EMC rules, if necessary.

❑ Select EMC rule sets for the different stages of design verification.

❑ Review the results of EMC rule-checking runs and specify new EMC rule sets for
further testing.

Design engineer

❑ Set up the EMControl product, if this has not already been done.

❑ Customize EMC rule variables (parameters) where required. The EMC expert can
provide key inputs here.

❑ Assign relevant EMControl and Allegro properties to components and set the initial
property values.

❑ Set up the EMC rule-checking environment.

❑ Specify the set of EMC rules to use during each rule-checking run.

❑ Specify the portion of the design to check for each rule set.

❑ Audit the EMControl tool setup and design preparation.

❑ Confer with the EMC expert to resolve any setup issues.

Layout designer

❑ Run EMC rule checking.

❑ View EMC rule violation messages and correct problems in the design.

❑ Confer with the design engineer and the EMC expert as required while resolving
violations.

❑ Run rule checking again, if required.

EMControl User Guide
Introduction to EMControl

January 2002 19 Product Version 14.2

Using SigNoise with EMControl

Some of the signal routing and signal quality rules provided with EMControl use SigNoise
simulations and SigNoise device models. These EMC rules enable design engineers to begin
evaluating their designs for electromagnetic interference early in the design process and with
increasing accuracy throughout the design development.

Before running EMC rule-checking, you need to perform the following SigNoise setup tasks:

■ Initialize the SigNoise run directory.

■ Specify the SigNoise model libraries to be used.

Assign the SIGNAL_MODEL property to components.

EMControl User Guide
Introduction to EMControl

January 2002 20 Product Version 14.2

EMControl User Guide

January 2002 21 Product Version 14.2

2
Setting Up the EMControl Environment

Default EMControl Installation Directory Structure

The EMControl installation directory is located on your system at <your_install_dir>/
share/pcb/signal/emc, where your_install_dir specifies the path of the directory
where the design software is installed.

The EMControl installation directory <your_install_dir>/share/pcb/signal/emc
contains the following subdirectories:

■ rule_src: This directory contains six source rule files (source rule files) and the
corresponding rule-verification files:

❑ emc_placement.arl and emc_placement_verify.arl

❑ emc_bypass.arl and emc_bypass_verify.arl

❑ emc_pwr_gnd_dist.arl and emc_pwr_gnd_dist_verify.arl

❑ emc_dc_route.arl and emc_dc_route_verify.arl

❑ emc_sig_route.arl and emc_sig_route_verify.arl

❑ emc_sig_qual.arl and emc_sig_qual_verify.arl

■ rules: This directory contains the compiled Cadence mapping file
(emc_allegro.env). This rules directory also contains the six complied rule files, and
the corresponding compiled rule-verification files:

❑ emc_placement.rle and emc_placement.rle.verify

❑ emc_bypass.rle and emc_bypass.rle.verify

❑ emc_pwr_gnd_dist.rle and emc_pwr_gnd_dis.rle.verify

❑ emc_dc_route.rle and emc_dc_route.rle.verify

❑ emc_sig_route.rle and emc_sig_route.rle.verify

❑ emc_sig_qual.rle and emc_sig_qual.rle.verify

EMControl User Guide
Setting Up the EMControl Environment

January 2002 22 Product Version 14.2

■ include: This directory contains the following files and directories:

❑ emc_param.par: This file defines the Cadence supplied user-definable
parameters and is used to assign them default values.

❑ emc_custom.par: This is a dummy file copied into the user’s directory. Initially, it is
empty. When the user modifies the values of any parameters, the changes are
reflected in this file.

❑ site directory: This directory contains the site parameter file, emc_param.par. You
can use the emc_param.par file to customize the values of different parameters for
your site. However, you must have write permissions to modify this file.

■ help: This directory contains the help (.hlp) files for the rules. You can display the help
file contents in the EMC Rule Selection form rule browser. For more information about
displaying help file contents, refer Chapter 3, “Performing EMControl Rule Checking,”

■ data: This directory contains miscellaneous files.

■ symbols: This directory contains miscellaneous files.

The EMControl Mapping File

EMControl uses a mapping file to define the various aspects of the rule-checking
environment.

Mapping File Functions

The mapping file emc_allegro.env:

■ Identifies the objects in the layout physical environment that are used by the EMC rules.

■ Identifies the EMControl predicates and the objects that they use.

EMC rules are implemented using predicates to perform their functions. For reference
information on the EMControl predicates, see Appendix C, “EMControl Predicates.”

■ Maps EMControl predicates to the SKILL/C functions that perform their tasks.

■ Defines message severity levels for EMControl rule violations.

Message Severity Levels

The severity levels assigned to rule violations are defined in the mapping file. You can use
any of the following severity levels to display a violation message in the Markers dialog box:

EMControl User Guide
Setting Up the EMControl Environment

January 2002 23 Product Version 14.2

■ FATAL (terminates rule execution)

■ ERROR

■ WARNING

■ OVERSIGHT (a probable warning)

■ INFO

Note: Severity levels are listed in the descending order of importance.

EMControl Basics

The following sections describe some basic EMControl tasks and provide general information
you will need to use EMControl.

■ Accessing EMControl on page 23

■ Initializing EMControl on page 24

■ Initializing SigNoise on page 26

Accessing EMControl

To access EMControl from SPECCTRAQuest:

➤ Select Tools > EMControl Rules from SPECCTRAQuest menu bar.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 24 Product Version 14.2

Initializing EMControl

Before you perform EMControl checking on a design, you may want to modify the default
setup in the EMC Initialization dialog box.

To open the EMC Initialization dialog box:

➤ Select Initialize from the EMC menu.

The EMC Initialization dialog box appears.

Initializing the EMC Run Directory

To create an EMC run directory, you need write privileges. To run EMControl, you need read
privileges for the mapping files and the SigNoise run directory.

EMControl uses the EMC run directory to read and store the files that it generates for rule
checking of the current design. These files include:

■ emcrc.log: This file contains a summary of the EMControl session, including the name
of the design, the rule names selected, the start and stop time, and the total number of
violations detected.

■ emcrc.ini: This file contains information on the rules that you have selected for the
check run.

■ emcrc.setup: This file contains the rule file information settings used during the latest
rule check.

■ emcrc_execute.msg: This file contains the short and advisor messages that describe
the violations encountered in an EMC rule-checking session.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 25 Product Version 14.2

■ emcrc.mkr: This file contains the information required by the markers utility for each rule
violation.

■ emcrc.verify: This file contains the rule file information settings used during the latest
run to verify (audit) the property setup for the selected rules.

■ emcrc_verify.msg: This file contains the short and advisor messages that describe
the violations encountered during property verification by the Audit command.

■ emcrc.res: This file contains the number of violations recorded against each rule in the
latest run. This file is created when you use Allegro in no-graphic mode.

■ emcrc_propedit.log: This file contains the messages displayed in the most recent
run of automatic property tagging.

To define the EMC run directory

When EMControl is used for the first time, the default run directory is assigned the name
emc.run1. Notice that the name has suffix 1. Subsequently, whenever you run EMControl,
the number in the default run directory is incremented by 1. Therefore, you have all EMC run
directories for all rule-checking runs you perform. You can, at any point of time initialize any
run directory and view the results. By default, EMControl creates the run directory. You can
change this location. To change the location:

1. Specify the full path in EMC Run Directory to place the directory at another location.

Note: You need write privileges to change the path of the run directory.

2. Click OK.

Saves the settings and closes the EMC Initialization dialog box.

Note: The EMC run directory name is stored in a design-level property called
EMC_RUN_DIR.

Specifying the Mapping File

Cadence supplies the default mapping file called emc_allegro.env. In addition to this fie,
you can also write your own predicates and create a new env file for specifying mappings to
SKILL functions.

Multiple mapping files can be specified in the EMC Initialization dialog box.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 26 Product Version 14.2

To define the environment for checking

➤ You specify the location of the default mapping file and any other mapping files that you
have created in the EMC Initialization dialog box. The mapping files have to separated
by spaces.

■ The.env file name extension is required.

■ By default, EMControl searches for a mapping file in the software installation hierarchy.
Edit the path if the file is at another location.

Initializing SigNoise

To run any of the EMControl rules that require information from SigNoise, first initialize
SigNoise as outlined in this section. Appendix B, “EMControl Rules,” describes the
EMControl rules in detail.

Before running EMControl rule checking, you need to perform the following SigNoise setup
tasks:

■ Initialize the SigNoise run directory.

■ Specify which SigNoise model libraries to use.

■ Assign the SIGNAL_MODEL property to components.

To initialize the SigNoise run directory:

➤ In the SigNoise menu, select Initialize.

This should be the same SigNoise run directory you provided in the EMC Initialization dialog
box. (See Initializing EMControl.)

To specify which SigNoise model libraries are to be used:

1. In the SigNoise menu, select Library to display the Signal Analysis Library Browser.
Load the required libraries.

2. Select OK in the Signal Analysis Library Browser.

This librefs.dat file is created in the SigNoise run directory. This file contains paths
to the specified SigNoise libraries to lookup signal integrity model data.

EMControl rules that are SigNoise-dependent use the librefs.dat file to locate the
relevant signal integrity models. EMControl locates the librefs.dat file by looking in the

EMControl User Guide
Setting Up the EMControl Environment

January 2002 27 Product Version 14.2

directory specified in the SigNoise run directory field of the EMC Initialization form. If the file
does not exist, the default SigNoise library file from the software installation is used:

$CDS_INST_DIR/share/pcb/signal/cds_iocells.dml

To assign the SIGNAL_MODEL property to components:

1. In the SigNoise menu, select Model to display the Signal Model Assignment dialog
box.

2. Assign the SIGNAL_MODEL property to required components.

3. To retain the SIGNAL_MODEL properties, save the design.

EMControl Properties

To determine which design objects to check ,the EMC rules examine certain property values
associated with design objects. For example, the EMC bypass_critical_IC rule
searches for ICs with the EMC_CRITICAL_IC property assigned. For each critical IC it finds,
EMControl searches for a minimum number of bypass capacitors attached to the component.
EMControl identifies the bypass capacitors by verifying whether or not the EMC_COMP_TYPE
property is assigned the BYPASS_CAP value. EMControl also evaluates each bypass
capacitor by its assigned TOL and VALUE property values and reports any problems.

Table 2-1 on page 28 alphabetically lists the properties used by the system-provided EMC
rules. It also lists the EMC rules that examine each property.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 28 Product Version 14.2

Table 2-1 Properties Used by the System-Supplied EMControl Rules

Property Name Description Used in Rules

EMC_COMP_TYPE String that specifies a variable
to identify the component type
for an IC. Assigns one of the
following predefined values:

FAST_SWITCH_TRANSISTO
R

BYPASS_CAP

LINE_DRIVER

LINE_RECIEVER

BIDIR_TRANS

CLOCK_GEN

FILTER

GND_SCREW

FENCE

NONE

bypass_cap_type

bypass_critical_IC

bypass_drvr_rcvr_bidir

bypass_fast_sw_trans

bypass_pwr_trace

central_clock

clock_spectral_content

critical_IC_loop_area

critical_IC_3caps_C_2C_4C

decouple_emc_regions

fence_off_emc_regions

filtered_IO_signals

filters_to_clean_ground

gnd_under_clock

gnd_screw_between_clock_

and_conn

nets_over_clean_gnd

shield_clock_nets

single_diff_mode_EMI

sum_diff_mode_EMI

return_path_near_signal_via

EMC_CRITICAL_IC String that identifies the class
of a critical IC

bypass_critical_IC

conn_in_low_freq_regions

critical_IC_loop_area

critical_IC_3caps_C_2C_4C

return_path_near_signal_via

EMControl User Guide
Setting Up the EMControl Environment

January 2002 29 Product Version 14.2

EMC_CRITICAL_NET String that identifies the class
of a critical net

clock_spectral_content

critical_net_card_edge_dist

critical_net_exp_length

critical_net_man_ratio

critical_net_ringing

critical_net_termination

critical_net_via_count

critical_net_via_pin_ratio

max_critical_net_xtalk

no_critical_net_thru_IO_comps

critical_net_hole_dist

critical_net_return_path

return_path_near_signal_via

EMC_CRITICAL_REGION String that identifies the class
of a critical region.

conn_in_low_freq_regions

decouple_emc_regions

fence_off_emc_regions

PINUSE String that identifies pin use. bypass_drvr_rcvr_bidir

central_clock

clock_spectral_content

critical_IC_loop_area

critical_IC_3caps_C_2C_4C

critical_net_via_pin_ratio

shield_clock_nets

single_diff_mode_EMI

sum_diff_mode_EMI

TOL String that determines the
tolerance of a bypass
capacitor.

bypass_critical_IC

bypass_cap_type

Property Name Description Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 30 Product Version 14.2

For more information on individual EMC rules and the properties that each rule uses, you can:

■ Refer the help information available for each rule in the rule browser (see Chapter 3,
“Performing EMControl Rule Checking,”).

■ Refer to the individual rule descriptions in Appendix B, “EMControl Rules.”

Note: All the properties used by EMControl are standard layout properties.

Assigning EMControl Property Values

EMC regions are areas within a design where components and nets with similar EMC
characteristics are clustered together. EMC regions are defined using the Allegro and
SPECTRAQuest room mechanism.

VALUE String that determines the
capacitance of a bypass
capacitor.

critical_IC_3caps_C_2C_4C

bypass_critical_IC

bypass_cap_type

VOLTAGE String that identifies a
nonsignal net. For ground, use
VOLTAGE=0. For power, use
VOLTAGE= a nonzero value.

bypass_pwr_trace

comp_to_conn_dist

filters_to_clean_ground

gnd_under_clock

max_pwr_gnd_resistance

nets_over_clean_gnd

no_critical_net_thru_IO_comps

pwr_gnd_trace_width

shield_clock_nets

bypass_cap_para_plane_squa
re

VOLTAGE_SOURCE_PIN String that identifies the
voltage source when no
independent voltage plane is
available. Attach property
VOLTAGE_SOURCE_PIN to a
voltage source pin.

max_pwr_gnd_resistance

Property Name Description Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 31 Product Version 14.2

Schematic implementation is the recommended time for the design engineer to assign EMC-
specific classes and other required properties to components and nets. Property
requirements are determined by the specific rules included in an EMC rule-checking run.

EMControl supplies up to five critical frequency classifications to describe the EMC
characteristics of the ICs and nets in a design. You can either accept these default classes or
you can redefine the boundary values to create up to five critical frequency classes that better
describe the EMC characteristics of the components and nets comprising your design.

For example, to run EMC rules based on EMC regions:

1. To define the required EMC regions in your design, use the design environment software
to create rooms in your design.

2. Assign EMC_CRITICAL_REGION property values to rooms on the board according to the
frequency level of the components and nets clustered together within each region.

3. Assign an appropriate EMC_CRITICAL_IC and EMC_CRITICAL_NET property value to
all ICs and nets located in each region to identify the EMC characteristics of each
component and net.

You can perform either an automatic or a manual process to assign EMControl property
values to objects.

■ To automatically assign property values to design objects, use the Auto Setup EMC
menu option.

See Automatically Attaching Properties to Design Objects for information on attaching
properties automatically.

■ To manually assign property values to selected design objects, use the Manual Setup
EMC menu option.

See Manually Attaching Properties to Selected Design Objects for information on
attaching properties manually

Stackup definition occurs at the layout stage of the design process. The definition of physical
and electrical constraints can occur either in the layout stage or in the schematic design
stage.

Automatically Attaching Properties to Design Objects

You can attach the critical frequency classes to your design objects.

 To attach EMC properties to your design:

EMControl User Guide
Setting Up the EMControl Environment

January 2002 32 Product Version 14.2

1. Select Auto Setup from EMC menu.
The EMC Auto Property Tagger dialog box appears.

2. Select the critical Frequency Class toggle buttons to specify the number of classes.
You can have up to five consecutive critical frequency classifications for components,
nets, and regions. For example, when you deselect CLASS4, CLASS5 is also
deselected. You are left with CLASS1, CLASS2, and CLASS3.

3. Specify the Voltage Swing and Rise/Fall Time values, if required.
The values you enter are saved as a property on the design but are invisible to users.

4. Click the toggle button to select or deselect the Supersede Existing Properties.
When the Supersede Existing Properties check box is selected, any existing
frequency class boundary values are replaced. When the Supersede Existing
Properties check box is not selected, new frequency classes are added but the
existing frequency class boundary values are not changed.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 33 Product Version 14.2

5. Click Tag.
The Auto Tag Report appears.

Note: The EMC_CRITICAL_IC, EMC_CRITICAL_NET, and EMC_CRITICAL_REGION
properties are attached and the EMC AutoPropertyTag log file (emcrc_propedit.log)
is created.

Viewing the Log File for Automatic Property Tagging

When you automatically attach critical frequency class properties to objects in your design,
EMControl creates the EMC AutoPropertyTag log file (emcrc_propedit.log) in the
EMControl run directory and displays the file.

The log file contains the following sections:

■ Header Information

■ Information About Critical Nets

■ Information About Components on Critical Nets

■ Information About Critical Regions

■ Summary of Tagging

Header Information

The EMC AutoPropertyTag Log file contains the following header information:

■ The name of the design for which the report was generated

■ The date and time the report was generated

■ The settings for the run:

❑ The names of critical frequency classes used

❑ The slew rate associated with each class

❑ Whether Supersede Existing Properties was on or off

EMControl User Guide
Setting Up the EMControl Environment

January 2002 34 Product Version 14.2

The following is an example of a log file header:

Information About Critical Nets

The Checking Nets section of an EMC AutoPropertyTag log file contains the following
information:

■ The name of the net

■ The maximum slew rate on the net

■ The critical frequency class name value for the EMC_CRITICAL_NET property if it is
attached to the net

EMControl User Guide
Setting Up the EMControl Environment

January 2002 35 Product Version 14.2

The following is an example from the Checking Nets section of an EMC AutoPropertyTag
log file:

Information About Components on Critical Nets

The Checking Components section of an EMC AutoPropertyTag log file contains the
following information for every component:

■ The name of each component

■ The name and critical frequency class for all critical nets that connect to the component

■ The number of nets of each critical class.

■ The critical frequency class name value for the EMC_CRITICAL_IC property attached
to the component (this is the highest value of the EMC_CRITICAL_NET property
attached to the nets connected to the component)

The following is an example of the Checking Components section of an EMC
AutoPropertyTag log file:

EMControl User Guide
Setting Up the EMControl Environment

January 2002 36 Product Version 14.2

Information About Critical Regions

The Checking Regions section of an EMC AutoPropertyTag log file contains the following
information:

■ A list of components in the room with critical frequency class name values attached

■ The total number of components tagged with each critical frequency class

■ The critical frequency class name value for the EMC_CRITICAL_REGION property
attached to the room.

The following is an example taken from the Checking Regions section of an EMC
AutoPropertyTag log file:

 *** Checking Regions ...

 Critical Component(s) in ROOM1 :

 [ZC5:CLASS2 ZB5:CLASS2 ZC6:CLASS2 ZB6:CLASS2 ZC7:CLASS2 ZB7:CLASS2]

 [CLASS2 - 6]

 Existing EMC_CRITICAL_REGION = CLASS2 is correct

Summary of Tagging

The summary of tagging section contains a summary of the tagged critical components,
critical nets, and critical regions. An example of the summary of Tagging section is displayed:

--

 Autotag log summary

--

 Critical nets tagged

 CLASS1:

 NET2A

 NET3

 CLASS2:

 NET1A

 NET1

 NET4

--

 Critical components tagged

 CLASS1:

 U2

 U1

--

EMControl User Guide
Setting Up the EMControl Environment

January 2002 37 Product Version 14.2

Critical regions tagged

CLASS1:

 room1

 clock_room

--

Manually Attaching Properties to Selected Design
Objects

A component can be selected for property tagging by its reference designator, device type,
or property.

To the selected design objects, you can attach:

■ Component Properties

■ Net Properties

■ Room Properties

Component Properties

To attach component properties to a design object

1. Select Manual Setup from the EMC menu.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 38 Product Version 14.2

The EMC Property Tagger dialog box is displayed..

2. Specify the Object field as comp.

The components are loaded in the Available Objects.

3. Filter the available objects by specifying Name Filter.

Note: Filtering can be done on the basis of property by toggling on the properties given
in the Available Objects list.

4. Filter the available objects further by selecting the EMC_CRITICAL_IC and
EMC_COMP_TYPE check boxes and by setting the class and type respectively.

5. Click the component in the list.

This transfers the component from the Available Objects list to Selected Objects list.

Note: All > and < All can be used for transferring all components between the
Available Objects list and the Selected Objects list.

6. Specify the property value in Selected Properties.

7. Click Apply.

EMC_CRITICAL_IC

Selected Properties

EMC_COMP_TYPE
Object

Name Filter

View

EMC Property Tagger

Available Objects Selected Objects

Close

Show Objects Apply

Help

<-All

All->

EMC_CRITICAL_IC
EMC_COMP_TYPE

NONE

NONE

NONE
NONE*

R1
R2
U1
U2

Comp (RefDes)

EMControl User Guide
Setting Up the EMControl Environment

January 2002 39 Product Version 14.2

All the components in Selected Objects list are tagged with the property value
displayed in the Selected Properties list.

Note: If you assign a property the value NONE, EMC will delete the property.

Net Properties

To attach net properties

1. Select Manual Setup from EMC menu.

The EMC Property Tagger dialog box is displayed.

2. Specify the Object field as net.

The selected nets are loaded in the Available Objects.

3. Filter the available objects by specifying Name Filter.

Note: Filtering can be done on the basis of property by toggling the properties given in
the Available Objects list.

Selected Properties

EMC_COMP_TYPE
Object

Name Filter

View

EMC Property Tagger

Available Objects Selected Objects

Close

Show Objects Apply

Help

<-All

All->

EMC_CRITICAL_NET
EMC_COMP_TYPE

NONE

NONE

NONE
NONE*

Net

NET1
NET1A
NET2
NET2A

EMC_CRITICAL_NET

EMControl User Guide
Setting Up the EMControl Environment

January 2002 40 Product Version 14.2

4. Filter the available objects further by checking the EMC_CRITICAL_NET check box
and setting the class.

5. Click the net in the list.

This transfers the net from the Available Objects list to Selected Objects list.

Note: All > and < All can be used for transferring all nets between the Available
Objects list and the Selected Objects list.

6. Specify the property value in the Selected Properties.

7. Click Apply.

All the nets in Selected Objects list are tagged with the property value given in the
Selected Properties list.

Note: If you give a property the value NONE, EMC will delete the property.

Room Properties

To attach room properties

1. Select Manual Setup from EMC menu.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 41 Product Version 14.2

The EMC Property Tagger dialog box appears.

2. Specify the Object field as room.

The selected rooms are loaded in the Available Objects.

3. Filter the available objects by specifying Name Filter.

Note: Filtering can be done on the basis of property by toggling on the properties given
in the Available Objects list.

4. Filter the available objects further by checking the EMC_CRITICAL_REGION check
box and setting the class.

5. Click on the room in the list.
This transfers the room from the Available Objects list to Selected Objects list.

Note: All > and < All buttons can be used for transferring all rooms between the
Available Objects list and the Selected Objects list.

6. Specify the property value in the Selected Properties.

7. Click Apply.

Selected Properties

EMC_COMP_TYPE
Object

Name Filter

View

EMC Property Tagger

Available Objects Selected Objects

Close

Show Objects Apply

Help

<-All

All->

EMC_CRITICAL_IC
EMC_COMP_TYPE

NONE

NONE

NONE
NONE*

Room EMC_CRITICAL_REGION

EMC_CRITICAL_REGION

EMControl User Guide
Setting Up the EMControl Environment

January 2002 42 Product Version 14.2

All the rooms in Selected Objects list are tagged with the property value given in the
Selected Properties list.

Note: If you give a property the value NONE, EMC will delete the property.

EMControl Variables

In a design, you may use default variables or, based upon your requirements, edit default
variables to create user-defined variables.The emc_param.par file contains the default
definitions for all user-definable EMControl variables. Your design may require that you edit
the default variable values, or you may choose to use the default values as provided.

EMControl requires that you assign a critical frequency class property to
significant or critical components and nets before you perform EMC rule checking. Critical
components include ICs that are relevant to rules, which examine critical ICs, line drivers, line
receivers, fast-switching transistors, or bidirectional transceivers.

Table 2-2 on page 42 describes the user-modifiable EMControl variables that are used by the
EMC rules. The table lists the default variable values and lists the EMC rules that use each
variable. The variables are listed in the order in which they appear in emc_param.par.

In Table 2-2 on page 42, a variable name that is followed by a double asterisk (**) identifies a
variable that has been parameterized. A parameterized variable defines a sequence of up to
five values, each of which applies to a corresponding critical frequency class definition. See
Editing Parameterized Variables to Describe Critical Frequency Classes for information on
modifying parameterized variables.

Table 2-2

Variable Name Description Default Value Used in Rules

MIN_BYPASS_CAPS*
*

Minimum number of
bypass capacitors for
critical ICs

3 2 1 1 1 bypass_critical_IC

EMC_BYPASS_CAP_
PWR_PIN_DIST

Maximum distance
between the power pin
and bypass capacitors

300

EMControl User Guide
Setting Up the EMControl Environment

January 2002 43 Product Version 14.2

BYP_CAP_SENS_DI
ST**

Bypass capacitor
sensitive distance

300

350

400

450

500

bypass_critical_IC

bypass_drvr_rcvr_bi
dir

bypass_fast_sw_tra
ns

bypass_pwr_trace

critical_IC_loop_are
a

critical_IC_3caps_C
_2C_4C

decouple_emc_regi
ons

POWER_TRACE_SE
NS_DIST

Distance between power
trace and bypass
capacitors

300 bypass_pwr_trace

ALL_BYPASS_CAP_T
YPE**

Permitted bypass
capacitor types

“CAP-
1:82UF:5%”
“CAP-
2:0.01uf:5%”
“CAP-
3:0.01uf:3%”
“CAP-
2:10uf:4%”
“CAP-
4:1.0uf:2%”
“CAP-5:5uf:5%”

bypass_cap_type

CRITICAL_IC_BYP_C
AP_TYPE**

Bypass capacitor types
allowed for critical ICs

“CAP1:82UF:5
%” “CAP-
3:0.01uf:3%”
“CAP-
2:10uf:4%”
“CAP4:1.0uf:2%
” “CAP-
5:5uf:5%” “CAP-
5:5uf:5%” “CAP-
5:5uf:5%

bypass_critical_IC

Variable Name Description Default Value Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 44 Product Version 14.2

EMC_CRITICAL_EXP
OSED_LEN**

Maximum exposed length
allowed on a critical net

2000

3000

4000

5000

6000

critical_net_exp_len
gth

CRITICAL_TO_MHAT
TAN_LEN_RATIO**

Ratio of critical net length
to manhattan length

1.1 1.2 1.3 1.4
1.5

critical_net_man_rati
o

nets_over_clean_gn
d

GND_PWR_GND_SE
PARATION

Minimum power and
ground trace width

20 pwr_gnd_trace_widt
h

MIN_PWR_GND_SE
PARTATION

Minimum z-axis distance
between power and
ground plane

5 pwr_gnd_plane_sep
aration

MAX_PWR_GND_SE
PARATION

Maximize z-axis distance
between power and
ground plane

50 pwr_gnd_plane_sep
aration

EXT_NET_EDGE_CR
ITICAL_DIST**

Minimum distance
between critical nets on
external layers and
copper edge

500

550

600

550

700

critical_net_card_ed
ge_dist

INT_NET_EDGE_CRI
TICAL_DIST**

Minimum distance
between critical nets on
internal layers and copper
edge

300

350

400

450

500

critical_net_card_ed
ge_dist

EMC_COMP_CONN_
DISTANCE

Minimum distance
between components and
the connector

1000 comp_to_conn_dist

Variable Name Description Default Value Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 45 Product Version 14.2

EMC_VIA_COUNT** Maximum number of vias
for each critical net

7 8 9 10 11 critical_net_via_cou
nt

CAP1_DIST_FROM_
PWR_PIN**

Distance of capacitor C1
from the power pin

300

350

400

450

500

critical_IC_3caps_C
_2C_4C

CAP2_DIST_FROM_
PWR_PIN**

Distance of capacitor C2
from the power pin

200

250

300

350

400

critical_IC_3ca_ps_
C_4C

CAP3_DIST_FROM_
PWR_PIN

Distance of capacitor C3
from the power pin

100

150

200

250

300

critical_IC_3ca_ps_
C_4C

POWER_TRACE_BY
PASS_DIST

Length of the power trace
for which a bypass
capacitor should exist

500 bypass_pwr_trace

GUARDING_DISTAN
CE

Maximum distance
between a guard trace
and a clock net

100 shield_clock_nets

COMP_CONN_MIN_
DISTANCE

Minimum distance
between a connector and
components not
connected to it

1000 comp_not_conn_dist

COMP_COMP_MIN_
DISTANCE

Minimum distance
between components not
connected to a connector
and components that are
connected to it

500 comp_not_conn_dist

Variable Name Description Default Value Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 46 Product Version 14.2

LOOP_AREA_COEF
FICIENT**

Maximum ratio of actual
area to reference area

1.5 2.5 3.5 4.5
5.5

critical_IC_loop_are
a

MAX_VIA_PIN_RATI
O

Maximum ratio of vias to
pins on a critical net

1.5 2.5 3.5 4.5
5.5

critical_net_via_pin_
ratio

PIN_PIN_RESISTAN
CE

Maximum pin-to-pin
resistance

0.0025 max_pwr_gnd_resist
ance

PIN_PLANE_RESIST
ANCE

Maximum pin-to-plane
resistance, for a design
with dedicated plane
layers

0.15 max_pwr_gnd_resist
ance

XTALK_WINDOW Maximum distance to
search for neighbor nets
when calculating
crosstalk

50 max_critical_net_xta
lk

MAX_PEAK_XTALK** Maximum allowed
crosstalk from any
individual neighbor net

0.05

0.1 0.

15 0

0.2

0.25

max_critical_net_xta
lk

MAX_OVER_UNDER
SHOOT**

Ratio of maximum
allowed overshoot and
undershoot

0.1

0.15

0.2

0.25

0.3

critical_net_ringing

BYP_CAP_SEP_DIS
T

Defines search area for
boundaries

1500 2000 2500
3000

decouple_emc_regi
ons

FENCE_BOUNDARY
_DIST

Sensitive distance
between boundary and
fence

500 750 1000
1250

fence_off_emc_regi
ons

FENCE_BOUNDARY
_RATIO

Minimum overlap
between fence and
boundary segments

0.8 0.7 0.6 0.5 fence_off_emc_regi
ons

Variable Name Description Default Value Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 47 Product Version 14.2

Customizing EMControl Rule Variable

In a design, you may use default variables or, based upon your requirements, edit default
variables to create user-defined variables.The emc_param.par file contains the default
definitions for all user-definable EMControl variables. Your design may require that you edit
the default variable values, or you may choose to use the default values as provided.

If you wish to change the values for EMControl variables, write them into the
emc_custom.par file. It is a dummy file copied into your directory. Initially, it is empty. When
you modify the values of any parameter, the changed values are reflected in this file.

You can also change values of certain parameters for a specific site through the site
parameter file, emc_param.par in the site directory. If you have write permissions, this file
can be written onto to reflect the modified values for that site.

EMControl requires that you assign a critical frequency class property to significant or critical
components and nets before you perform EMC rule checking. Critical components include

GND_SCREW_SENS
_DIST_RATIO

Ratio of length to width for
the area searched for a
ground screw

0.25 gnd_screw_between
_clock_and_conn

GUARD_TRACE_VIA
S_PER_LAMBDA

Number of vias per
lambda length on a guard
trace

4 shield_clock_nets

MAX_CLOCK_SPEC
TRAL_CONTENT

Staircase limit for
frequency content on
critical clock nets

“0MHz:5.0V’
“30MHz:0.9V”
“75MHz:0.7V”
“500MHz:0.1V”

clock_spectral_cont
ent

PULSE_DUTY_CYCL
E

Pulse frequency and duty
cycles for
EMC_CRITICAL_NET
property values

“100MHz: 50%
75MHz: 50%
50MHz: 50%”

clock_spectral_cont
ent

MAX_SIMULATION_C
YCLE

Number of simulation
cycles performed by
SigNoise

2 clock_spectral_cont
ent

MAX_RETURN_VIA_
DIST

Maximum distance
between jumping via and
return capacitor/via

200 return_path_near_si
gnal_via

Variable Name Description Default Value Used in Rules

EMControl User Guide
Setting Up the EMControl Environment

January 2002 48 Product Version 14.2

ICs that are relevant to rules, which examine critical ICs, line drivers, line receivers, fast-
switching transistors, or bidirectional transceivers.

To customize EMControl variables:

1. Select the rules you want to customize in the tree view.

2. Click Customize in the EMC Rule Selection dialog box.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 49 Product Version 14.2

The EMC Parameter Customization dialog box is displayed.

3. Select the variables from Local Parameters.

The selected entries are displayed in the edit box of the Local Parameters section.

4. Select the variables from Global Parameters.

EMC Parameter Customization

Local Parameters

Global Parameters

5Number of Classes

Load Default Make Default

Load Default Make Default

OK Cancel Help

BYP_CAP_SENS_DIST 300.0 350.0 400.0 450.0 500.0

FENCE_BOUNDARY_DIST 500.0 750.0 1000.0 1250.0
FENCE_BOUNDARY_RATIO 0.8 0.7 0.6 0.5
BYP_CAP_SEP_DIST 1500.0 2000.0 2500.0 3000.0
LOOP_AREA_COEFFICIENT 1.5 2.5 3.5 4.5 5.5

BYP_CAP_SENS_DIST 300.0 350.0 400.0 450.0 500.0
EXPOSED_LENGTH 7500.0
PULSE_DUTY_CYCLE “100MHz:50% 75MHz:50% 50MHz:50%”
MAX_SIMULATION_CYCLE 2
EMI_REGULATION “FCC_CLASS_A”
DESIGN_MARGIN 10.0

EMControl User Guide
Setting Up the EMControl Environment

January 2002 50 Product Version 14.2

The selected entries are displayed in the edit box of the Global Parameters section.

5. Customize the values as needed in the edit box.

6. Click on Make Default if you wish to keep the new settings. This writes the new values
into the site parameter file.

or

Click on Load Default if you wish to keep the default settings.

Note: You need write permissions for emc_param.par site parameter file to change the
default settings for a site.

7. Click OK.

The settings are saved in the emc_param.par file and closes the EMC Parameter
Customization dialog box.

Note: If you change values of certain parameters and click OK directly, the changes are
reflected in the emc_custom.par file, which is user-specific.

Editing Parameterized Variables to Describe Critical Frequency Classes

The EMC rules use parameterized variables to associate a sequence of variable definitions
with corresponding categories, or classes, of critical ICs, nets, and regions. The definition for
a parameterized variable consists of a string of up to five values, one value for each critical
frequency class of ICs, nets, or regions that is available for EMC rule checking. Table 2-3 on
page 51, Table 2-4 on page 51, and Table 2-5 on page 52 list the default values associated
with critical IC, net, and region classes, respectively.

The default emc_param.par file, EMControl provides five class definitions each for critical
ICs and nets. For example, in Table 2-4 on page 51, the default LOOP_AREA_COEFFICIENT
variable used to calculate the constraint area for a critical net is defined as follows:

#define LOOP_AREA_COEFFICIENT "1.5 2.5 3.5 4.5 5.5"

In this example, the first value (1.5) defines the tightest constraint and applies to nets tagged
as CLASS1 nets. Intermediate values define increasingly more relaxed constraints and apply
to CLASS2, CLASS3, and CLASS4 nets, respectively. The fifth value (5.5) defines the most
relaxed constraint and applies to CLASS5 nets.

In other words, the class-related variables have been defined in such a manner that the class
number (1, 2, 3, 4, or 5) corresponds to the position (first, second, third, fourth, or fifth) in the
variable definition of the corresponding value.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 51 Product Version 14.2

Table 2-3 on page 51 describes the default values for all five default critical IC classes. These
values define the limits placed on the critical ICs based on the designation of the critical
frequency class.

Table 2-4 on page 51 describes the default values for all five default critical net classes.
These values define the limits placed on the critical nets based on the designation of the
critical frequency class..

Table 2-3 Default Variable Values for Critical IC Classes

Variable Name Class 1
Value

Class 2
Value Class 3 Value Class 4

Value
Class 5
Value

MIN_BYPASS_CAPS 3 2 1 1 1

BYP_CAP_SENS_DIST 300 350 400 450 500

CRITICAL_IC_BYP_CAP
_TYPE

“CAP-
1:82UF:5%!
 CAP-
3:0.01uf:3%”

“CAP-2:
10uf:4
%”

“CAP-
4:1.0uf:2%!
CAP-
5:5uf:5%”

“CAP-5:
5uf:5%”

“CAP-
5:
5uf:5%”

CAP1_DIST_FROM_PW
R_PIN

300 350 400 450 500

CAP2_DIST_FROM_PW
R_PIN

200 250 300 350 400

CAP3_DIST_FROM_PW
R_PIN

100 150 200 250 300

Table 2-4 Default Variable Values for Critical Net Classes

Variable Name Class 1
Value

Class 2
Value

Class 3
Value

Class 4
Value

Class 5
Value

EMC_CRITICAL_EXPOSED_LEN 2000 3000 4000 5000 6000

CRITICAL_TO_MHATTAN_LEN_RATI
O

1.1 1.2 1.3 1.4 1.5

EXT_NET_EDGE_CRITICAL_DIST 500 550 600 650 700

INT_NET_EDGE_CRITICAL_DIST 300 350 400 450 500

EMC_VIA_COUNT 7 8 9 10 11

LOOP_AREA_COEFFICIENT 1.5 2.5 3.5 4.5 5.5

EMControl User Guide
Setting Up the EMControl Environment

January 2002 52 Product Version 14.2

Table 2-5 on page 52 describes the default values for all five default critical region classes.
These values define the limits placed on the critical EMC regions in the design based on the
designation of the critical frequency class of the IC and the net.

Use the EMC Auto Property Tagger form to change the number of available frequency
classes or to change the voltage swing and rise and fall time boundary values between critical
frequency classes. See Automatically Attaching Properties to Design Objects for more
information.

To change the critical class definitions defined by parameterized variables

1. Modify the variable values associated with the classes you want to change.

2. Modify values for parameterized variables by editing the variable’s string of values in the
emc_param.par file.

When editing variable values, keep the following points in mind:

■ The position of a value in the value string must be equivalent to the position of the
corresponding class name – CLASS1 through CLASS5.

■ The number of values defined for a parameterized variable must equal the number of
defined classes.

MAX_PEAK_XTALK 0.05 0.1 0.15 0.2 0.25

MAX_OVER_UNDERSHOOT 0.1 0.15 0.2 0.25 0.3

MAX_VIA_PIN_RATIO 1.5 2.5 3.5 4.5 5.5

Table 2-5 Default Variable Values for Critical Region Classes

Variable Name Class 1
Value

Class 2
Value

Class 3
Value

Class 4
Value

Class 5
Value

BYP_CAP_SENS_DIST 300 350 400 450 500

BYP_CAP_SEP_DIST 1500 2000 2500 3000

FENCE_BOUNDARY_DIST 500 750 1000 1250

FENCE_BOUNDARY_RATIO 0.8 0.7 0.6 0.5

Table 2-4 Default Variable Values for Critical Net Classes

Variable Name Class 1
Value

Class 2
Value

Class 3
Value

Class 4
Value

Class 5
Value

EMControl User Guide
Setting Up the EMControl Environment

January 2002 53 Product Version 14.2

■ Ensure that you leave at least one space (no newlines) between value definitions.

■ If the value itself contains a double quote (“ or ”) character, append a backslash
character (\) before the double quote character.

For example, in Table 2-4 on page 51, the critical net variable
EMC_CRITICAL_EXPOSED_LEN is defined as follows:

#define EMC_CRITICAL_EXPOSED_LEN “2000 3000 4000 5000 6000”

You can increase the value associated with critical frequency CLASS1 by editing
emc_param.par to change the first value, 2000, to 2025.

#define EMC_CRITICAL_EXPOSED_LEN “2025 3000 4000 5000 6000”

In this example, any nets that you identify as belonging to CLASS1 will have an
EMC_CRITICAL_EXPOSED_LEN value of 2025. Nets in CLASS2 have a value of 2050.
Nets belonging to CLASS3 have a value of 3000.

You can modify the values for the parameterized variables (which are described in Table 2-2
on page 42 and defined in emc_param.par) to suit your requirements. Your EMC expert can
provide information on optimal variable values for your application.

Identifying ICs and Nets in a Class

You need to identify the critical frequency class to which each significant IC and net belongs
before you run related EMC rules.

Each EMC rule will use the index value, determined using the class name that you specify, to
find the value for any parameterized variables that the rule uses.

To identify the class of each critical IC

➤ Use the appropriate class definition to define the EMC_CRITICAL_IC property for each
critical IC in your design.

For example, all critical ICs that belong to CLASS1 must have the property
EMC_CRITICAL_IC set to the value CLASS1.

To identify the class of each critical net

➤ Use the appropriate class definition to define the EMC_CRITICAL_NET property for
each critical net in your design.

For example, all nets that belong to CLASS3 must have the property
EMC_CRITICAL_NET set to the value CLASS3.

EMControl User Guide
Setting Up the EMControl Environment

January 2002 54 Product Version 14.2

For information on how to assign the properties required by EMControl, see Automatically
Attaching Properties to Design Objects or Manually Attaching Properties to Selected Design
Objects

EMControl User Guide

January 2002 55 Product Version 14.2

3
Performing EMControl Rule Checking

EMC Rules

EMControl provides six sets of EMC rules:

■ Placement Rules

■ Bypass Rules

■ Power and Plane Ground Rules

■ DC Routing Rules

■ Signal Routing Rules

■ Signal Quality Rules

The EMC rule sets are used at different stages of design development. For reference
information on the rule sets and for detailed rule descriptions, see Appendix B, “EMControl
Rules,”. Rule descriptions are arranged alphabetically within each rule set. Each rule
description includes requirements (design setup, variable values, and property assignments)
and other helpful information.

Checking for EMC During Placement

Before you perform EMC Rule checking, ensure:

■ Stackup and constraints are defined.

■ Pre-route signal integrity checking has been performed.

■ EMControl setup has been audited and any problems encountered are resolved.

 EMC analysis performed during component placement includes:

■ Initial Placement Checks

EMControl User Guide
Performing EMControl Rule Checking

January 2002 56 Product Version 14.2

■ Detailed Placement Checks

Initial Placement Checks

The initial placement checks serve to verify EMControl tool setup and design preparation.
Efficient placement strategy generally involves placing critical components, including external
connectors, first. After critical components are placed, design analysis can begin.

The results of the first EMC rule-checking run provides you baseline EMC information about
your design.These reports can be used to locate EMC problem areas on the board and to
estimate the extent to which your design requires modification to facilitate EMC compliance.

Cadence recommends that you run both thermal and signal integrity analysis prior to
checking EMC rules. If thermal and signal integrity issues are not resolved before you check
EMC rules, your design is not likely to pass the EMC check.

Use the following rules during the initial placement EMC rule-checking runs:

1. The placement rules in the emc_placement.rle file.

2. The bypass rules in the emc_bypass.rle file.

Detailed Placement Checks

Depending on requirements, you can perform EMC checks at any time throughout the
placement stage. It is particularly recommended that you perform pre-route analysis after the
placement is complete.

You can use these iterative checks to begin trade-offs between constraints and to adjust
property setup including EMControl property values assigned to critical components, nets,
and rooms. You can also use this information to determine power and ground plane design.
As you perform the iterative EMC checks, tighten electrical constraints to approach EMC
requirements.

Use the following rules during the detailed placement EMC rule-checking runs:

1. The placement rules in the emc_placement.rle file

2. The bypass rules in the emc_bypass.rle file

EMControl User Guide
Performing EMControl Rule Checking

January 2002 57 Product Version 14.2

Checking for EMC While Routing

After placement is complete, routing of critical nets (such as clock nets) begins. Again,
depending on the requirements, the critical signal EMC checks can be performed throughout
this stage.

Continue to perform constraint-driven routing during this stage as you refine constraints.
Thorough analysis of critical signals also includes thermal and signal integrity checks
(including crosstalk analysis).

Use the following rules during the critical signal rule-checking runs:

1. The DC routing rules in the emc_dc_route.rle file

2. The signal routing rules in the emc_sig_route.rle file

You can follow the critical signal EMC checking with post-route signal integrity analysis.

Checking for EMC After Routing

This stage of EMC checking begins after the design has been routed and signal and thermal
analysis has been performed for the last time.

Post-routing activities can include refining constraints and confirming that all EMC
requirements have been met. Your EMC expert can review a final EMControl report to confirm
this.

Use the following rules during the post-routing rule-checking runs:

1. The power and ground plane rules in the emc_pwr_gnd_dist.rle file

2. The DC routing rules in the emc_dc_route.rle file

3. The signal routing rules in the emc_sig_route.rle file

4. The signal quality rules in the emc_sig_qual.rle file

Rule Checking Tasks

The following tasks are required to check your design for electromagnetic compliance:

■ Setting Up the EMControl Run

■ Defining the Scope of the Check

EMControl User Guide
Performing EMControl Rule Checking

January 2002 58 Product Version 14.2

■ Auditing EMControl Rules

■ Executing EMControl Rules

■ Viewing Results

■ Saving Run Results

Setting Up the EMControl Run

You need to set up EMControl before you run the design checking process. The Rule Select
option in the EMC menu lets you:

■ Define the location of the parameter file, emc_param.par.

The parameter file contains user-editable values for the EMControl variables used by the
EMC rules.

■ Select the rules that will be used to check the design.

■ Specify the portion of the design to be checked.

■ Customize Parameters

■ Invoke the Rule Developer dialog box to edit rules, create new rules, or edit predicates.

Note: If you want to change any of the system defaults that define the EMControl
environment, be sure to edit the EMC Initialization dialog box before you run EMControl
checking.

To set up the rules that will be used to check the design:

➤ Select Rule Select in the EMC menu.

EMControl User Guide
Performing EMControl Rule Checking

January 2002 59 Product Version 14.2

The EMC Rule Selection dialog box is displayed. This dialog box lets you set up EMControl.

Note: The EMC expert at your site may have created custom rule files that are also available
for checking your design.

When you open the EMC Rule Selection dialog box for the first time, only the names of the
compiled rule files in the default search path are displayed. The files are in the unexpanded
condition (that is, no groups or rules within that file are visible). At any other time, the browser
is displayed in its state at the end of the last working session; in addition, any rule files that
you have added to the search path since the last session are displayed in their unexpanded
condition.

EMC Rule Selection

Rule Setup

Parameter Path(s)

Rule Path(s) Update

Select All Deselect All Customize... User Rules...

g:\test_hier\wint\share\pcb\signal\emc\include

g:\test_hier\wint\share\pcb\signal\emc\rules

Complete Design

Geometry Window Change Window

HelpCancelOK

unnamed.rle
emc_bypass.rle
emc_dc_route.rle
emc_placement.rle
emc_pwr_gnd_dist.rle
emc_sig_qual.rle
emc_sig_route.rle

EMControl User Guide
Performing EMControl Rule Checking

January 2002 60 Product Version 14.2

EMControl rules use variable definitions that you can modify. For information on the rule
variables and how and when to modify variable values, see Chapter 2, “Setting Up the
EMControl Environment,”.

To change the display of rules in the rule browser

1. Specify the path to the directory where the rule files are located. Compiled rule files have
the file name extension .rle.

2. Update the dialog box to show the rule files in the specified path.

For further information, see Adding Rule Files to the Rule Browser on page 60. For
information on expanding a rule file to display the rules within the file, see Displaying
the Rules in a File on page 61.

When EMControl checks your design for EMC problems, it uses only the rules that you have
selected in the rule browser.

Identifying the Location of Rule Parameter Files

If you are using custom rules at your site, you must specify the path for any parameter files
that you are including in your rule files, if they are not located in your current directory.
Parameter files define variables that are being used by EMControl rule files.

1. Type the paths of the parameter files in the Parameter Path(s) field at the top of the
Rule Selection dialog box.

2. Separate the paths of parameter files with a space.

An example of a parameter file is emc_param.par. This file defines the user-definable
variables used by the EMControl rules. The emc_param.par file is specified in the default
rule file by means of an include statement. By default, the emc_param.par file is located
in the system include directory. The path for the include directory is the default definition for
the Parameter Path(s) field. For more information on the default EMControl directory
structure, see Chapter 2, “Setting Up the EMControl Environment,”

Adding Rule Files to the Rule Browser

You can update the default display in the rule browser with additional rule files. EMControl
searches for compiled rule files in the directories located in the search path, which you specify
in the EMC Rule Selection dialog box. You need to modify the default search path definition
if the files that you are adding are at another directory location.

If you are using customized rule and parameter files, ensure you have the requisite change
permissions for these files.

EMControl User Guide
Performing EMControl Rule Checking

January 2002 61 Product Version 14.2

To change the display of rules in the rule browser:

1. Provide one or more search paths in the Rule Path(s) field.

❑ Specify either full or relative paths.

❑ Separate each entry with a space.

2. Click on Update to display all the .rle files in the search path.

EMControl updates the rule browser with the names of all the compiled rule files in the
paths. When a new rule file is added to the browser list, it is displayed in an unexpanded
condition (that is, no groups or rules within that file are visible). Otherwise, currently
selected rules and expanded rule files are redisplayed in the same condition as before
the update, as long as the rule file that contains them is still in the path.

When the list of rules extends beyond the browser window in either the vertical or the
horizontal direction, a scroll bar lets you view the remaining rules.

Displaying the Rules in a File

You can choose either to display all the rules in a rule file (expand the rule), or to turn off
(collapse) their display.

To display all the rules in a file when only the file name is currently visible

➤ Click on the + sign of the tree view.

The tree view expands to show all the rules in the rule file. All the rules are displayed
either selected (that is, highlighted) or deselected, according to the setting of the file
name when you expanded it.

To turn off the display of all the rules in a file

➤ Click on the - sign of the tree view.

The tree view contracts to remove from the display all the rules in the rule file. The file
name remains either selected or deselected, according to the setting of the file name
when you unexpanded it.

Getting Help on a Rule

To read help information for a rule in the rule browser

➤ Click on the rule name.

A window opens with reference information on the rule.

EMControl User Guide
Performing EMControl Rule Checking

January 2002 62 Product Version 14.2

Selecting Rules to Use for Design Checking

 The following conventions apply to selecting and deselecting rule files:

■ Selecting the name of a rule file automatically selects all the rules in the corresponding
file for checking, whether the individual rules are currently visible or not.

■ Deselecting rules by file name deselects all the rules included in that file.

Selecting All Rules

➤ Click on Select All in the EMC Rule Selection dialog box.

All the rule files and rule names in the browser are selected.

Deselecting All Rules

➤ Click on Deselect All in the EMC Rule Selection dialog box.

All the rule files and rule names in the browser are deselected.

Selecting or Deselecting All Rules in a file

➤ Click the check box corresponding to the file name.

If the check box of the file name is currently checked, it is unchecked. All rules within that
file are also unchecked. If it is not currently checked, it is selected. All rules within that
file are also checked.

Selecting or Deselecting a Single Rule

➤ Click the check box corresponding to the rule name.

If the rule is currently checked, it is unchecked. If it is not currently checked, it is checked.

Defining the Scope of the Check

You can perform EMControl design checking for:

■ The complete design

■ A selected window

If you run EMControl for the entire design, you may end checking rules against entire areas
of the design where they do not apply. This increases rule checking time. Therefore, it is

EMControl User Guide
Performing EMControl Rule Checking

January 2002 63 Product Version 14.2

recommended that you check the design by defining windows, then selecting for each run
only the rules that are relevant to that portion of the design.

To check the entire design:

➤ Select Complete Design in the Scope of Check section of the EMC Rule Selection
dialog box.

To check a portion of the design

1. Select Geometry Window in the Scope of Check section of the EMC Rule Selection
dialog box.

2. Click on Change Window, at the right edge of the Scope of Check section.

You now need to specify the extent of the design area to check (the bounding box).

3. Click in the layout window to select a corner of the bounding box.

4. Click again to select the opposite corner (to define the diagonal extent) of the bounding
box.

The coordinates that you selected are displayed in the display-only field to the right of the
Geometry Window button.

If you do not specify a bounding box for the rule check, EMControl uses the coordinates
of the previous check run, if any. If you have not defined coordinates and none of them
are available from the previous run, EMControl checks the entire design.

Auditing EMControl Rules

Cadence recommends that you verify that you have fulfilled the property requirements for the
selected rules before you execute rule checking.

The Audit Report describes the properties that have not been properly configured for the
EMC rules you are using for design checking. The Audit Report reflects the contents of the
ASCII file called emcrc_verify.msg.

Before you run EMC rule checking, generate an Audit Report to verify that your design is
properly set up for the EMC rules you are checking against your design. EMControl generates
an Audit Report whenever you execute an Audit command.

To generate an Audit Report:

1. Select the rules using the Rules Selection dialog box.

2. Select Audit from the EMC menu.

EMControl User Guide
Performing EMControl Rule Checking

January 2002 64 Product Version 14.2

The Audit Report is displayed in the EMC Report window.

Report information assists you in locating and correcting rule violations. The Audit report
contains the following sections:

■ Header Information

■ Rule-Specific Information

■ Summary Information

Header Information

The upper portion of an Audit Report

■ Lists the complete path of the checked design

■ Lists the names of the rules that you checked

The following is an example of a report header:

Rule-Specific Information

The body section of the Audit Report describes the short message (if it exists) and the advisor
messages for each violation. These messages list:

■ The severity level of the violation

■ The name of the rule

■ Information about the rule violation

EMControl User Guide
Performing EMControl Rule Checking

January 2002 65 Product Version 14.2

The following is an example of the body section of an Audit Report:

Summary Information

The bottom section of the Audit Report provides a summary of the total number of rule
violations and the number of violations recorded for each rule, by severity.

The following is an example taken from the body of an Audit Report:

Executing EMControl Rules

To execute EMC rules

➤ Select Execute from the EMC menu.

EMControl starts checking the current design against the rules you selected. The
progress of rule execution will be available in the Allegro/SPECCTRAQuest CWI.

The following files are created in the EMC run directory during design checking:

EMControl User Guide
Performing EMControl Rule Checking

January 2002 66 Product Version 14.2

❑ emcrc_execute.msg

❑ emcrc.mkr

❑ emcrc.log

The results file is updated automatically, so it contains the violation messages that were
generated during the most recent run.

To abort EMC Rule execution:

➤ Enter Control-C in the layout command window to abort EMControl checking.

EMControl checking is terminated.

-or-

➤ Click Stop in the Allegro/SPECCTRAQuest status window.

Note: If you abort EMC rule execution, the EMControl files will be left in an unknown state.

Viewing Results

To view the results of EMControl setup verification and rule checking, you can:

■ View the list of violation messages found during rule checking.

■ Highlight the object in your layout that corresponds to a particular violation.

■ View the details of a violation, including a description of the rule that was violated.

■ Open a report that summarizes the results of either property auditing or design checking.

■ Open a results text file to view descriptive details for each violation message.

For detailed information on viewing and assessing violations in your design, see Chapter 4,
“Resolving EMC Rule Violations in Your Design.”

Saving Run Results

The results of setup verification and EMC checking are automatically saved to the run
directory that you specified in the EMC Initialization dialog box.

The results from the Execute command are stored in the emcrc.mkr and
emcrc_execute.msg files. Having a separate directory for each check run allows you
convenient access to the results of previous runs. You can use these directories to compare
the results between subsequent check runs.

EMControl User Guide
Performing EMControl Rule Checking

January 2002 67 Product Version 14.2

The report results from the Audit command are stored in the emcrc_verify.msg file.

EMControl User Guide
Performing EMControl Rule Checking

January 2002 68 Product Version 14.2

EMControl User Guide

January 2002 69 Product Version 14.2

4
Resolving EMC Rule Violations in Your
Design

Overview of Rule-Checking

When EMC rule checking is complete, you can display the results from the EMC menu.
EMControl displays the list of messages for all the violations that were found, and lets you
view the objects (pins, nets, or components) in your design that correspond to each violation.
EMControl can display up to 1000 messages in the violations list.

EMControl uses colored markers to highlight the objects that are in violation of your selected
rules. As you select each violation message, the corresponding marker is displayed in a
contrasting color. When more than one object is found for a violation, a pop-up menu lets you
select which object to highlight.

As you examine each violation, you can correct it within your design. When you have resolved
all violations, you can check the design again, repeating the process as often as necessary.

EMControl also creates a markers file called emcrc.mkr when it finds rule violations. The
file contains detailed information about each violation. EMControl uses the contents of this
file when you request a display of results from the EMC menu.

Viewing the Results of Rule-Checking

This section shows you how to locate violations in your design. In addition to viewing
violations in the design, you can check the emcrc_execute.msg or emcrc.mkr file to
determine where violations were found in your design, or you can read a formatted report.

To view the results of design checking

➤ Select Results in the EMC menu.

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 70 Product Version 14.2

The Markers dialog box is displayed.

Viewing a Violation

1. Click on the violation message in the Messages list of Markers dialog box.

The selected message is highlighted in the list.

Note: The left-right arrow icons in the markers toolbar can be used to traverse the list of
violations.

2. Click Detail.

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 71 Product Version 14.2

The details of a violation message appears in the markers Detail Message window.

Highlighting Objects

1. Select the violation message in the Markers dialog box.

The first object associated with it is automatically highlighted in Allegro/
SPECCTRAQuest.

2. Select an object from the Highlight List combo box that lists all the violating objects of
a violation.

Highlights the selected object in the Allegro window.

Note: You can also use the up-down arrow icons in the toolbar to traverse and highlight
the violating objects of a message.

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 72 Product Version 14.2

Filtering Violations

The EMC Filters dialog box lets you control which violation messages are displayed in the
messages browser. You can customize the display of messages in the browser by rule name,
object type, and severity level. You can also elect to display, or not display, messages that
match a particular regular expression.

To open the Filters dialog box

➤ Select View -> Filter Options... from the Markers menu.

The Filter dialog box appears.

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 73 Product Version 14.2

Filtering Messages by Rule Name

You can display violations by the name of the rule associated with them. All rule names are
displayed in a list box at the top of the EMC Filters dialog box.

To control the display of violations by rule name

➤ Select (highlight) only the names of the rules for which you want to display violations.

Violations are displayed for the rule if its name is highlighted in the box. By default, all
rules are selected.

❑ Use Select All to highlight all rule names.

❑ Use Deselect All to remove highlighting from all rule names.

❑ Click on a selected rule name to deselect it.

❑ Click on a deselected rule name to highlight and select it.

Filtering Messages by Object Type

You can display violations by object type. For example, you might want to view only violations
on components or on pins.

To control the display of violations for objects of a particular type

➤ Select (highlight) only the object types for which you want to display violations.

Violations are displayed for the object type if its name is highlighted in the box. By default,
all object types are selected.

❑ Use Select All to highlight all object types.

❑ Use Deselect All to remove highlighting from all object types.

❑ Click on a selected object type to deselect it.

❑ Click on a deselected object type to highlight and select it.

Filtering Messages by Severity Level

You can display violations by severity level. For example, you might want to view only
messages for violations labeled ERROR.

To control the display of violations by severity level

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 74 Product Version 14.2

➤ Check the box to the left of one or more Severity definitions.

❑ Violations are displayed for a severity if its box is checked.

❑ No violations are displayed for a severity if its box is unchecked.

Filtering by Regular Expression

You can use the Message String field to specify a UNIX regular expression to use as a filter
criterion for the display of violations. For example, you might want to display only messages
that contain ground or to exclude from display all messages that refer to output pins.

To filter by regular expression

1. Type a regular expression in the Message String field.

2. If you want the regular expression to define messages to exclude from display, check
Exclude.

Examples

To search for messages that contain ground anywhere in the message

➤ Type the following in the Message String field:

ground

To filter out of the messages browser any messages that contain output pins

➤ Type the following in the Message String field and check Exclude:

output pins

To search for messages that contain output and pins (in order, but not necessarily
together)

➤ Type the following in the Message String field:

output .*pins

Applying Your Filtering Selections to the Browser Display

To apply your filtering definition

➤ Select OK in the EMC Filters dialog box.

The dialog box closes. The messages browser in the EMC Results dialog box is updated to
reflect your selections. If none of the violations pass your filtering criteria, a message informs
you that all markers are filtered out.

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 75 Product Version 14.2

Cross-Probing Multiple Violations

The Markers dialog box lists multiple violations.

1. Click the first violation to highlight it.

2. Select Detail in the Markers dialog box to bring up a detailed description of the
highlighted violation.

3. Click Highlight List in the Markers dialog box.

This will open a combo box which lists the offending elements corresponding to the
selected violation. Select one of the elements from the combo box. The selected object
is highlighted in Allegro/SPECCTRAQuest.

You can use the toolbar up or down icons to traverse through the list of violations. As you
select each message, the detailed violation description in the EMC Advisor dialog box
is automatically updated. The first element in the Highlight List of each violation is
highlighted as and when you traverse. Tool bar icons are provided to traverse the
Highlight List also.

The numeric designator near the Highlight List indicates whether there are multiple
objects associated with the current message or not. The second number on the button
specifies how many objects are there for this violation, and the first number indicates
which object of the sequence is currently highlighted in the design. You can use up or
down icon to Markers toolbar to traverse Highlight List.

4. Select Close in the Markers dialog box when you have finished viewing violations.

Loading a Markers File

1. Select File > Load from the Markers menu to invoke the Marker File browser.

2. Select the markers file using the file browser

3. Click Open.

The main markers window is loaded with messages from the specified markers file.

Note: The corresponding design must be loaded in Allegro/SPECCTRAQuest when you
load a marker file.

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 76 Product Version 14.2

Hiding a Violation Message

You can remove a violation from the messages browser in the Markers form. You might
choose to remove a violation from view if you have determined that the violation is actually
acceptable in your design or if you have corrected the violation.

To remove a violation in the messages browser

1. Select the violation message to remove.

The message is highlighted.

2. Click Edit > Delete Marker.

The message is hidden from the messages browser, and the associated object is
unhighlighted in the layout. The display in the upper right corner of the EMC Results form is
updated to reflect the change in the total number of messages in the browser.

Note: This removes the violation only from the messages browser. The violation is not
deleted from the markers file. To permanently remove from the markers file the violations that
you have hidden from the browser display, see “Saving a Markers File.”

Saving a Markers File

You can update a markers file to permanently remove any violations that are currently hidden
from the messages browser.

To permanently remove hidden messages

➤ Select File > Save in the Markers form.

The updated markers file is saved.

Note: All violations that you removed from display using Edit > Delete Marker are
permanently erased from the saved file.

Reading an Execute Report

The following sections describe the format of the Execute report.

Header Information

The upper portion of an Execute report

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 77 Product Version 14.2

■ Tells you which design was checked

■ Lists the names of the rules that you checked

The following is an example of a report header:

Rule-Specific Information

The body of the Execute report describes the short message (if one exists) and the advisor
message for each violation. These messages list

■ The severity level of the violation

■ The name of the rule

EMControl User Guide
Resolving EMC Rule Violations in Your Design

January 2002 78 Product Version 14.2

■ Information about the violation

The following is an example of rule-specific information. The rule is gnd_under_clock:

The bottom of the report provides a summary of the number of violations recorded, by
severity, for each EMC rule

EMControl User Guide

January 2002 79 Product Version 14.2

5
Writing Rules

Overview

This chapter explains what you need to know to write and compile custom rules for use during
EMControl rule checking. It also provides sample rules.

EMControl uses rules that have been written using the Cadence Advanced Rule Language
(ARL). The Cadence-supplied rule files are:

■ emc_placement.arl

■ emc_bypass.arl

■ emc_pwr_gnd_dist.arl

■ emc_dc_route.arl

■ emc_sig_route.arl

■ emc_sig_qual.arl

 The compiled files are

■ emc_placement.rle

■ emc_bypass.rle

■ emc_pwr_gnd_dist.rle

■ emc_dc_route.rle

■ emc_sig_route.rle

■ emc_sig_qual.rle

EMControl User Guide
Writing Rules

January 2002 80 Product Version 14.2

Developing Rules in EMC

The EMC Rule Developer provides the graphical user interface (GUI) for customizing rules,
predicates, and parameters. The Rule Developer lets you

■ Navigate your directory structure to locate rule files

■ Edit rule files

■ Compile rule files

■ Edit predicates

■ Add parameters

■ Export parameters

Cadence supplies a set of rules, but you can write your own rules also. For this, you may use
the standard predicates and parameters or define new ones, as per requirement. Parameters
are like variables, which have certain default values but you can edit them also. Predicates
are analogous to functions in other programming languages.

Once you have written a rule and compiled it, you might want to make it accessible to the
users in your site. For this, you need to make the parameters, the predicates used in the rule
and the complied rule file (.rle) visible.

To make the rule file visible

➤ The.rle file should be available in the rule paths. The path can be given in the Rule
File(s) section of the EMC Rule Selection dialog box.

To make the predicates visible

➤ The mapping file (.env) containing the predicates used in the rule must be available in
the Mapping Files’ paths. The path can be given in the Mapping File(s) section of the
EMC Initialization dialog box.

To make the parameters visible

➤ Export the parameters used in the rule from the custom parameter file
(emc_custom.par) to the site parameter file (/site/emc_param.par)

EMControl User Guide
Writing Rules

January 2002 81 Product Version 14.2

Predicates

Adding a New Predicate

To add a predicate from the EMC Skill Predicate dialog box

1. Select the environment (.arl) file where predicates have to be added.

The Predicates Defined tree control displays the predicates defined in the file.

2. In the Predicate Definition section, submit the details of the predicate to be added.
Give the name of the predicate, its underlying Skill function, the arguments’ types and its
return type.

Note: The underlying Skill function needs to be loaded in Allegro before the
corresponding predicate is defined.

3. Click Apply.

The specified environment file gets updated with the changes.

4. Click OK.

The changes are saved and the dialog box is closed. The environment (.arl) file is
compiled to produce the mapping file (.env).

Note: You need to have write permissions for adding a predicate in an environment file.

Deleting a Predicate

To delete a predicate from the EMC Skill Predicate dialog box

1. Select the environment file where predicates have to be deleted.

The Predicates Defined tree control displays the predicates defined in the file.

2. In the Predicates Defined section, select the predicate to delete.

3. Click Delete.

4. Click Apply.

The specified environment file gets updated with the changes.

5. Click OK.

The changes are saved and the dialog box is closed.

EMControl User Guide
Writing Rules

January 2002 82 Product Version 14.2

Note: You need to have write permissions for deleting any predicates in an environment file.

Editing a Predicate

To edit a predicate from the EMC Rule Developer dialog box

1. Click Edit Predicate...

The EMC Skill Predicate dialog box appears.

2. Select the environment (.arl) file where predicates have to be edited.

The Predicates Defined tree control displays the predicates defined in the file.

3. Select the predicate to be edited.

The details of this predicate appear in the Predicate Definition section

4. Edit the details of the predicate, the name of the predicate, its underlying Skill function,
the arguments’ types and its return type.

Note: The underlying Skill function needs to be loaded in Allegro before the
corresponding predicate is defined.

5. Click Apply.

The specified environment file gets updated with the changes.

6. Click OK.

The changes are saved and the dialog box is closed. The environment (.arl) file is
compiled to produce the mapping file (.env).

Note: You need to have write permissions for editing a predicates in an environment file.

Parameters

Adding a Parameter

To add a parameter from the EMC Rule Developer dialog box

1. Select the rule file or the rule in which you wish to add a parameter.

2. Click Add.

EMControl User Guide
Writing Rules

January 2002 83 Product Version 14.2

A new row appears in the grid control. You have to fill the name of the new parameter, its
type, its default value, and its scope whether it is global or local.

3. Enter the name of the parameter in the column Parameter Name.

4. Enter the type of the parameter in the column Type

The type of the parameter can be String, String List, Numeric, or Numeric List.

5. Enter the default value of the parameter in the column Default Value.

Note: If the parameter is being added to a specific rule, the scope is local, while if the
parameter is being added to a rule file, the scope is global.

6. Click OK.

The changes are saved in the emc_custom.par file and the dialog box is closed.

Deleting a Parameter

To delete a parameter from the EMC Rule Developer dialog box

1. Select the rule file or the rule from which you wish to delete a parameter.

2. Select the parameter row that has to be deleted.

3. Click Delete.

Note: Only the parameters that have been added by the user can be deleted. If you
attempt deleting a Cadence-supplied parameter, a message saying This Parameter
cannot be deleted appears.

4. Click OK.

The changes are saved in the emc_custom.par file and the dialog box is closed.

Exporting a Parameter

To export a parameter from the EMC Rule Developer dialog box

1. Select the parameter row that has to be exported.

2. Click Export.

The EMC Param Export dialog box appears.

3. Enter the location of the site parameter file in the Site Parameter File box.

EMControl User Guide
Writing Rules

January 2002 84 Product Version 14.2

4. Click OK.

The parameter is added in the site parameter file and the dialog box is closed.

Rules

Editing a Rule File

To edit a rule file from the EMC Rule Developer dialog box

1. Specify the file name in the ARL Source File.

2. Click Edit Rule in the EMC Rule Developer dialog box.

The file that you specified is opened in WordPad, with the text editor specified by the
EDITOR environment variable. By default, the editor is WordPad. If a new rule is being
written, a new file opens.

3. When you have finished working in the text editor, save the rule file and quit the editor.

Compiling a Rule File

After you have edited and saved your rule file, you can compile the file from the EMC Rule
Developer dialog box.

To compile a rule file

1. Select the file to compile in the EMC Rule Developer dialog box.

2. Click Compile.

EMControl compiles the file and creates the compiled file in the specified compiled file
directory. The file name extension of the compiled rule file is.rle.

If the file compiles correctly without any errors, the message 0 Messages is displayed in the
Allegro console window. In case of any errors or warnings, the EMC Compilation Log
window comes up showing the errors and warnings encountered during the compilation
process.

Writing a Rule

The sections Sample unconnected_critIC_pins Rule on page 87 and Sample
check_via_count Rule on page 88 show sample rule files written using the Advanced Rule

EMControl User Guide
Writing Rules

January 2002 85 Product Version 14.2

Language (ARL). For more information on the ARL, refer Appendix A of the EMC User Guide.
The sample rules contain explanatory comments, which are set off according to either of two
ARL conventions:

■ Rule unconnected_critIC_pins (“Sample unconnected_critIC_pins Rule” on page 87)
uses the convention in which comments are set apart from the code as follows:

/* <comment> */

■ Rule check_via_count (“Sample check_via_count Rule” on page 88) uses the
convention in which comments are set apart from the code as follows:

// <comment>

The sample rules call various EMControl predicates to perform required functions (for
example, hasProperty and getPropertyValue).

Remember the following points when writing your own rules:

■ It is recommended that you copy and edit one of the Cadence rule files when you are
writing your own rules.

■ An ASCII rule file name must have the extension .arl.

The compiler converts a file with the .arl extension to a .rle file.

■ Be sure to use an include statement to specify any files that the rule needs to access
at run time.

The sample rules use variables that are defined in the emc_param.par file.

■ You need to use an index to derive the appropriate value from any parameterized
variable that you are using in your rule.

Parameterized variables define values for all the critical IC, critical net, and critical region
classes that are specified by EMC_COMP_CLASSES or EMC_NET_CLASSES,
respectively.

■ Be sure to create a help file that the user can open from the EMC Rule Selection dialog
box to get information on using each rule that you write (see “Creating a Help File for a
Rule” on page 90).

■ EMControl uses a second rule set to verify property requirements for each selected rule
when the user selects Audit. A verify version of each Cadence-provided rule exists in the
rule files:

❑ emc_placement_verify.arl

❑ emc_bypass_verify.arl

❑ emc_pwr_gnd_dist_verify.arl

EMControl User Guide
Writing Rules

January 2002 86 Product Version 14.2

❑ emc_dc_route_verify.arl

❑ emc_sig_route_verify.arl

❑ emc_sig_qual_verify.arl

■ Create a verify rule for each new rule that you write so that Audit will include your rules
in property verification. Note the following:

❑ It is recommended that you copy and edit the Cadence verify rule files when you are
writing your own rules for property verification.

❑ The name of the verify version of a rule must correspond to the name of the new
rule, and must be in a rule file with a corresponding name prefix (see the next item).

❑ After compiling the verify rule file, move the compiled version of the file to a new
name with the following format:

<compiled EMC rule file name without extension>.rle.verify

As an example, the Cadence rule file for placement is emc_placement.rle, while the
verify rule file is emc_placement.rle.verify.

❑ Using the .rle.verify extension prevents the verify file from being loaded in the
rule browser in the EMC Rule Selection dialog box. The user running rule checking
does not need to be concerned with verify rule files.

❑ There must be a one-on-one correlation between each rule file specified in the EMC
Rule Selection dialog box and a verify rule file.

An EMC rule file and its corresponding verify rule file must exist in the same
directory, because EMC looks for the verify file at the location specified for the rule
file in the EMC Rule Selection dialog box.

EMControl User Guide
Writing Rules

January 2002 87 Product Version 14.2

Sample unconnected_critIC_pins Rule
include "emc_custom.par"
include "site/emc_param.par"
include "emc_param.par"

use EMCONTROL;

RuleDefine
 Rule unconnected_critIC_pins

hasProperty(component1, "USER_COMP_PROP") AND
 /* Pick up components with USER_COMP_PROP , which is
 defined here above as EMC_CRITICAL_IC */
pin1 := getPin(component1) AND /*Store
list of pins of component1 in variable pin1 */

val1 := count(pin1) AND /* Count all
pins of component1 and
store in val1 */
val3 := count(foreach(pin1, /* Count all
pins of component1 that are connected... */

val2 := getAllegroPinUse(pin1) AND /* ...to
some net; i.e., do
not have a Pinuse value of... */
 val2 == { "UNSPEC", "NC"} /*index(concat("UNSPEC", "NC") ,val2)
..."UNSPEC" or "NC". Store in val3 */
)) AND
 val4 := (val3 * 100)/val1 AND /*
Calculate the percentage
of unconnected pins and store in val4 */

val5 := UNCONNECTED_PIN_PERCENT AND /* Store the
value of UNCONNECTED_PIN_PERCENT in variable val5 */

val4 > val5 /* Check if val4 exceeds val5 */^M

/* If all above conditions are met then report this message: */
 Message(INFO, /* Severity of the message */
 component1, /* Object to be highlighted */

"Check Unconnected CritIC Pins", /* Short message displayed in
 the messages browser */
 "Percentage of Unconnected Pins of a Critical IC should not exceed the
\nuser-defined value i.e., ?val5. \nFor ?component1, UNSPEC and NC pins are : ?val3
while total pins are ?val1. \nResulting percentage = ?val4 \n\n");
/* Preceding is long message description, displayed when View is selected
 for a violation in the messages browser. */

EndRule unconnected_critIC_pins

EndRuleDefine

EMControl User Guide
Writing Rules

January 2002 88 Product Version 14.2

Sample check_via_count Rule
include "emc_custom.par"
include "site/emc_param.par"
include "emc_param.par"

 use EMCONTROL;

 RuleDefine

 Rule check_via_count

// Get the value of the property EMC_CRITICAL_NET.
 // The property value contains the net class; for example, CLASS1.
 // Ignore the case of the class string.
 // Store the property value in a variable (say, valClass).

 valClass := upperCase(getPropertyValue(net1, "EMC_CRITICAL_NET")) AND

 // Get all the allowed classes as defined
 // by the parameter EMC_NET_CLASSES.

 // Ignore the case of the class strings.
 // Store these classes in a variable (say, valPosClass).

 valPosClass := concat(EMC_NET_CLASSES) AND

 // Look for the net-specific class (valClass) in
 // the class list (valPosClass).
 // If found, store the position of the net class (valClass)
 // in the class list (valPosClass) in a
 // variable (say, valIndex); for example, valIndex = 1.

 valIndex := index(valPosClass, valClass) AND

// Read the value of the parameterized variable EMC_VIA_COUNT.
 // Separate out the values of this parameter for various classes.
 // Convert these string values into integer values.
 // Store this value list in a variable (say, valViaCntAll).

 valViaCntAll := concat(EMC_VIA_COUNT) AND

 // Get the value that corresponds to the net class.
 // Pick the nth value from the value list (valViaCntAll),
 // where n is equal to valIndex.
 // This value represents the value of EMC_VIA_COUNT
 // for the net class (valClass).

 valViaCnt := nth(valViaCntAll, valIndex) AND

 // Get all the vias on the net under consideration.
 // Count the number of vias and store it in a variable (say, val1)

 val1 := count(getViasOnNet(net1)) AND

 // Compare the value against the allowed via count(valViaCnt).

 val1 > valViaCnt

EMControl User Guide
Writing Rules

January 2002 89 Product Version 14.2

 // In case all the above conditions are true, report this violation.

Message(ERROR, net1, "Check the number of vias per critical net.", "\n The
number of vias per critical net should be kept at a \n minimum in order to improve
reliability. The maximum number of \nvias allowed = ?valViaCnt, vias found on
net ?net1 = ?val1 \n");

 EndRule

 EndRuleDefine

Setting Violation Severity Levels of Rules

The severity level is assigned to a rule in its Message definition in the rule file. The
emc_allegro.env file contains the severity level values that you can currently use for rules.
Options are INFO, OVERSIGHT, WARNING, ERROR and FATAL (in recommended increasing
order of significance).

The Message definition is located within the RuleDefine section for the corresponding rule. A
sample of a message severity definition for a rule is

Message (ERROR, ...

To specify objects to associate with a violation

You need to specify the list of relevant ARL variables in the Message definition for the rule.
Specifying these variables allows the objects that they represent to be highlighted when a
violation is recorded for the rule.

A sample Message definition is

Message (ERROR, component1 component2, "Check bypassing of high current, high speed
ICs.\n", "All Critical ICs need at least three bypass capacitors");

In the above example, component1 and component2 make up the list of variables. When the
rule records a violation, the objects represented by these variables will be available for display
once you click Highlight List in the Markers dialog box. When the violation is highlighted in
the messages browser, you can click Highlight List to change the associated object that is
currently highlighted in the design layout.

EMControl User Guide
Writing Rules

January 2002 90 Product Version 14.2

Creating a Help File for a Rule

Cadence recommends that you create a help file for each rule that you write. Include in the
help file critical information that describes the function of the rule. You will be able to view this
information through the EMC Rule Selection dialog box and use it to

■ Determine whether a particular rule is relevant to the current design-checking task.

■ Learn what properties and other variables are required by the rule.

You may need to attach relevant properties to objects in the design or modify default variable
values.

To create a help file

1. Use a text editor to create the help file.

A help file must have the name <rule_name>.hlp, where rule_name is the name of
the rule (or rule file) for which this file provides help. The required extension is.hlp.

2. To make the file available for display in EMControl, place it in an appropriate directory
location.

You can do either of the following:

Set the environment variable EMC_HELP_PATH to the path location of the help file. For
example:

setenv EMC_HELP_PATH /usr1/abc/pcb/emc/help

–or–

Place the file in the following default directory for help files:

<your_install_dir>/share/pcb/signal/emc/help

EMControl looks for help files in this directory when EMC_HELP_PATH is not set.

Running New Rules

Once you have written and compiled a new rule file, make the rules available for selection by
the user in the EMC Rule Selection dialog box.

To add rule files to the rule browser in the EMC Rule Selection dialog box

1. Modify the rule path if the compiled.rle files are at a location other than the specified
search path.

EMControl User Guide
Writing Rules

January 2002 91 Product Version 14.2

2. Identify the path location of parameter files that are specified in the rule file by means of
an include statement.

You do not need to identify the path if the parameter files are in the current directory.

3. Select the rules to run during EMControl checking.

EMControl User Guide
Writing Rules

January 2002 92 Product Version 14.2

EMControl User Guide

January 2002 93 Product Version 14.2

A
ARL Training Guide

Introduction

EMControl is a CheckPlus based tool. It consists of the CheckPlus core engine ARC
(Advanced Rule Checker), the EMControl rule set and the environment which defines the
interaction between ARC and Allegro.

ARC is an execution engine which executes rules written in ARL (Advanced Rule Language).
In order to utilize the maximum potential of ARL-based tools like EMC, it may be necessary
to write customized rules that are focussed on a customer’s unique design environment. With
the recent enhancements to the core ARL engine, many more customer rule requests are
now possible. This training guide will start with the basics of the ARL language and then move
into the intricacies of more complex rule-writing.

Language Highlights

ARL is a language suitable for expressing design rules. The major features of the language
which distinguish it from other general purpose languages are highlighted below.

■ Simple Condition - Action semantics.

■ Implicit looping through design objects

■ Ability to accept parameters at run-time. This allows the user to customize the rule
according to his/her design needs

■ Ability to specify the objects to be highlighted by the markers utility.

■ Automatic iteration over function (predicate) arguments.

EMControl Objects

ARL is currently used by many different tools at Cadence. The CheckPlus core engine, which
executes rules written in ARL, do not have any internal information about the design on which

EMControl User Guide
ARL Training Guide

January 2002 94 Product Version 14.2

it is checking the rules. (e.g. The CheckPlus core engine does not have any knowledge of
Allegro elements).

CheckPlus understands about the target design (e.g. Allegro board) from the environment file
provided. The environment file defines the objects in the design that can be manipulated by
ARL. It also defines a set of functions (called predicates) which is used to interface with
Allegro.

The EMControl environment contains 8 different objects:

Design The board design upon which EMC is run.

Component Components in the design.

Net Nets in the design.

Pin Pin elements in the design.

Via Via elements in the design.

Shape Shape, rectangle and filled-rectangle elements in the design.

Polygon Polygons in the layout X_Y plane.

Drc DRCs in the design.

Any element in the design which belongs to the above types can be directly referenced in a
rule.

EMControl Predicates

Predicates facilitates the interaction between ARC and Allegro. They are analogous to
functions in other general purpose languages. A predicate takes one or more arguments and
returns a list as result.

e.g.

component
component(design)

The predicate component() takes a design object and returns all the components in the
design.

pin

EMControl User Guide
ARL Training Guide

January 2002 95 Product Version 14.2

getPin(component)

The predicate getPin() takes a component object and returns the list of pins of the
component.

value
name (net)

The predicate name() takes a net object and returns a string representing the net name.

Predicates internally call C or SKILL functions which compute the desired result by accessing
the design database. The complete list of predicates for EMControl is given in the user guide.

Getting a Feel for the Language

In order to get an introduction to ARL we will dissect a few simple rules that demonstrate the
fundamentals.

Example 1

Consider a simple case. Suppose you want to list all the nets in a design individually. In
pseudo-code we could write it like:

for each net in the design

print the name of the net

endfor

In ARL it is coded as:

RuleDefine /* start of rule declaration */
Rule print_net /* start of rule <rulename> */

net1 /* condition statement */
Message(Info,net1,"?net1");/* message statement */

EndRule /* end of rule */
EndRuleDefine /* end of rule declaration */

Basic Language Constructs

There are various parts to a rule. The keywords RuleDefine and EndRuleDefine indicate the
start and end of the rule declaration area of a text file. The keywords Rule and EndRule are
part of the rule declaration syntax that specify the logical breakup of separate rules. Every
rule must be enclosed by its own Rule and EndRule set of keywords. This differs from the
RuleDefine and EndRuleDefine which are only required once per text file, but allowed as
often as once per rule. A rule name can consist of alphanumeric characters, the underscore
and the $sign. The first character cannot be a number.

EMControl User Guide
ARL Training Guide

January 2002 96 Product Version 14.2

Note: The language is case insensitive, so ruledefine and RuleDefine are equivalent.
The general syntax that you will see followed here will mix upper and lower case in an attempt
to clarify the intended meaning of the Function.

Inside the rule declaration constructs exist the remaining 2 sections of the rule. These
sections are the rule conditional statements and the message statement. As you may predict,
the conditional statements determine whether the rule reports the information that is supplied
in the Message statement. In the above example the conditional section consists of 1 line,
net1. As you will see later in this section, the conditional section is normally a logical grouping
of statements that get evaluated to True or Nil (False) according to the predicates called
and the data the predicates are supplied.

Variables and Base Objects

Every CheckPlus rule contains exactly 1 Base Object. A base object of a rule is a variable
which cannot derive its value from any other variable in the conditional section of the rule.

Example 1:

RuleDefine

Rule base_obj
component1 := component(design1) AND

 /*component1 is derived from design1 */
net1 := net(design1) /* net1 is derived from design1 */
Message(Info,"?design1");

EndRule
EndRuleDefine

In the above example design1 cannot derive it’s value from any other variable. Therefore the
base object of the rule is design1.

Example 2:

RuleDefine

Rule base_obj2

component1 := getCompsConnToNet(net1) AND
/* component1 is derived from net1 */

component2 := hasProperty(component1, "EMC_COMP_TYPE")
/* inst2 is derived from inst1 */

Message(Info,component2 ,"Components having prop EMC_COMP_TYPE are
?component2");

EndRule
EndRuleDefine

In example 2 the base object is net1 as component1 is derived from it and component2 is
derived from component1.

The base object also determines the number of times the rule is executed on the existing
design. The EMC environment contains seven different base objects. The Net object is one

EMControl User Guide
ARL Training Guide

January 2002 97 Product Version 14.2

from this group. Since we have selected Net as our base object, this rule will be executed by
the CheckPlus engine 1 time per net in the design. Therefore the maximum number of error
messages generated by the rule is equal to the total number of nets in the design. For
example, if a design has 10 nets then this rule may result in 0 to 10 messages.

Base Objects and Implied Looping

Base Objects constitute 1 main area of implied looping. In this rule we have not explicitly told
the engine to iterate over all nets. But by selecting Net as our base object the engine
understands that it must evaluate the rule for every net in the design. In order to understand
the implied looping execution, think of the engine working like the following pseudo-code:

net1 := First net in the design
While (!end of net list) do
{

Execute the rule
print message if condition evaluates "True"
net1 := Next net in design

}

As you can see, the number of messages printed can be anywhere between 0 and the
number of nets in the design.

Later in the design we will investigate the rationale behind selecting a base object. In the
meantime here is another example to reinforce the idea of Base Object looping

Example:

List all the nets of the design in one message.
foreach design

print all nets in design
endfor
RuleDefine

Rule print_net11
net1 := net(design1)
Message(Info,net1,"?net1");

EndRule
EndRuleDefine

In this example the base object is Design. Within an execution in the EMC environment there
is only 1 item that can be assigned to the Design object. This item is the board that was
requested as the target of the EMC run. Since there is only 1 value for the base object, this
rule will only be executed 1 time.

Predicate Calls

A predicate call in the CheckPlus language is similar to a function call in other languages. It
takes 1or more arguments and returns a value. Before writing or understanding rules in a

EMControl User Guide
ARL Training Guide

January 2002 98 Product Version 14.2

specific environment it is necessary to have a list of predefined predicates available for that
environment.

Note: Currently EMControl does not allow users to create their own predicates. You must
utilize the predicates that are supplied with EMControl (The complete list is given in the user
guide).

The rule in example 2 calls the function, Net(), and passes it the base object variable, Design.
By looking up the definition of the Net() function you find out that it accepts a parameter of
type Design, and returns a list of nets in that design. Therefore after the execution of the Net()
predicate, the variable, net1, will consist of a list of nets in the design.

Variable Typing

This leads us into the discussion of variable types and how variables are assigned and
compared. The CheckPlus Variables are used to store values that you compute. There are
two types of variables -

■ Object Variables: Holds an object (objects are defined in the EMC environment)

■ Non Object Variables: Assigned numerical values, strings etc.

Object variables are identified by their names. Object variable names must start with the
object name that they will be assigned. So in Example 1 the return value of the predicate,
Net(), is a net object, therefore the variable name must begin with "net". Any string may be
appended to the object type to create a variable name. Some valid Net variables follow:

“net1", "net2", "net_VCCl", "net_ground", "net_all" etc.

The rule compiler will report errors in the compilation of the rule if this variable naming
requirement is not met.

ARL Operators

ARL provides a rich set of arithmetic and logical operators. Logical operators are used to join
multiple boolean results to create complex logical expressions. Examples of these operators
are AND, OR, and XOR. From example 3 you can predict, this rule will only report information
to the user if the total number of signals in the design equals 3. Each of the conditional
statements must evaluate to a TRUE, or non-null value since they were joined together with
the AND operator. If not the Message construct will not be executed.

EMControl User Guide
ARL Training Guide

January 2002 99 Product Version 14.2

The following set of operators can be used in expressions. These operators are grouped
according to precedence, from highest to lowest.

Exercises

Exercise 1

Consider a design with 10 nets and 2 components. How many messages will the following
rules generate?

1.

RuleDefine
Rule print_net

net1
Message(Info, "?net1");

EndRule
EndRuleDefine

2.

RuleDefine
Rule print_component

component1
Message(Info, "?component1");

EndRule
EndRuleDefine

3.

RuleDefine
Rule print_all

net1 := net(design1) AND
component1 := component(design1)
Message(Info,"?inst1 ?sig1");

EndRule
EndRuleDefine

Operator Description

isNull, abs,exp negate, isInputArgumentNull, absolute, exponent

*, /, mod, rem multiply, divide, modulus, remainder

+, - add, subtract

and, or, xor logical operators

{item, item, ...} one of a list of items

==, /=, <. <=, >, >= equal to, not equal to, less than, less than or equal to, greater
than, greater than or equal to

EMControl User Guide
ARL Training Guide

January 2002 100 Product Version 14.2

Exercise 2

Consider a design which has 10 components and 0 nets. How many messages will the above
rules generate now?

Exercise 3

What is the basic object in the following rule?

1.

Rule ex1
component1 := getCompsConnToNet(net1) and
net2 := getNetOf(getPin(component1)) and
val1 := count(net2)
Message(Error, "?net2 ?val1");

EndRule

Exercise 4

Write a rule to list all the components in the design individually. The number of messages
should equal the number of the components in the design.

Exercise 5

Write a rule to list all the components in the design in one message.

Exercise 6

Write a rule to print a count of all components and nets in the design

List Manipulation

The CheckPlus rule language provides lists as its only form of data structure. Every variable
type in the language can be used to create a list of 1 or more elements. Up to this point in the
training guide we have demonstrated only basic list creation techniques using the implied
looping over a list of base objects by the CheckPlus engine. The language also supports other
basic forms of list creation. This section will investigate these language characteristics and
the operations supplied for manipulating lists.

EMControl User Guide
ARL Training Guide

January 2002 101 Product Version 14.2

What are Lists

A CheckPlus list is a collection of one of the following:

■ Object Elements

■ Non Object Elements

Lists are homogeneous lists i.e. they can contain only one type of object. For example, you
cannot have a list that consists of components and nets. Nor can you have a list that contains
strings and integers.

Example 1:

RuleDefine
Rule list_def

component1 := component(design1) AND
val_type := getPropertyValue(component1, "EMC_COMP_TYPE"))
Message(Info,"Components ?component1 , comptypes : ?val_type");

EndRule
EndRuleDefine

In the above example component1 is a list of components (object elements) and val_type is a
list of non-object elements (strings in this case). Note that getPropertyValue() is passed
a list of components. The predicate is called for each component in the list component1 and
the results are put in another list which gets assigned to val_type.

The lists are created by predicates. In the previous section we discussed how lists of Base
Objects were created by the Engine for use in evaluating each selected rule. This is 1 type of
implied list manipulation that does not require any special understanding by the programmer.
It should be understood that the length of the Base Object list determines the number of times
the rule is executed on the design database. This base object list can be displayed by using
the Message() command on every item in the list. In the following example net1 is assigned
each element of the base object list, one at a time, for each execution of the rule.

Example 1:

RuleDefine
Rule print_net

net1
Message(Info,net1,"Name : ?net1");

EndRule
EndRuleDefine

List Manipulation Routines

The difference between a list routine and other predicates is that while the list routines
operate on the full list, other predicates operate on one element of the list at a time.

EMControl User Guide
ARL Training Guide

January 2002 102 Product Version 14.2

Example 1:

RuleDefine
Rule ListEg4

shapes := shape(design1) AND
shapes_rect := isRectangle(shapes) AND
shapes_no_rect := remove(shapes, shapes_rect) AND
val := count(shapes_no_rect)
Message(INFO, shapes_no_rect, "No. of non-rectangle

shapes = ?val");
EndRule

EndRuleDefine

The intent of this rule is to use count() to compute the count of all non-rectangle shapes in
the design.

In the above rule isRectangle() will be called implicitly once per element in the list shapes.
But remove() and count() being list routines will be called only once.

For example consider a design with 10 shapes. In this case isRectangle() will be executed
10 times (once for each element in the list shapes) while remove and count will be executed
only once in this line.

(Note: There is an interesting bug in the above rule! If the design does not have any rectangle
elements, the rule will not report non-rectangle shapes. In this case, the rule does not give a
violation)

Here are some of the predicates which operate on lists. Each of the following predicates
except append returns the result. The input list is not modified. So in the following discussion
saying remove(list1, list2) removes the elements in list2 from list1. This means that the
remove predicate returns list3, which contains all elements of list1 which are not contained in
list2. As an exception, append(list1, list2) attaches list2 to list1. So it modifies its input
argument.Here is a table of the basic ARL list manipulation routines:

Function Description

car(list) Returns the first element

cdr(list) Returns the list without the first element

nth(list, i) Returns the ith element

remove_i(list, i) Returns the list without the ith element

min(list) Returns the smallest element of the list of non objects

max(list) Returns the largest element of the list of non-objects

sum(list) Returns the sum of the list of integers/floats

last(list) Returns the last element of the list

EMControl User Guide
ARL Training Guide

January 2002 103 Product Version 14.2

Here are some examples of how these list manipulation functions work:

Assume a list of Vowels like the following.

Vowels = (a e i o u)

Note that here the parentheses are not recognized as a syntax to specify lists. They are used
for clarification only.

What will be the output of the following?

❑ car(Vowels) (a)

❑ cdr(Vowels) (e i o u)

❑ nth(Vowels 3) (i)

❑ car(cdr(Vowels)) (e)

❑ cdr(car(Vowels)) nil

❑ index(Vowels, "a") (1)

❑ index(Vowels, "p") nil

❑ count(Vowels) (5)

index(list, element) Returns the index into the list if element exists

count(list) Returns the length of the list

concat(list1, list2) Returns a new list that is the concatenation of list1 and list2

union(list1, list2) Returns a unique list that is the union of list1 and list2

intersection(list1,
list2)

Returns a unique list that is the intersection of list1 and list2

remove(list1, list2) Returns list1 such that it contains no elements of list2

unique(list1) Returns a list that contains no duplicate items

sort(list1) Returns a sorted list

concat_str(list1) Returns a string value that is formed by concatenating the
strings from list1

append(list1, list2) Modifies list1 by appending the values from list2

Function Description

EMControl User Guide
ARL Training Guide

January 2002 104 Product Version 14.2

Note: A single element return value is these examples actually constitutes a list
containing one element.

Foreach Construct

The Foreach construct provides a mechanism for iterating over all members in a list. A
foreach construct is generally used to extract a subset of a list. Here is the syntax of the
foreach construct:

foreach(list, condition)

Note: The return value of any Foreach construct is always a new list. Since the Foreach
construct is really just another conditional line in a rule, it evaluates to true if the list that is
returned is non-null.

The first parameter of the Foreach construct is a list. This list is also used inside the condition
statements as the variable. An example best explains this.

Example:

List all components that have more than two pins.
RuleDefine

Rule comps_pins
component1 := component(design1) AND
component2 := foreach(component1,

count(getPin(component1)) > 2
)

Message(ERROR, "Components that have more than two pins are",
"?component2");

EndRule
EndRuleDefine

In this example you can see that component1 is the list that is used in the Forech construct.
It is also the variable name used inside the condition. component2 will be a subset of
component1. It will contain those elements of component1 that satisfy the condition section
of the foreach construct.

Saving Intermediate Results Within a Foreach construct

Often you would like to collect the intermediate results while doing computation inside a
foreach construct. This is especially helpful for debugging rules as you develop them. The
value of the variable used inside a foreach construct will change for each iteration of the loop.
The append() predicate provides a convenient way to accumulate the results in one variable.

Suppose you want to find all cline segments over a shape that intersect with the shape
boundary at the non-90 degree intersection angles of cline segments over a shape. The rule
for this will be something like:

EMControl User Guide
ARL Training Guide

January 2002 105 Product Version 14.2

RuleDefine
Rule append_usage

nets_clineseg := getClineSegsInArea(getPolygon(shape)) AND
nets_clineseg_non90 :=
foreach(nets_clineseg ,

valAngle := getIntersectAngle(shape, nets_clineseg) AND
valAngle /= 90 AND

)
Message(INFO, shape,"The none-90 degree cline segs",

 "are","?nets_clineseg_non90");
EndRule
EndRuleDefine

Now if you want to find all the non-90 degree angles aswell, you can use append() in the
above rule as illustarted below:

RuleDefine
Rule append_usage

nets_clineseg := getClineSegsInArea(getPolygon(shape)) AND
nets_clineseg_non90 :=
foreach(nets_clineseg ,

valAngle := getIntersectAngle(shape, nets_clineseg) AND
valAngle /= 90 AND

append(val_non90_angles , valAngle)
)
Message(INFO, shape,"The none-90 degree cline segs",

 "are","?nets_clineseg_non90");
EndRule
EndRuleDefine

If we print valAngle in the message, we'll get the value for the last iteration. The append()
predicate accumulates all non-90 degree angles in val_non90_angles. Append() differs from
other predicates in some characteristics. They are -

■ Append()creates its first argument. So it must be an identifier. Passing something else,
e.g. a predicate call to append() will result in compilation error.

■ As a corollary to 1, append can create a variable only once. Trying to use append twice
on a variable will result in an error. The same variable cannot be used as the first
argument of two different appends. Please note that iterating over the same append call
is allowed using foreach, as in the above example. Actually that is what gives append the
power!

If Construct

ARL provides an If conditional construct. Like the Foreach construct, If construct also returns
a value which may be assigned to variables.

The syntax of the If construct is:

if(condition, expression1, expression 2)

EMControl User Guide
ARL Training Guide

January 2002 106 Product Version 14.2

If the condition evaluates to TRUE expression 1 is returned. Otherwise expression 2 is
returned. The following example illustrates the use of If:

RuleDefine
Rule If _prop

valProp := if(hasProperty(component1, "EMC_COMP_TYPE"),
 getPropertValue(component1, "EMC_COMP_TYPE"),
 "NO_PROP"

)
Message(INFO, "Component ?component1 have comptype ?valProp);

EndRule
EndRuleDefine

If the component has the EMC_COMP_TYPE property, valProp is assigned its value. Otherwise
valProp gets the value NO_PROP.

expression1 and expression2 can contain assignments as well. In such cases the same set
of variables should be bound in both expressions.

Exercise

Assuming component1 is a list of components and net1 is a list of nets in the design. Which
of the following conditions are valid

1. component1 = concat(component2, net1)

2. val2 := concat("a", "b")

3. val3 := concat("a", 1)

4. component1 := component(design1) and

net1 := net(design1) and

val1 := name(component1) and

val2 := name(component1) and

val3 := concat(val1, val2)

5. component1 := net1

6. val1 := 2 and

component1 := component(design1) and

val1 == component1

EMControl User Guide
ARL Training Guide

January 2002 107 Product Version 14.2

Dissection of an existing rule

In this section we will discuss the implementation of some of the existing EMC rules. The
source code of all the rules will be available in the customer installation. Understanding the
existing rules will help the user to get a better insight into the ARL language and its power in
specifying design rules. It will also help the user to make modifications in the rules so that
they can be tailor-made to suit his/her EMC needs.

Rule critical_net_via_count

Let us first look at the simple routing rule critical_net_via_count. The rule checks that all
critical nets have not more than EMC_VIA_COUNT vias on them.

EMC_VIA_COUNT is a parameter used in this rule which specifies the maximum number or
vias allowed for each class.

#define EMC_VIA_COUNT "7 8 9 10 11"

RuleDefine
Rule critical_net_via_count

valClass := upperCase(getPropertyValue(net1, EMC_CRITICAL_NET)) AND
/* Get the net class into valClass. Only critical nets get selected */

valPosClass := upperCase(getAllSubstrings(EMC_NET_CLASSES, {""," "}, {" ", ""}))
AND
/* Get the list of all net classes in valPosClass */
valIndex := index(valPosClass, valClass) AND/* Get the index of the selected net’s
class in valPosClass */

valViaCntAll := atoi(getAllSubstrings(EMC_VIA_COUNT, {""," "}, {" ", ""})) AND
/* Get the list of all via counts specified in parameter EMC_VIA_COUNT */

valViaCnt := nth(valViaCntAll, valIndex) AND
/* Get the via count corresponding to the selected net’s class .
For example a CLASS3 net will have valViaCnt = 9*/

val1 := count(getViasOnNet(net1)) AND
/* Get the via count for the net into val1 */

val1 > valViaCnt
/* Compare if the via count val1 is greater than the maximum allowed number
valViaCnt */

Message(ERROR,
net1,
"Check the number of vias per net.","\nThe number of vias per net should
be kept at a",
"minimum in order to improve reliability. The maximum number of ",
"vias allowed = ?valViaCnt, vias found on net ?net1 = ?val1 "

);

/* Report the violation. Highlight the net and report the number of vias found */

EMControl User Guide
ARL Training Guide

January 2002 108 Product Version 14.2

endRule
endRuleDefine

Rule conn_in_low_freq_regions

Now we will study the implementation of a more complex placement rule
conn_in_low_freq_regions. The rule checks for 2 things.

■ All connectors should be placed in the lowest frequency regions

■ A lowest frequency region containing a connector should not have any higher frequency
components placed in it.

RuleDefine

 Rule conn_in_low_freq_regions
/* CHECK 1 */

isEmcRegion(shape_emc_region) AND
/* Select emc regions only */

valRegionClass := upperCase(getPropertyValue(shape_emc_region,
EMC_CRITICAL_REGION)) AND

/* Get the EMC_CRITICAL_REGION property value for the selected region */

valAllClasses := getAllSubstrings(EMC_COMP_CLASSES, {""," "}, {" ", ""})
AND
/* Get the list of all EMC region classes into valAllClasses */

valLowestFreqClass := last(valAllClasses) AND
/* Get the lowest frequency class */

valRegionClass /= valLowestFreqClass AND
/* The rule proceeds further only if the EMC region is not of lowest frequency
*/

valLayer := if(getSubclass(shape_emc_region) == "BOTTOM_ROOM" ,
"BOTTOM", "TOP") AND

/* get the layer (TOP or BOTTOM) of the EMC region */
components := getCompInArea(getPolygon(shape_emc_region)) AND
/* get all the components in the area of the EMC region */

components_region := foreach(components,
getLayer(components) == valLayer) AND

/* Select only those components which are in the same layer as that of the
EMC region */

components_connector := foreach(components_region,
isConnector(components_region))

/* Find out all the connector components in the EMc region */

Message(WARNING, shape_emc_region components_connector,
"Checks for connectors in Low Frequency Region",
"\nConnectors should be placed in the lowest frequency region.",
"Connector(s)\n\t?components_connector",
"lies in region ?shape_emc_region of frequeny class ?valRegionClass.",
"This connector should be placed in a ?valLowestFreqClass region"

EMControl User Guide
ARL Training Guide

January 2002 109 Product Version 14.2

);

/* Report violation. Highlight the EMC regions and offending connectors */
/* CHECK 2 */

isEmcRegion(shape_emc_region) AND
/* Select emc regions only */

valAllClasses := getAllSubstrings(EMC_COMP_CLASSES, {""," "}, {" ", ""}) AND

/* Get the list of all EMC region classes into valAllClasses */

valRegionClass := upperCase(getPropertyValue(shape_emc_region,
EMC_CRITICAL_REGION)) AND
/* Get the EMC_CRITICAL_REGION property value for the selected region */

valRegionClass == last(valAllClasses) AND
/* The rule proceeds further only if the EMC region of lowest frequency */

valIndex := index(valAllClasses, valRegionClass) AND
/* Get the index of the EMC region class in list valAllClasses */

valLayer := if(getSubclass(shape_emc_region) == "BOTTOM_ROOM" ,
"BOTTOM","TOP") AND
/* get the layer (TOP or BOTTOM) of the EMC region */

components := getCompInArea(getPolygon(shape_emc_region)) AND
/* get all the components in the area of the EMC region */

components_region := foreach(components,
getLayer(components) == valLayer) AND

/* Select only those components which are in the same layer as that of the
EMC region */

components_connector := foreach(components_region,
isConnector(components_region)) AND

/* Find out all the connector components in the EMC region */

components_high_freq := foreach(components_region,
valCompClass := upperCase(getPropertyValue(components_region,
EMC_CRITICAL_IC)) AND
index(valAllClasses, upperCase(valCompClass)) < valIndex)

/* Get a list of all higher frequency components in the EMC region. This is
found out by comparing the indices of the component class and region class

*/

Message(WARNING, shape_emc_region components_high_freq,
"Checks for Higher Frequency components in Low Frequency Region",
"\nLowest frequency regions containing connectors should not contain",
"any higher frequeny components.\n",
"The lowest frequency region ?shape_emc_region containing
connector(s)",

"\t?components_connector",
"contain the following higher frequency component(s):",
"\t?components_high_freq"

);

/* Report violation. Highlights the lowest frequency EMC region and the higher
frequency components contained in it */

EMControl User Guide
ARL Training Guide

January 2002 110 Product Version 14.2

EndRule
EndRuleDefine

Laboratory Exercises

Basic Rules

Exercise 1

Write a rule to report all nets having EMC_CRITICAL_NET as CLASS1. The base object
should be net.

Exercise 2

Keeping the same base objest, modify the rule in problem 1 so that it reports all nets having
EMC_CRITICAL_IC as CLASS1 and connected to a connector.

Exercise 3

Write a rule to report the number of pins and number of vias on a net.

Exercise 4

Modify the rule in exercise 2 to list the connector names also.

Exercise 5

Write a rule which for each IC component lists all other IC components which are within a
distance DIST and is connected to the component. (DIST is a parameter used in the rule).

Modifying existing EMControl rule (conn_in_low_freq_regions)

Some times the user may want to make minor changes in the rule logic to adapt it to suit his/
her design guidelines. Here is an exercise which captures this.

EMControl User Guide
ARL Training Guide

January 2002 111 Product Version 14.2

Exercise 1

Modify the conn_in_low_freq_regions rule so that the rule reports a violation whenever a
higher frequency component is found in a region. (eg: CLASS1 component in CLASS2 region
should report an error)

Exercise 2

Modify the conn_in_low_freq_regions rule so that there is an exact match between
component class and region class. For example the rule should give a violation if a non-
CLASS1 component is found in a CLASS1 region.

Custom EMC rule writing

Exercise 1

Write a rule which checks for the capacitance per unit area between power and ground planes
of a board. The rule should give a message if the capacitance exceeds the parameter
LAYER_CAPACITANCE. Assume the dielectric constant of the dielectric material to be 4.5.
The default value of LAYER_CAPACITANCE is 100 f Farad/square mil

EMControl User Guide
ARL Training Guide

January 2002 112 Product Version 14.2

EMControl User Guide

January 2002 113 Product Version 14.2

B
EMControl Rules

Overview

This appendix describes the rules included with EMControl. These rules are grouped in the
following categories:

■ Placement Rules

■ Bypass Rules

■ Power and Ground Plane Rules

■ DC Routing Rules

■ Signal Routing Rules

■ Signal Quality Rules

Rule descriptions in this appendix appear alphabetically grouped within the categories
described above. Each rule description contains the following information:

■ A brief description of the rule

■ Properties used by the rule

■ Variables used by the rule

■ Information about data (such as properties and variables) required by the rule

■ The default severity level of the rule

The EMC expert at your site can best determine when and where to use each rule to check
your design.

The uncompiled, ASCII versions of the rules are contained in the following files:

■ emc_placement.arl

■ emc_bypass.arl

EMControl User Guide
EMControl Rules

January 2002 114 Product Version 14.2

■ emc_pwr_gnd_dist.arl

■ emc_dc_route.arl

■ emc_sig_route.arl

■ emc_sig_qual.arl

The path locations for these files are provided in Chapter 2, “Setting Up the EMControl
Environment.” Information on editing these rule files and writing new rules is contained in
Chapter 5, “Writing Rules.”

Many rules in this appendix use variables. You can modify the default values associated with
these variables by editing the emc_param.par file. For more information on variable defaults,
parameterized variables, and the emc_param.par file, see Chapter 2, “Setting Up the
EMControl Environment.”

Many rules described in this appendix depend on certain properties being attached to objects
in your design. For information about attaching properties to your design before running
EMControl, see “EMControl Properties” on page 27.

Some of the Signal Routing and Signal Quality rules use data from DF/SigNoise. Before
running these rules, you must properly configure EMControl and SigNoise to run together.
See “Initializing EMControl” on page 24 and “Initializing SigNoise” on page 26.

Placement Rules

The following rules are included in the emc_placement.rle file:

■ central_clock

■ comp_not_conn_dist

■ comp_to_conn_dist

■ conn_in_low_freq_regions

■ gnd_screw_between_clock_and_conn

central_clock

Checks whether a clock generator is located at the center of the region formed by the IC
components that it drives.

EMControl User Guide
EMControl Rules

January 2002 115 Product Version 14.2

The rule first identifies all clock nets. Clock nets are defined as nets connected to the clock
generator at pins with PINUSE = OUT. It then identifies all IC components connected to the
clock nets.

The sum of the distances from each individual IC component to the clock generator is
calculated and compared with the sum of the distances from each IC component to all other
IC components on the net and the clock generator. If the first sum is greater than the second
sum, a violation is reported.

Properties Used

EMC_COMP_TYPE = CLOCK_GEN

PINUSE = OUT

Variables Used

None

Required Data

Attach the EMC_COMP_TYPE property set to CLOCK_GEN to all clock generators.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

Default Severity

Info

comp_not_conn_dist

Checks for a minimum distance between an IO component (a connector) and the components
not connected to it. This rule ensures that any component not connected to an offcard net is
more than the COMP_CONN_MIN_DISTANCE from the IO component. It also ensures that
components not connected to the IO component are more than the
COMP_COMP_MIN_DISTANCE from any component connected to the IO component.

EMControl User Guide
EMControl Rules

January 2002 116 Product Version 14.2

Properties Used

None

Variables Used

COMP_CONN_MIN_DISTANCE

COMP_COMP_MIN_DISTANCE

Required Data

You can edit the values for the EMControl variables before using this rule to check your
design:

■ COMP_CONN_MIN_DISTANCE specifies the permissible minimum distance between
components that are not connected to the IO component and the IO component itself.

■ COMP_COMP_MIN_DISTANCE specifies the minimum distance between components
that are not connected to the IO component and components that are connected to it.

Default Severity

Warning

comp_to_conn_dist

Checks for a maximum distance between an IO component (a connector) and the
components connected to it, excluding passive elements and discrete components.

This rule ensures that all components connected to an offcard net are within the distance
specified by the EMC_COMP_CONN_DISTANCE of the IO component connected to the
offcard net.

Properties Used

None

EMControl User Guide
EMControl Rules

January 2002 117 Product Version 14.2

Variables Used

EMC_COMP_CONN_DISTANCE

Required Data

You can edit the EMC_COMP_CONN_DISTANCE variable to modify the value for the
maximum distance between components and the IO component.

Default Severity

Warning

conn_in_low_freq_regions

Checks whether all connectors are placed in the lowest frequency region available on the
board.

This rule also checks whether any higher frequency components (as identified by their
EMC_CRITICAL_IC property value) are present in the lowest frequency regions that contain
connectors.

Properties Used

EMC_CRITICAL_IC

EMC_CRITICAL_REGION

Variables Used

None

Required Data

Attach the EMC_CRITICAL_IC property to critical ICs.

Attach the EMC_CRITICAL_REGION property to critical frequency regions.

EMControl User Guide
EMControl Rules

January 2002 118 Product Version 14.2

Default Severity

Error

gnd_screw_between_clock_and_conn

Checks whether a grounded screw exists between a clock generator and a connector.

The area searched for a ground screw is a rectangular area with a length equal to the
distance from the center of the clock generator to the center of the connector and a width
equal to the length multiplied by the GND_SCREW_SENS_DIST_RATIO.

Properties Used

EMC_COMP_TYPE = CLOCK_GEN

EMC_COMP_TYPE = GND_SCREW

Variables Used

GND_SCREW_SENS_DIST_RATIO

Required Data

Attach the EMC_COMP_TYPE property set to CLOCK_GEN to all clock generators.

Attach the EMC_COMP_TYPE property set to GND_SCREW to all ground screws.

If required, you can edit the value of the GND_SCREW_SENS_DIST_RATIO variable before
using this rule to check your design. GND_SCREW_SENS_DIST_RATIO specifies the ratio
between the length and width for the rectangular area being searched for a ground screw.

Default Severity

Error

Bypass Rules

The following rules are included in the emc_bypass.rle file:

EMControl User Guide
EMControl Rules

January 2002 119 Product Version 14.2

■ bypass_cap_type

■ bypass_critical_IC

■ bypass_drvr_rcvr_bidir

■ bypass_fast_sw_trans

■ critical_IC_3caps_C_2C_4C

■ critical_IC_loop_area

■ decouple_emc_regions

■ fence_off_emc_regions

bypass_cap_type

Checks that all bypass capacitors are one of the types specified by
ALL_BYPASS_CAP_TYPE.

Properties Used

EMC_CPOMP_TYPE = BYPASS_CAP

TOL

VALUE

Variables Used

ALL_BYPASS_CAP_TYPE

Required Data

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

The TOL and VALUE properties identify the tolerance and capacitance values of the
capacitor.

If required, you can edit the value of the ALL_BYPASS_CAP_TYPE variable before using this
rule to check your design. ALL_BYPASS_CAP_TYPE specifies the allowed bypass capacitor
types. Use the following syntax to specify a bypass capacitor type:

EMControl User Guide
EMControl Rules

January 2002 120 Product Version 14.2

"<device type>:<cap value>:<tolerance>"

For example:

#define ALL_BYPASS_CAP_TYPE "CAP-1:82UF:5%" ,"CAP-2:0.01uf:5%"
, "CAP-3:0.01uf:3%" , "CAP-2:10uf:4%" "CAP-4:1.0uf:2%"
, "CAP-5:5uf:5%"

Default Severity

Warning

bypass_critical_IC

Checks bypassing of high-current, high-speed integrated circuits (ICs). It ensures that all
critical ICs have connected to them at least the number of bypass capacitors specified by
MIN_BYPASS_CAPS. The capacitors used must be one of the types specified by the variable
CRITICAL_IC_BYP_CAP_TYPE.

Properties Used

EMC_CRITICAL_IC

EMC_COMP_TYPE

TOL

VALUE

Variables Used

BYPASS_CAP_SENS_DIST

CRITICAL_IC_BYPASS_CAP_TYPE

MIN_BYPASS_CAPS

Required Data

Attach the EMC_CRITICAL_IC property to all critical ICs.

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

EMControl User Guide
EMControl Rules

January 2002 121 Product Version 14.2

The TOL and VALUE properties identify the tolerance and capacitance values of the
capacitor.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ BYP_CAP_SENS_DIST defines the bypass capacitor sensitive distance. (This variable
is parameterized.)

■ MIN_BYPASS_CAPS defines the minimum number of bypass capacitors that must be
associated with a critical IC. (This variable is parameterized.)

■ CRITICAL_IC_BYP_CAP_TYPE identifies the bypass capacitor types that are allowed
for a critical IC.

This variable is parameterized. Use the following syntax to specify the bypass capacitor type
for each class:

"<device type>:<cap value>:<tolerance>"

For example:

#define CRITICAL_IC_BYP_CAP_TYPE "CAP-1:82UF:5%!CAP-3:0.01uf:3%"
, "CAP-2:10uf:4%" , "CAP-4:1.0uf:2%!CAP-5:5uf:5%" , "CAP-5:5uf:5%"
, "CAP-5:5uf:5%"

Default Severity

Error

bypass_drvr_rcvr_bidir

Checks that all line drivers, line receivers, and bidirectional transceivers are bypassed. These
components must have their bypass capacitors at a specified distance from the power pin.
The rule identifies the power pin as having the PINUSE=“POWER” property attached.

Properties Used

EMC_COMP_TYPE = LINE_DRIVER

EMC_COMP_TYPE = LINE_RECEIVER

EMC_COMP_TYPE = BIDIR_TRANS

EMC_COMP_TYPE = BYPASS_CAP

EMControl User Guide
EMControl Rules

January 2002 122 Product Version 14.2

PINUSE = POWER

Variables Used

BYP_CAP_SENS_DIST

EMC_BYPASS_CAP_PWR_PIN_DIST

Required Data

Attach the EMC_COMP_TYPE property set to LINE_DRIVER to all line drivers.

Attach the EMC_COMP_TYPE property set to LINE_RECEIVER to all line receivers.

Attach the EMC_COMP_TYPE property set to BIDIR_TRANS to all bidirectional
transceivers.

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ BYP_CAP_SENS_DIST specifies the bypass capacitor sensitive distance. (This variable
is parameterized.)

The rule selects the maximum value of this variable.

■ EMC_BYPASS_CAP_PWR_PIN_DIST specifies the maximum distance between the
power pin and the bypass capacitors.

Default Severity

Error

bypass_fast_sw_trans

Checks that all fast-switching transistors are bypassed properly.

EMControl User Guide
EMControl Rules

January 2002 123 Product Version 14.2

Properties Used

EMC_COMP_TYPE = FAST_SWITCH_TRANSISTOR

EMC_COMP_TYPE = BYPASS_CAP

Variables Used

BYP_CAP_SENS_DIST

Required Data

Attach the EMC_COMP_TYPE property set to FAST_SWITCH_TRANSISTOR to all fast
switching transistors.

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

If required, you can edit the value of the BYP_CAP_SENS_DIST variable before using this
rule to check your design. BYP_CAP_SENS_DIST defines the bypass capacitor sensitive
distance. (This variable is parameterized.)

The rule selects the maximum value of this variable.

Default Severity

Error

critical_IC_3caps_C_2C_4C

Checks the distances between bypass capacitors and critical IC power pins.

This rule ensures that

■ Three bypass capacitors are used for each critical IC power pin.

■ The three capacitors have values in the ratio of 1:2:4.

■ The largest capacitor is farthest from the pin within a distance of
CAP1_DIST_FROM_PWR_PIN.

■ The second largest capacitor is within a distance of CAP2_DIST_FROM_PWR_PIN.

■ The smallest capacitor is closest within a distance of CAP3_DIST_FROM_PWR_PIN.

EMControl User Guide
EMControl Rules

January 2002 124 Product Version 14.2

The rule identifies the power pin by the PINUSE=“POWER” property on the pin.

Properties Used

EMC_CRITICAL_IC

EMC_COMP_TYPE = BYPASS_CAP

VALUE

PINUSE = POWER

Variables Used

CAP1_DIST_FROM_PWR_PIN

CAP2_DIST_FROM_PWR_PIN

CAP3_DIST_FROM_PWR_PIN

 Required Data

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

Attach the EMC_CRITICAL_IC property to all critical ICs.

The VALUE property identifies the capacitance value of the capacitor.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ CAP1_DIST_FROM_PWR_PIN specifies the distance of capacitor 1 from the power pin,
for example, 300 mils. (This variable is parameterized.)

■ CAP2_DIST_FROM_PWR_PIN specifies the distance of capacitor 2 from the power pin,
for example, 200 mils. (This variable is parameterized.)

■ CAP3_DIST_FROM_PWR_PIN specifies the distance of capacitor 3 from the power pin,
for example, 100 mils. (This variable is parameterized.)

EMControl User Guide
EMControl Rules

January 2002 125 Product Version 14.2

Default Severity

Error

critical_IC_loop_area

Calculates the power and ground loop area and compares it with the area calculation based
on the geometry of the package. The rule handles both routed power and ground (double-
sided PCB) and unrouted power and ground (multilayered PCB) cases.

The rule works on all ICs with the property EMC_CRITICAL_IC. For every power pin of the
IC, the closest ground pin and the closest capacitor are considered for area calculations.

critical_IC_loop_area identifies the power and ground pins as the pins having the
properties PINUSE = “POWER” and PINUSE = “GROUND”, respectively.

For an IC with the property EMC_CRITICAL_IC, the constraint area is calculated as
described in the following example.

In <Hot>Figure 2-1 , P identifies the location on the IC of the power pin and G identifies the
ground pin. P-G is taken to be len1, the direct distance between the power pin and the
ground pin. Using len1 as the hypotenuse, a right-angled isosceles triangle is constructed.
The area of the triangle is calculated to be Tref.

The actual loop area is calculated differently for routed and unrouted cases:

■ Unrouted cases — No routed connections between power and ground pins on the IC
and the bypass capacitor.

Figure 2-1 Example for Calculating Loop Area

A triangle is constructed with the following vertices:

1 2 3 4

P

G

IC

Bypass
Capacitor

Bypass
Capacitor

EMControl User Guide
EMControl Rules

January 2002 126 Product Version 14.2

❑ The power pin on the IC (P)

❑ The ground pin on the IC (G)

❑ The capacitor pin that is most distant from the power pin (3)

In the above example, the triangle is P-G-3. The area of this triangle is calculated as
Tact.

■ Routed cases — The rule identifies the shortest etch paths from the power and ground
pins of the IC to the bypass capacitor.

The etch that connects the power pin to the capacitor is called pwr_etch. The etch
that connects the ground pin to the capacitor is called gnd_etch.

Figure 2-2 Example of Routed Case

In <Hot>Figure 2-2 , the minimum bounding box is shown as a dotted line. It encloses:

❑ The power pin on the IC (P)

❑ The ground pin on the IC (G)

❑ The bypass capacitor (capacitor with pins 3, 4)

❑ The pwr_etch (etch 3-P or 4-P)

❑ The gnd_etch (etch 4-G or 3-G)

The area of the minimum bounding box is calculated as Tact.

Two areas have now been determined: Tact and Tref. The ratio of these areas is
calculated. A violation is reported if the ratio exceeds the value specified by the
LOOP_AREA_COEFFICIENT variable.

1 2 3 4

P

G

IC

Bypass
Capacitor

Bypass
Capacitor

EMControl User Guide
EMControl Rules

January 2002 127 Product Version 14.2

Properties Used

EMC_COMP_TYPE = BYPASS_CAP

EMC_CRITICAL_IC

PINUSE = POWER

PINUSE = GROUND

Variables Used

LOOP_AREA_COOEFFICIENT

BYP_CAP_SENS_DIST

Required Data

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

Attach the EMC_CRITICAL_IC property to all critical ICs.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ LOOP_AREA_COEFFICIENT defines the maximum allowable ratio of the actual area
(calculated as Tact) and the reference area (calculated as Tref). (This variable is
parameterized.)

■ BYP_CAP_SENS_DIST defines the bypass capacitor sensitive distance. (This variable
is parameterized.)

Default Severity

Error

EMControl User Guide
EMControl Rules

January 2002 128 Product Version 14.2

decouple_emc_regions

Checks the boundary between adjacent EMC regions having different EMC frequency
classifications for a sufficient number of bypass capacitors. An EMC region is identified by the
EMC_CRITICAL_REGION property value attached to it. Bypass capacitors are identified by
the property EMC_COMP_TYPE = BYPASS_CAP.

Areas of the board without an assigned EMC_CRITICAL_REGION property are considered
to be part of a room having the lowest assigned frequency class. Rooms are not actually
merged. When two rooms overlap, the room with the higher frequency class takes
precedence.

The “adjacency” of two rooms and their common boundary is defined as follows:

■ If the edges of a room and its neighbor are separated by more than the distance specified
by BYP_CAP_SENS_DIST, they will not be considered adjacent.

The area between them will be considered as belonging to the default room of the lowest
frequency.

■ If the edges of the two rooms are within the distance specified by
BYP_CAP_SENS_DIST, the edge of the region corresponding to the higher frequency
will be taken as the center of the boundary region where bypass capacitors are to be
checked.

No bypass checking will be done for the lower frequency region.

■ A TOP EMC region considers a TOP or BOTH region as its neighbor.

A BOTTOM region considers only BOTTOM rooms as neighbors.

Because the edge of a room can have more than one room adjacent to it, the checking
along each edge is performed in segments.

Properties Used

EMC_COMP_TYPE = BYPASS_CAP

EMC_CRITICAL_REGION

Variables Used

BYP_CAP_SENS_DIST

BYP_CAP_SEP_DIST

EMControl User Guide
EMControl Rules

January 2002 129 Product Version 14.2

Required Data

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

Attach the EMC_CRITICAL_REGION property to all critical regions.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ BYP_CAP_SENS_DIST defines the bypass capacitor sensitive distance. (This variable
is parameterized.)

■ BYP_CAP_SEP_DIST defines the search window for boundaries. (This variable is
parameterized.)

The BYP_CAP_SEP_DIST variable has one less value for a board than the number of
critical frequency regions specified by EMC_CRITICAL_REGION.

Default Severity

Info

fence_off_emc_regions

Checks for the presence of a fence, or boundary area, along the boundaries between EMC
regions having different EMC_CRITICAL_REGION property values. This rule also checks for
the percentage overlap of the fence and the boundary.

Fences are identified by the property EMC_COMP_TYPE = FENCE. A TOP region checks
for fences on the TOP layer only. A BOTH region checks for fences on the TOP and BOTTOM
layers. A BOTTOM region checks for fences on the BOTTOM layer only.

Properties Used

EMC_COMP_TYPE = FENCE

EMC_CRITICAL_REGION

Variables Used

FENCE_BOUNDARY_DIST

FENCE_BOUNDARY_RATIO

EMControl User Guide
EMControl Rules

January 2002 130 Product Version 14.2

Required Data

Attach the EMC_COMP_TYPE property set to FENCE to all fences.

Attach the EMC_CRITICAL_REGION property to critical frequency regions.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ FENCE_BOUNDARY_DIST specifies the sensitive distance from the boundary within
which to search for fences.

■ FENCE_BOUNDARY_RATIO specifies the minimum ratio of overlap required between
the fences and the boundary segments.

Default Severity

Info

Power and Ground Plane Rules

The following rules are included in the emc_pwr_gnd_dist.rle file:

■ gnd_under_clock

■ pwr_gnd_plane_separation

gnd_under_clock

Checks for a symmetrically placed ground shape under each clock generator. Ground shapes
should have the same subclass as that of the clock generator footprint (that is, either TOP or
BOTTOM depending on where the clock generator is placed).

The rule also reports errors if the ratio of overlap between the ground shapes and package
geometry area of the clock generator is less than 0.5 or if there is not at least one ground
shape under each quadrant of the package geometry.

Properties Used

EMC_COMP_TYPE = CLOCK_GEN

VOLTAGE

EMControl User Guide
EMControl Rules

January 2002 131 Product Version 14.2

Variables Used

None

Required Data

Attach the EMC_COMP_TYPE property set to CLOCK_GEN to all clock generators.

All ground shapes must be part of a net with the property VOLTAGE = 0.

Default Severity

Warning

pwr_gnd_plane_separation

Checks for a separation between power and ground planes. The rule checks that the distance
between a power plane and a ground plane (on the Z axis) is not less than the value specified
by MIN_PWR_GND_SEPARATION and not more than the value specified by
MAX_PWR_GND_SEPARATION.

Properties Used

None

Variables Used

POWER_PLANE_NAME

GROUND_PLANE_NAME

MIN_POWER_GND_SEPARATION

MAX_POWER_GND_SEPARATION

Required Data

If required, you can edit the values for EMControl variables before using this rule to check
your design:

EMControl User Guide
EMControl Rules

January 2002 132 Product Version 14.2

■ POWER_PLANE_NAME specifies the default name of the power plane.

For example:

#define POWER_PLANE_NAME "VCC"

■ GROUND_PLANE_NAME specifies the default name of the ground plane.

For example:

#define GROUND_PLANE_NAME "GND"

■ MIN_PWR_GND_SEPARATION identifies the minimum power to ground separation
distance on the Z axis.

■ MAX_PWR_GND_SEPARATION identifies the maximum power to ground separation
distance on the Z axis.

Default Severity

Error

DC Routing Rules

The following rules are included in the emc_dc_route.rle file:

■ bypass_pwr_trace

■ filters_to_clean_ground

■ max_pwr_gnd_resistance

■ pwr_gnd_trace_width

bypass_pwr_trace

Checks that power traces are bypassed to ground. The rule operates on the power trace
segments whose length is more than the value specified by
POWER_TRACE_BYPASS_DIST. It counts the number of bypass capacitors on these
segments and compares this number with the number of bypass capacitors required on the
segment. The number of required bypass capacitors is determined by assuming that bypass
capacitors must be equally spaced and within the distance specified by
POWER_TRACE_SENS_DIST from the power trace.

EMControl User Guide
EMControl Rules

January 2002 133 Product Version 14.2

For example, if POWER_TRACE_BYPASS_DIST has a value of 500 and the length of a
segment of the power trace is 1100 units, the number of bypass capacitors required for the
segment is two.

Properties Used

EMC_COMP_TYPE = BYPASS_CAP

VOLTAGE

Variables Used

POWER_TRACE_SENS_DIST

POWER_TRACE_BYPASS_DIST

Required Data

Attach the EMC_COMP_TYPE property set to BYPASS_CAP to all bypass capacitors.

Attach the VOLTAGE property to all DC nets. The most common nets requiring attachment of
this property are power and ground. Ground nets must have a VOLTAGE value of zero. Power
nets are identified by a nonzero VOLTAGE value.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ POWER_TRACE_SENS_DIST defines the distance between bypass capacitors and the
power trace.

■ POWER_TRACE_BYPASS_DIST specifies the length of the power trace for which
bypass capacitors should exist.

Default Severity

Warning

filters_to_clean_ground

Checks whether the IO filter components are connected to a clean ground plane. A clean
section of the ground plane is defined as a separate shape on the ground plane surrounded
by a moat and having only IO and filter components connected to it.

EMControl User Guide
EMControl Rules

January 2002 134 Product Version 14.2

Filter components are identified by the property EMC_COMP_TYPE = FILTER. Ground
shapes are on ETCH subclass with a layer type of plane. They are part of a net with the
property VOLTAGE = 0.

For each filter connected to an IO component and having more than two pins, at least one pin
must connect to a clean ground shape. An error is reported if there is no connection to clean
ground.

Properties Used

EMC_COMP_TYPE = FILTER

VOLTAGE

Variables Used

None

Required Data

Attach the EMC_COMP_TYPE property set to FILTER to all filters.

Attach the VOLTAGE property set to zero to all ground shapes.

Default Severity

Error

max_pwr_gnd_resistance

Checks the resistance between the supply pin of an IC and the voltage source, using the
maximum permissible value specified by the PIN_PIN_RESISTANCE variable or the
PIN_PLANE_RESISTANCE variable, as described below.

Properties Used

VOLTAGE_SOURCE_PIN

VOLTAGE

EMControl User Guide
EMControl Rules

January 2002 135 Product Version 14.2

Variables Used

PIN_PIN_RESISTANCE

PIN_PLANE_RESISTANCE

Required Data

When the design has no dedicated plane layers, attach the VOLTAGE_SOURCE_PIN
property to a voltage source pin, such as a connector pin. The VOLTAGE_SOURCE_PIN
property is a flag that identifies the voltage source.

Assign the VOLTAGE property to all nonsignal nets. The most common nets requiring
attachment of this property are power and ground. Ground nets must have a VOLTAGE value
of zero. Power nets are identified by a nonzero VOLTAGE value.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ PIN_PIN_RESISTANCE specifies the maximum pin-to-pin resistance.

The PIN_PIN_RESISTANCE variable is used for designs in which no dedicated plane
layers exist and one of the pins has the VOLTAGE_SOURCE_PIN property attached.

■ PIN_PLANE_RESISTANCE specifies the maximum pin-to-plane resistance.

The PIN_PLANE_RESISTANCE variable is used for designs that have dedicated plane
layers.

Default Severity

Error

pwr_gnd_trace_width

Checks the power and ground trace widths. The rule verifies that the power and ground traces
are at least three times the nominal line width or the width defined by
GND_PWR_TRACE_WIDTH, whichever is greater. This increases signal integrity and
minimizes simultaneous switching noise. EMControl uses the VOLTAGE property to identify
the power and ground traces.

EMControl User Guide
EMControl Rules

January 2002 136 Product Version 14.2

Properties Used

VOLTAGE

Variables Used

GND_PWR_TRACE_WIDTH

Required Data

Attach the VOLTAGE property to power and ground. Ground nets must have a VOLTAGE
value of zero. Power nets are identified by a nonzero VOLTAGE value.

You can edit the GND_PWR_TRACE_WIDTH variable to specify the minimum power and
ground trace width to use.

Default Severity

Error

Signal Routing Rules

The following rules are included in the emc_sig_route.rle file:

■ critical_net_card_edge_dist

■ critical_net_exp_length

■ critical_net_man_ratio

■ critical_net_via_count

■ critical_net_via_pin_ratio

■ filtered_IO_signals

■ max_critical_net_xtalk

■ nets_over_clean_gnd

■ no_critical_net_thru_IO_comps

■ shield_clock_nets

EMControl User Guide
EMControl Rules

January 2002 137 Product Version 14.2

■ return_path_near_signal_via

Some of the signal routing rules use data produced by DF/SigNoise. Before running these
rules, you must properly configure EMControl and SigNoise to run together. See “Initializing
EMControl” on page 24 and “Initializing SigNoise” on page 26.

critical_net_card_edge_dist

Checks the distance from the critical net to the card edge. The rule verifies that the critical
nets do not come within the distance specified by EXT_NET_EDGE_CRITICAL_DIST of the
reference plane copper edge. If critical nets are buried, they must not come within the
distance specified by INT_NET_EDGE_CRITICAL_DIST of the reference plane copper edge.

Properties Used

EMC_CRITICAL_NET

Variables Used

EXT_NET_EDGE_CRITICAL_DIST

INT_NET_EDGE_CRITICAL_DIST

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ EXT_NET_EDGE_CRITICAL_DIST specifies the minimum distance between critical
nets on external layers and copper edge. (This variable is parameterized.)

■ INT_NET_EDGE_CRITICAL_DIST specifies the minimum distance between critical
nets on internal layers and copper edge. (This variable is parameterized.)

Default Severity

Error

EMControl User Guide
EMControl Rules

January 2002 138 Product Version 14.2

critical_net_exp_length

Checks the exposed length of critical nets. This value must not exceed the value specified by
EMC_CRITICAL_EXPOSED_LEN.

Properties Used

EMC_CRITICAL_NET

Variables Used

EMC_CRITICAL_EXPOSED_LEN

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

EMC_CRITICAL_EXPOSED_LEN defines the maximum permissible exposed length of a
critical net. (This variable is parameterized.)

Default Severity

Warning

critical_net_man_ratio

Checks the length of all critical nets. In order to minimize radiation, critical nets should be
routed in inner layers and they should have minimum exposed etch length. The length of
critical nets must not exceed the percentage of their manhattan length specified by
CRITICAL_TO_MHATTAN_LEN_RATIO.

Properties Used

EMC_CRITICAL_NET

EMControl User Guide
EMControl Rules

January 2002 139 Product Version 14.2

Variables Used

CRITICAL_TO_MHATTAN_LEN_RATIO

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

CRITICAL_TO_MHATTAN_LEN_RATIO specifies the ratio of the critical net length to the
manhattan length. (This variable is parameterized.)

Default Severity

Error

critical_net_via_count

Checks the number of vias for each critical net. The number should be kept to a minimum to
improve reliability, and should not exceed the value specified by EMC_VIA_COUNT.

Properties Used

EMC_CRITICAL_NET

Variables Used

EMC_VIA_COUNT

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

If required, you can edit the EMC_VIA_COUNT variable to change the default definition for
the maximum number of vias allowed for each critical net. (This variable is parameterized.)

EMControl User Guide
EMControl Rules

January 2002 140 Product Version 14.2

Default Severity

Error

critical_net_via_pin_ratio

Checks the via-to-pin ratio on all critical nets. Restricting the number of vias allowed for each
net can help enforce EMC.

The rule calculates the ratio of vias to pins and determines whether the ratio exceeds the
value specified by MAX_VIA_PIN_RATIO. When the maximum allowed ratio is exceeded, the
rule records a violation for the net. The advisor message for a rule violation reports the
PINUSE property value for each pin on the net.

Properties Used

EMC_CRITICAL_NET

Variables Used

MAX_VIA_PIN_RATIO

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

If required, you can edit the MAX_VIA_PIN_RATIO variable to change the default definition
for the maximum via-to-pin ratio. (This variable is parameterized.)

Default Severity

Error

filtered_IO_signals

Checks that all signals running to an IO connector are filtered.

EMControl User Guide
EMControl Rules

January 2002 141 Product Version 14.2

Properties Used

EMC_COMP_TYPE = FILTER

Variables Used

None

Required Data

Attach the EMC_COMP_TYPE property set to FILTER to all filter components.

Default Severity

Warning

max_critical_net_xtalk

Checks the coupling from critical nets to neighboring IO nets, and compares the crosstalk
with the maximum value specified by the MAX_PEAK_XTALK variable.

This rule requires Crosstalk table to be generated before executing this rule. Note that
Geometry window should be equal to XTALK_WINDOW to get desired results. The Geometry
window can be set through the Signal Analysis Crosstalk Table dialog box, Preferences >
InterconnectModels.

For more information, see topic Generating a Crosstalk Table in the SPECCTRAQuest
Simulation and Analysis Reference Guide.

Properties Used

EMC_CRITICAL_NET

Variables Used

XTALK_WINDOW

MAX_PEAK_XTALK

EMControl User Guide
EMControl Rules

January 2002 142 Product Version 14.2

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ XTALK_WINDOW specifies how far the crosstalk algorithms look for neighboring nets to
determine the crosstalk value.

■ MAX_PEAK_XTALK specifies the maximum crosstalk in mV that can come from any
individual EMC_CRITICAL_NET neighbor before a violation is reported.

The rule uses the larger value of either forward or backward crosstalk to determine
whether a violation exists. (This variable is parameterized.)

Default Severity

Error

nets_over_clean_gnd

Checks the routing of nets over clean ground shapes. All nets routed over a clean ground
shape should cross the moat (the void surrounding the clean ground shape) at right angles.
The nets should have a minimum etch path within the clean ground shape.

This rule also checks whether any components other than filters or connectors are present
above the clean ground shape.

Clean ground shapes are metallic islands residing on ground planes. They are surrounded
by a moat (a void element).

Properties Used

EMC_COMP_TYPE = FILTER

VOLTAGE

Variables Used

CRITICAL_TO_MHATTAN_LEN_RATIO

EMControl User Guide
EMControl Rules

January 2002 143 Product Version 14.2

Required Data

Attach the EMC_COMP_TYPE property set to FILTER to all filter components.

Attach the VOLTAGE property set to zero to all ground nets.

If required, you can edit the default value for the CRITICAL_TO_MHATTAN_LEN_RATIO
variable. CRITICAL_TO_MHATTAN_LEN_RATIO defines the ratio of the critical net length to
the manhattan length.

Default Severity

Error

no_critical_net_thru_IO_comps

Checks for the routing of critical nets through IO devices. Critical nets must not be routed
through connector footprints.

Properties Used

EMC_CRITICAL_NET

Variables Used

None

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

Default Severity

Error

EMControl User Guide
EMControl Rules

January 2002 144 Product Version 14.2

shield_clock_nets

Checks whether grounded guard traces exist for all clock nets and that they lie parallel to the
clock nets. Clock nets are identified as nets connected to the output pins of a component with
the property EMC_COMP_TYPE = CLOCK_GEN. Output pins have the property PINUSE =
OUT.

Guard traces should have the following characteristics:

■ They should connect to ground planes through vias at intervals equal to lambda/
GUARD_TRACE_VIAS_PER_LAMBDA where lambda is the wavelength associated
with the clock net.

■ They should be in the same layer as the clock cline.

■ They should exist on both sides of the clock net within the distance specified by
GUARDING_DISTANCE.

Properties Used

EMC_COMP_TYPE = CLOCK_GEN

PINUSE

VOLTAGE

Variables Used

GUARD_TRACE_VIAS_PER_LAMBDA

GUARDING_DISTANCE

Required Data

Attach the EMC_COMP_TYPE property set to CLOCK_GEN to all clock generators.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

EMControl User Guide
EMControl Rules

January 2002 145 Product Version 14.2

■ GUARD_TRACE_VIAS_PER_LAMBDA defines the number of vias found on a guard
trace for each lambda length, where lambda is the wavelength for the net.

■ GUARDING_DISTANCE defines the maximum distance from the clock net to the guard
traces.

Default Severity

Error

return_path_near_signal_via

Identifies critical signals that jump the reference planes. It also identifies the vias (jumping
vias) at which signals jump their reference planes and ensures a return path close to the
jumping vias. A return path in close proximity results in small loop area, hence lesser EMI.

Specify the maximum distance between jumping via and the return capacitor or via with local
parameter MAX_RETURN_VIA_DIST.

The capacitor should be of the same or better type (EMC_CRITICAL_IC) than the class of
the jumping signal (EMC_CRITICAL_NET).

Note: In practice, a capacitor can be connected to reference planes through vias. These are
the vias that are tested for proximity to the jumping via. The distance with the capacitor is not
considered. The lead-traces of the capacitor are also not checked for their length.

The property VOLTAGE attached to the nets of the plane is used to determine the type of
interconnect required. Absence of this property results in the inability of the rule to determine
whether a capacitor or a via should be the interconnect between the planes. In such a case,
both capacitor and via are considered valid interconnects. In the absence of both, the rule
prescribes putting an interconnect.

Caution

Attaching the EMC_CRITICAL_IC property to a capacitor causes the
capacitor to be treated as an IC in some rules. For more information on
these rules, see Properties Used by the System-Supplied EMControl
Rules table on page 28

Properties Used

EMC_CRITICAL_IC

EMControl User Guide
EMControl Rules

January 2002 146 Product Version 14.2

EMC_CRITICAL_NET

EMC_COMP_TYPE

Variables Used

MAX_RETURN_VIA_DIST

Required Data

If required, you can edit the MAX_RETURN_VIA_DIST parameter to change its default value.

Attach EMC_CRITICAL_IC property to the capacitor and EMC_CRITICAL_NET property to
the net.

Attach property EMC_COMP_TYPE with value BYPASS_CAP to the capacitor.

It is recommended that you attach property VOLTAGE to the nets of the plane.

Default Severity

Warning

Signal Quality Rules

The following rules are included in the emc_sig_qual.rle file:

■ clock_spectral_content

■ critical_net_ringing

■ critical_net_termination

■ single_diff_mode_EMI

■ sum_diff_mode_EMI

The signal quality rules use data produced by DF/SigNoise. Before running these rules, you
must properly configure EMControl and SigNoise to run together. See “Initializing EMControl”
on page 24 and “Initializing SigNoise” on page 26

EMControl User Guide
EMControl Rules

January 2002 147 Product Version 14.2

clock_spectral_content

Checks the frequency content on clock nets and compares the spectrum with the
MAX_CLOCK_SPECTRAL_CONTENT variable. MAX_CLOCK_SPECTRAL_CONTENT
defines a staircase limit for the spectrum (<Hot>Figure B-3).

Figure B-3 MAX_CLOCK_SPECTRAL_CONTENT

When you execute the clock_spectral_content rule, EMControl starts a DF/SigNoise pulse
simulation for each clock generator output net in the design and supplies SigNoise with the
pulse frequency and duty cycle for the clock signal stimuli as specified by the
PULSE_DUTY_CYCLE variable. The number of cycles simulated is determined by the
MAX_SIMULATION_CYCLE variable.

EMControl reports a warning message for each net that violates the limits defined by the
MAX_CLOCK_SPECTRAL_CONTENT variable. For example, <Hot>Figure B-3 defines the
following limit:

MAX_CLOCK_SPECTRAL_CONTENT = "0MHz:1V 30MHz:0.9V 75MHZ:0.7V 500MHz:0.1V
2GHz:10mV"

This limit specifies that the strength of all clock signals must be:

■ Less than 1.0 V from DC to 30 MHz

■ Less than 0.9 V from 30 MHz to 75 MHz

■ Less than 0.7 V from 75 MHz to 500 MHz

■ Less than 0.1 V from 500 MHz to 2 GHz

■ Less than 0.01 V for frequency higher than 2 GHz

When you select a warning message in this list, EMControl does the following:

■ Highlights the net in the design.

1

0.9

0.7

0.1
0.01

MHz30 75 500 2000

EMControl User Guide
EMControl Rules

January 2002 148 Product Version 14.2

■ Opens the DF/SigNoise waveform window (SigWave) and displays the waveform for the
first load on the selected net.

SigWave performs a Fast Fourier Transform (FFT) on the waveform and displays the
results.

Selecting a different clock signal in the message list repeats the process for the selected net.
Selecting another load from the SigWave pop-up menu updates the waveform and spectrum
displays.

Properties Used

EMC_CRITICAL_NET

EMC_COMP_TYPE = CLOCK_GEN

PINUSE

Variables Used

PULSE_DUTY_CYCLE

MAX_CLOCK_SPECTRAL_CONTENT

MAX_SIMULATION_CYCLE

 Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

Attach the EMC_COMP_TYPE property set to CLOCK_GEN to all clock generators.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ PULSE_DUTY_CYCLE defines the pulse frequency and duty cycle for the respective
EMC_CRITICAL_NET properties.

EMControl User Guide
EMControl Rules

January 2002 149 Product Version 14.2

■ MAX_CLOCK_SPECTRAL_CONTENT defines a staircase limit for the frequency
content of critical clock nets.

■ MAX_SIMULATION_CYCLE defines the number of cycles SigNoise simulates.

Default Severity

Warning

critical_net_ringing

Checks the ringing of critical nets by verifying that overshoot and undershoot do not exceed
a specified percentage of the voltage swing.

This rule requires that DF/SigNoise be run in the background. Before you run this rule, you
must properly configure EMControl and SigNoise to run together. See “Initializing EMControl”
on page 24 and “Initializing SigNoise” on page 26

For each net with the EMC_CRITICAL_NET property, the critical_net_ringing rule verifies
that the maximum overshoot and undershoot obtained by SigNoise simulation is less than the
value of the ratio defined by MAX_OVER_UNDERSHOOT multiplied by the smallest voltage
swing because of driver pins on the net.

For example, if the value of MAX_OVER_UNDERSHOOT is 0.15 for a net that has a 0 V to 5
V swing, the maximum amount of overshoot or undershoot will be determined as follows:

0.15 * 5V = 0.75V

In this example, any value greater than 0.75 V is considered to be a violation.

Properties Used

EMC_CRITICAL_NET

Variables Used

MAX_OVER_UNDERSHOOT

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

EMControl User Guide
EMControl Rules

January 2002 150 Product Version 14.2

If required, you can edit the default value for the MAX_OVER_UNDERSHOOT variable before
using this rule to check your design. MAX_OVER_UNDERSHOOT specifies the ratio used to
calculate the maximum permitted overshoot and undershoot. (This variable is
parameterized.)

Default Severity

Error

critical_net_termination

Checks for the termination of critical nets. Critical signals must be terminated when the driver
output rise or fall time is less than twice the propagation delay.

This rule requires data produced by DF/SigNoise. Before running this rule, you must properly
configure EMControl and SigNoise to run together. See “Initializing EMControl” on page 24
and “Initializing SigNoise” on page 26

Properties Used

EMC_CRITICAL_NET

TERMINATOR_PACK

Variables Used

None

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

Attach the TERMINATOR_PACK property to all components that are terminator packs (that
is, they contain terminator resistors).

Default Severity

Error

EMControl User Guide
EMControl Rules

January 2002 151 Product Version 14.2

single_diff_mode_EMI

Checks for excessive differential mode EMI produced by critical nets routed on external
layers.

This rule requires that DF/SigNoise be run in the background. Before you run this rule, you
must properly configure EMControl and SigNoise to run together.See “Initializing EMControl”
on page 24 and “Initializing SigNoise” on page 26

When you execute the single_diff_mode_EMI rule, EMControl starts a DF/SigNoise pulse
simulation for each critical net in the design and supplies SigNoise with the pulse frequency
and duty cycle for the clock signal stimuli as specified by the PULSE_DUTY_CYCLE variable.
The number of cycles simulated is determined by the MAX_SIMULATION_CYCLE variable.

Each simulation produces the differential mode current at the driver pin for a critical net. This
current is assumed to be flowing for the length of the trace. From this information, the
differential mode EMI for the net is estimated and compared against the
NET_EMI_REGULATION value for the net.

EMControl reports an error message in the EMC Advisor window for each net that violates
the limit defined by the NET_EMI_REGULATION variable. Each message includes one of the
following recommendations for removing the violation:

■ Use a series terminator to reduce the high frequency content

■ Reduce the exposed length on the net

When you select a message from the list in the EMC Advisor window, EMControl does the
following:

■ Highlights the net in the design

■ Opens the DF/SigNoise waveform window (SigWave) and displays the emission level for
the net

Properties Used

EMC_CRITICAL_NET

PINUSE

Variables Used

NET_EMI_REGULATION

EMControl User Guide
EMControl Rules

January 2002 152 Product Version 14.2

PULSE_DUTY_CYCLE

MAX_SIMULATION_CYCLE

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ NET_EMI_REGULATION defines the constraint set for EMI emissions against which
nets are measured.

■ PULSE_DUTY_CYCLE defines the pulse frequency and duty cycle for the respective
EMC_CRITICAL_NET properties.

■ MAX_SIMULATION_CYCLE defines the number of cycles SigNoise simulates.

Default Severity

Error

sum_diff_mode_EMI

Checks an entire design for total EMI emissions.

The sum_diff_mode_EMI rule does the following:

■ Calculates the differential mode EMI for each critical net as described for the
single_diff_mode_EMI rule

■ Sums the EMI values for individual nets

■ Compares the total EMI to the appropriate BOARD_EMI_REGULATION value

■ Reports an error message in the EMC Advisor window if the limit is exceeded

EMControl User Guide
EMControl Rules

January 2002 153 Product Version 14.2

This rule requires that DF/SigNoise be run in the background. Before you run this rule, you
must properly configure EMControl and SigNoise to run together.See “Initializing EMControl”
on page 24 and “Initializing SigNoise” on page 26

Properties Used

EMC_CRITICAL_NET

PINUSE

Variables Used

BOARD_EMI_REGULATION

PULSE_DUTY_CYCLE

MAX_SIMULATION_CYCLE

Required Data

Attach the EMC_CRITICAL_NET property to all nets considered critical from the EMC
standpoint.

You do not have to attach the PINUSE property to the pins. EMControl reads the PINUSE
property directly from the layout database. (PINUSE is a hidden property that is usually
present.) You can, however, overwrite the automatic property setting by attaching PINUSE as
you would any other property.

If required, you can edit the default values for EMControl variables before using this rule to
check your design:

■ BOARD_EMI_REGULATION defines the constraint set for EMI emissions against which
boards are measured.

■ PULSE_DUTY_CYCLE defines the pulse frequency and duty cycle for the respective
EMC_CRITICAL_NET properties.

■ MAX_SIMULATION_CYCLE defines the number of cycles SigNoise simulates.

Default Severity

Error

EMControl User Guide
EMControl Rules

January 2002 154 Product Version 14.2

EMControl User Guide

January 2002 155 Product Version 14.2

C
EMControl Predicates

Overview

Predicates are the routines supplied by Cadence to perform the various tasks required by the
EMControl rules. You can use the Cadence predicates to write your own rules. Predicates call
functions that are written in SKILL or the C language.

This appendix describes the physical environment objects and predicates supplied with
EMControl.

Physical Environment Objects and Predicates

Table 3-1 lists the primary objects that exist in the layout physical environment that can be
referenced by the EMControl predicates.

The following sections describe the predicates that allow you to access information in the
layout database. Each section lists and describes the predicates that apply to one of the

Table 3-1 Objects Accessed by EMControl Predicates

Object Description

design Specifies the complete design or a user-specified portion of the design

component Specifies an instance of a physical component in the design

via Defines an opening in a dielectric layer that connects adjacent conductor
layers

net Specifies a signal corresponding to a logical net in the design

pin Specifies an interface terminal of a component

shape Specifies a shape, rectangle, or filled rectangle in the design

polygon Specifies a polygon in the layout x-y plane

EMControl User Guide
EMControl Predicates

January 2002 156 Product Version 14.2

object categories described in Table B-1. Within each section, predicates appear in
alphabetical order.

A call to a predicate takes one or more arguments and returns a list comprised of one or more
values.

General-Purpose Predicates

This section describes predicates that you can apply to values in the layout database.

append
list append(list1, list2)

Appends list2 to list1, modifying list1. The lists can be object lists or value lists.

atof
value atof(string)

Converts the number string to a real number.

atoi
value atoi(string)

Converts the number string to an integer number.

compareProfile
value compareProfile(valProfile, valLimit, valFlag, valLength)

Compares a list of frequency and value pairs with a predefined profile limit. It returns true
if it exceeds the limit.

■ valProfile is the value returned from the getSpectralContent predicate.

■ valLimit is a user-defined parameter.

■ The value of valFlag varies depending on the format in which you specify valLimit:

❑ When valLimit is given in dBuV format, valFlag = 1. For example:

#define valLimit “30MHz:49.5dBuV 88MHz:54.0dBuV 216MHz:56.5dBuV
960MHz:60dBuV”

❑ When valLimit is given in V format, valFlag = 0 if. For example:

EMControl User Guide
EMControl Predicates

January 2002 157 Product Version 14.2

#define valLimit “0MHz:5.0V 30MHz:0.9V 75MHz:0.7V 500MHz:0.1V”

■ The value of Length varies depending on the rule being used:

❑ When used in the spectral_content rule, valLength = 0.0

❑ When used in the single_diff_mode_EMI rule, valLength is the exposed trace length

❑ When used in the sum_diff_mode_EMI rule, valLength < 0.0

component
value component(value)

Converts the component ID value to the component itself.

convertUnits
value convertUnits(value, unit)

Converts value into the units specified by unit.

count
value count(list)

Returns the number of elements in the list. The list can be an object list or a value list.

float
value float(value)

Converts the integer value to a real number.

format
value format(value, value)

Formats a string (the first value) such that its length is the integer specified by the second
value. When the integer is less than the string length, the string is truncated at the trailing
end. Otherwise, extra blank characters are inserted.

getAllSubstrings
value getAllSubstrings(string1, startToken, endToken)

EMControl User Guide
EMControl Predicates

January 2002 158 Product Version 14.2

Returns all substrings of string1 that occur between startToken and endToken. The
returned string does not include startToken and endToken.

For example:

getAllSubstrings("VCC=VEE;VDD=VSS;","=",";")

returns a list containing VEE and VSS.

getDistance
value getDistance(value ,value ,value ,value)

Finds the distance between two points, (x1,y1) and (x2,y2), where x1 and y1 are the first and
second values and x2 and y2 are the third and fourth values three and four.

getListSumMerge
value getListSumMerge(value)

Merges two pairs of numbers returned by the getSpectralContent predicate. The
getListSumMerge predicate is used to compute the total emissions from a number of
nets.

getNthListOfSkillList
value getNthListOfSkillList(index, list)

Returns the element in the specified SKILL list that is pointed to by index.

getShapeOutline
value getShapeOutline("class_name/subclass_name")

Returns the outline of the shape specified by the class_name and subclass_name.

getValueOneOfList
value getValueOneOfList(ARL_optional_list)

Returns the list of values that are passed as an optional list of values to
getValueOneOfList. This predicate is for printing an optional list specified by the user in
the rule message field.

For example:

val1 = getValueOneOfList({"A", "B", "C", "D" })

EMControl User Guide
EMControl Predicates

January 2002 159 Product Version 14.2

In the above example, val1 is the list containing the values:
“A”, “B”, “C”, “D”.

index
value index(list, value)

Returns the index to the first occurrence of value in the list.

integer
value integer(realValue)

Returns the integer value of the realValue.

isNull
value isNull(object)

Determines whether the value of object is null. If so, isNull returns t. Otherwise, it
returns nil.

isTrue
value isTrue(boolean)

Returns t if the boolean value is true. Returns nil if the boolean value is false.

matchCapType
value matchCapType(captype1, captype2)

Compares the capacitor types of two bypass capacitors. Returns t if they match. Otherwise,
it returns nil.

The capacitor type for bypass capacitors must be in the following format:

<device type>:<cap value>:<tolerance>

max
value max(list)

Returns the maximum value of the list.

EMControl User Guide
EMControl Predicates

January 2002 160 Product Version 14.2

min
value min(list)

Returns the minimum value of the list.

nth
value nth(list, integerValue)

Returns the element in the list at the position indexed by integerValue.

ntoa
value ntoa(value)

Converts the numerical argument into a string.

skipWhiteSpaces
value skipWhiteSpaces(string)

Strips spaces, tabs, and linefeeds from the specified string, unless they are enclosed within
single quotation marks (for example, ‘\t’ is not stripped). Returns the resulting string.

unique
value unique(list)

Returns a list of the elements in the input list. Multiple occurrences of any element are filtered
out of the returned list. For example, for the following input:

unique(2, 3, 3, 4, 6, 2, 3)

unique returns the following list:

(2, 3, 4, 6)

upperCase
value upperCase(string)

Converts the input string to a string that has all uppercase letters.

Design Predicates

This section describes predicates that you can apply to the design object.

EMControl User Guide
EMControl Predicates

January 2002 161 Product Version 14.2

component
component component(design)

Returns all the component instances in design.

getDiffPSegs
net getDiffPSegs(design)

Returns the trace segment for each differential pair that has the maximum length in the
design. The trace segment is part of the differential pair net. Differential pair nets are nets
with the same DIFFERENTIAL_PAIR property assignment.

getGroundNet
net getGroundNet(design)

Returns the ground net in design.

getLayerSeparation
value getLayerSeparation(design, "layer1", "layer2")

Returns the vertical layer separation distance between layer1 and layer2 of design.
layer1 and layer2 are the names of the layers. Layer names must be enclosed in
quotation marks.

getNominalNetWidth
value getNominalNetWidth(design)

Returns the nominal etch width of the nets in design. The value is returned in user units.

getPowerNet
net getPowerNet(design)

Returns the power net in design.

name
value name(design)

Returns the design (board) name

EMControl User Guide
EMControl Predicates

January 2002 162 Product Version 14.2

net
net net(design)

Returns all the nets in design.

pin
pin pin(design)

Returns all the component pins in design.

shape
shape shape(design)

Returns all the shape objects in design.

via
via via(design)

Returns all the vias in design.

Component Predicates

This section describes predicates that you can apply to an object that is a component.

getCenter
value getCenter(component)

Returns the center of the component as a list of two numbers representing the coordinate.

getComp2CompDistance
value getComp2CompDistance(component1, component2)

Returns the distance between component1 and component2.

getCompC1eqTwiceC2eqTwiceC3
value getCompC1eqTwiceC2eqTwiceC3(component, distance, propertyValue)

EMControl User Guide
EMControl Predicates

January 2002 163 Product Version 14.2

Returns all the components, in the area represented by the bounding box, that have the value
for the EMC_COMP_TYPE property specified by propertyValue (see Table 2-1 on
page 28 for legal values for EMC_COMP_TYPE).

getCompC1eqTwiceC2eqTwiceC3 determines the bounding box area as follows:

((x1-distance, y1-distance) (x2+distance, y2+distance))

where ((x1,y1) (x2, y2)) specifies the diagonal coordinates of the bounding box of the
component.

If the value of propertyValue is ALL, this predicate returns all of the components in the
calculated area.

getCompC1eqTwiceC2eqTwiceC3 is used to find the bypass capacitors for a given
component. You should use the property EMC_COMP_TYPE with an assigned value of
BYPASS_CAP with this predicate.

Once all the bypass capacitors for a component are found, the predicate gets the value for
the VALUE property on the capacitors, and looks for all the capacitors that satisfy the
following equation:

1st cap = twice (2nd cap), 2nd Cap = twice (3rd cap)

getCompC1eqTwiceC2eqTwiceC3 returns the list of the capacitors that match the
equation in a fixed order:

■ The first element of the list is the C1 capacitors.

■ The second element is the C2 capacitors.

■ The third element is the C3 capacitors.

For example, in a case where a component has five bypass capacitors with the following
values:

■ C1 = 0.01UF

■ C2 = 0.03UF

■ C3 = 0.02UF

■ C4 = 0.01UF

■ C5 = 0.04UF

getCompC1eqTwiceC2eqTwiceC3 finds all the capacitors that satisfy the equation
described above. For the example, these are:

■ 1st Cap = C5

EMControl User Guide
EMControl Predicates

January 2002 164 Product Version 14.2

■ 2nd Cap = C3

■ 3rd Cap = C1, C4

For the example, getCompC1eqTwiceC2eqTwiceC3 returns the following list:

(C5, C3, (C1, C4))

getCompInArea
component getCompInArea(component, distance, propertyValue)

Returns all the components with the EMC_COMP_TYPE definition specified by
propertyValue in the area represented by the bounding box (see Table 2-1 on page 28
for legal values for EMC_COMP_TYPE). getCompInArea determines the area as follows:

((x1-distance, y1-distance) (x2+distance, y2+distance))

where ((x1,y1) (x2, y2)) specifies the diagonal coordinates of the bounding box of the
component.

If the value of propertyValue is ALL, getCompInArea returns all of the components in the
calculated area.

getComponentType
value getComponentType(component)

Returns a string that provides the component type of component. The component type is
returned in the following format:

<device type>:<value>:<tolerance>

getComponentType is usually used to get the bypass capacitor type.

getCompsConnToComp
component getCompsConnToComp(component, bypassDiscreteFlag)

Returns all the components connected to component. If bypassDiscreteFlag is t,
getCompsConnToComp ignores the discrete components connected to component and
scans further until it finds a nondiscrete component. If bypassDiscreteFlag is false,
getCompsConnToComp stops scanning at any discrete component.

A component is considered to be connected to another component if the connecting net is a
signal net. All nonsignal nets must have the VOLTAGE property assigned to them.

EMControl User Guide
EMControl Predicates

January 2002 165 Product Version 14.2

getDesign
design getDesign(component)

Returns the design of component.

getLayer
value getLayer(component)

Returns TOP or BOTTOM depending on the location of the component on the board.

getNetsConnToComp
net getNetsConnToComp(component)

Returns all nets connected to component.

getNetsInArea
net getNetsInArea(component)

Returns all nets in the bounding box of component.

getPin
pin getPin(component)

Returns all pins of component.

getPolygon
polygon getPolygon(component)

Returns a polygon representing the package bounding box of the component.

getPropertyValue
value getPropertyValue(component, propertyName)

Returns the value of propertyName attached to component. Returns nil if
propertyName is not found.

hasProperty
component hasProperty(component, propertyName)

EMControl User Guide
EMControl Predicates

January 2002 166 Product Version 14.2

Returns t if the property specified by propertyName is attached to the component.
Otherwise, it returns nil.

isCompClass
value isCompClass(component, compClass)

Returns t if component has the component class specified by compClass. Legal values
for compClass are IO, IC, or DISCRETE.

isConnectedToNet
component isConnectedToNet(component, net)

Returns t if component is connected to net. Otherwise, it returns nil. A connector has a
component class of IO.

isConnector
component isConnector(component)

Returns t if component is a connector. Otherwise, it returns nil. A connector has a component
class of IO.

isSeriesResistor
component isSeriesResistor(component)

Checks whether component is a series resistor. Returns t if the component is a series
resistor. Otherwise, it returns nil.

A component is identified as a series resistor by the following:

■ It has the TERMINATOR_PACK property attached.

■ The nets connected to the component do not have the VOLTAGE property attached.

name
value name(component)

Returns the reference designator of component.

EMControl User Guide
EMControl Predicates

January 2002 167 Product Version 14.2

Net Predicates

This section describes predicates that you can apply to an object that is a signal (net).

getClineLength
value getClineLength(net)

Returns the length of the cline.

getClineOfSeg
net getClineOfSeg(net)

Returns the parent cline of the cline segment.

getCompInArea
component getCompInArea(netSeg, distance, propertyValue)

Returns all the components with the EMC_COMP_TYPE definition specified by
propertyValue in the area represented by the bounding box. (see Table 2-1 on page 28
for legal values for EMC_COMP_TYPE.)

The getCompInArea predicate determines the area as follows:

((x1-distance, y1-distance) (x2+distance, y2+distance))

where ((x1, y1) (x2, y2)) specifies the diagonal coordinates of the bounding box of the net
segment.

If the value of propertyValue is ALL, getCompInArea returns all of the components in the
calculated area.

Note: The netSeg argument must represent a trace segment and not the complete net.

getCompsConnToNet
component getCompsConnToNet(net)

Returns all the components connected to net.

getDelayTimeUnits
value getDelayTimeUnits(net)

EMControl User Guide
EMControl Predicates

January 2002 168 Product Version 14.2

Returns the delay time units for net.

getDesign
design getDesign(net)

Returns the design of net.

getEtchLength
value getEtchLength(net, shape)

Returns the etch length of net over shape.

getManhattanLen
value getManhattanLen(net)

Returns the manhattan length of net.

getManhattanLength
value getManhattanLength(net, shape)

Returns the manhattan length of net over shape.

getMaxOverUnderShoot
value getMaxOverUnderShoot(net1)

Returns the maximum undershoot and overshoot values for the net specified by net1.

getMaxPropDelay
value getMaxPropDelay(net, units)

Returns the maximum propagation delay for net in the units specified by units.

getMaxRiseTime
value getMaxRiseTime(net, units)

Returns the slew rate of the fastest signal that passes through the net in the units specified
by units.

EMControl User Guide
EMControl Predicates

January 2002 169 Product Version 14.2

getMinDistance
value getMinDistance(net, lineSegment)

Returns the minimum distance between net and lineSegment. lineSegment can be
any other net or the design outline.

getMinNetWidth
value getMinNetWidth(net)

Returns the minimum width of net in user units.

getMinWaveLength
value getMinWaveLength(net)

Returns the minimum wavelength of the signal on the net.

getNetCapacitance
value getNetCapacitance(net, units)

Returns the net capacitance for net in the units specified by units.

getNetLenOnLayer
value getNetLenOnLayer(net, layerName)

Returns the physical length of net on the layer specified by layerName.

getNetOfSeg
net getNetOfSeg(net1)

Returns the parent net of the net segment net1.

getNetOnLayer
value getNetOnLayer(net, layerName)

Returns all the clines of net on the layer specified by layerName.

getNetSegOnLayer
net getNetSegOnLayer(net, layerName)

EMControl User Guide
EMControl Predicates

January 2002 170 Product Version 14.2

Returns all trace segments of the parent net on the layer specified by layerName.

getNetShape
value getNetShape(net)

Returns the shape that is a part of net. Normally, a supply net has a shape as part of the net.

getNetsInArea
net getNetsInArea(net, distance)

Returns all nets found within the specified distance of net.

getNetSourceImpedance
value getNetSourceImpedance(net, resUnit)

Returns the source impedance for net in the units specified by resUnit.

getParallelNetsToSeg
net getParallelNetsToSeg(net1, distance)

Returns all net segments that are parallel to the net segment net1 and are within the
specified distance from net1. A net segment is considered to be parallel to another if the
segments are parallel for at least 85 percent of the segment length of net1.

getParallelTraces
net getParallelTraces(net, value, value)

Returns all cline segments that are parallel to the given cline segment (the first argument, net)
and are located within a specified distance (the second argument, value) in the specified
direction (the third argument, value). The direction can be either UL (for upper left) or LR
(for lower right).

getPinsOnNet
pin getPinsOnNet(net)

Returns all pins on net.

EMControl User Guide
EMControl Predicates

January 2002 171 Product Version 14.2

getPropertyValue
value getPropertyValue(net, propertyName)

Returns the value of propertyName attached to the net. Returns nil if propertyName
is not found.

getSegLength
value getSegLength(netSeg)

Returns the length, in user units, of the line segment specified by netSeg. The netSeg
argument must represent a trace segment and not the complete net.

getTraceLengthInWindow
value getTraceLengthInWindow(net, net, value)

Returns the length of cline (the first argument, net) enclosed in a rectangular window. The
rectangle has a specified length (the second argument, net) and a height two times the
specified value (the third argument). The length bisects the window.

For example, specify c1, c2, and d as the arguments. The length of cline is c1. It is enclosed
in a rectangular window that has c2 as its length. c2 also bisects the window. The height of
the window is two times d.

getViasOnCline
via getViasOnCline(net)

Returns the vias on the cline.

getViasOnNet
via getViasOnNet(net)

Returns all vias on net.

getXtalkBetweenNets
value getXtalkBetweenNets(net1, net2)

Returns the crosstalk contribution in mV on net2 caused by net1.

EMControl User Guide
EMControl Predicates

January 2002 172 Product Version 14.2

hasProperty
net hasProperty(net, propertyName)

Returns the net if the property specified by propertyName is attached to net. Otherwise,
it returns nil.

isNetTerminated
value isNetTerminated(net)

Returns t if net is terminated.

name
value name(net)

Returns the name of net.

Pin Predicates

This section describes predicates that you can apply to an object that is a pin.

getActualArea
value getActualArea(pin, propertyValue, sens_distance)

Returns the actual area for the IC with respect to the power pin and the nearest bypass
capacitor of the IC. The nearest bypass capacitor is identified as the nearest component
within the distance specified by sens_distance that has the EMC_COMP_TYPE
property value specified by propertyValue. (see Table 2-1 on page 28 for legal values
for EMC_COMP_TYPE.)

The actual area is calculated differently for routed and unrouted cases:

Unrouted Cases:

For these cases, the nearest bypass capacitor is either not connected to the power pin and
ground pin or the connection is partial. A triangle is constructed, with the vertices being

■ The power pin

■ The nearest ground pin on the IC

■ The bypass capacitor pin most distant from the power pin

EMControl User Guide
EMControl Predicates

January 2002 173 Product Version 14.2

The area of this triangle defines the actual area.

Routed Cases:

For these cases, the bypass capacitor is connected to the power and ground pins by etch.
The etch that connects the power pin to the capacitor is called pwr_etch. Similarly, the etch
that connects the ground pin to the capacitor is called gnd_etch.

A minimum bounding box is constructed. The box contains

■ The power pin of the IC

■ The ground pin of the IC

■ The package geometry of the bypass capacitor

■ The pwr_etch

■ The gnd_etch

The calculated area of this bounding box defines the actual area. See **** for a description of
the rule check_loop_area, which uses this predicate.

getAllegroPinUse
value getAllegroPinUse(pin)

Returns the PINUSE of the specified pin. getAllegroPinUse extracts the PINUSE from
the layout database. If you have explicitly attached the PINUSE property to a pin, the value
of the PINUSE property overrides the PINUSE attached to the component definition.

getCompInArea
component getCompInArea(pin, distance, propertyValue)

Returns all components with the EMC_COMP_TYPE definition specified by
propertyValue in the area represented by the bounding box. (see Table 2-1 on page 28
for legal values for EMC_COMP_TYPE.) getCompInArea determines the area as follows:

((x1-distance, y1-distance) (x2+distance, y2+distance))

where ((x1, y1) (x2, y2)) specifies the diagonal coordinates of the bounding box of the pin.

If the value of propertyValue is ALL, getCompInArea returns all of the components in the
calculated area.

EMControl User Guide
EMControl Predicates

January 2002 174 Product Version 14.2

getComponent
component getComponent(pin)

Returns the component of which the specified pin is a part.

getDistance
value getDistance(pin, component)

Returns the distance from the specified pin to the component.

getDistance
value getDistance(pin1, pin2)

Returns the pin-to-pin distance.

getLoopDistance
value getLoopDistance(pin, byp_cap_prop, sens_distance)

Returns the loop distance from the pin to the nearest bypass capacitor to the ground pin, then
back to the pin.

The bypass capacitors must have the EMC_COMP_TYPE property definition specified by
byp_cap_prop (for example, BYPASS_CAP), and they must be within the distance
specified by sens_distance from the component boundary.

For an IC marked EMC_CRITICAL_IC, the loop distance is calculated as follows:

1. From the power pin of the IC to the nearest bypass capacitor pin

2. From that bypass capacitor pin to the other (second) bypass capacitor pin for that
capacitor

3. From that second bypass capacitor pin to the nearest ground pin on the same IC

4. From the nearest ground pin on the same IC back to the original power pin

For example, in the following figure, P identifies the location on the IC of the power pin and G
identifies the ground pin. Pin 3 is assumed to be attached to the ground plane. The pin-to-pin
connections that the rule needs to calculate are P-4, 4-3, 3-G, and G-P.
Note that 1-2 is ignored because, even if it is connected to power and ground, the check is
always made on the closest bypass capacitor.

EMControl User Guide
EMControl Predicates

January 2002 175 Product Version 14.2

Example of Checking Power-Ground Loop Distance

In the cases of P-4 and 3-G, real etch might or might not exist. In such cases, the real etch
length is used for the loop distance calculations; otherwise, manhattan length is used. In the
case of
4-3 and G-P, no real etch can exist in the layout, and the rule always uses pin-center to pin-
center distances.

getMinRiseFallTime
value getMinRiseFallTime(pin, units)

Returns the minimum rise time or fall time, whichever is higher, of pin in the specified
units.

getNetName
value getNetName(pin)

Returns the name of the net connected to the specified pin.

getNetOfPin
net getNetOfPin(pin)

Returns the net pin is a part of.

getPin2PinResistance
value getPin2PinResistance(Pin1, Pin2)

Returns the resistance between Pin1 and Pin2.

1 2 3 4

P

G

IC

Bypass
Capacitor

Bypass
Capacitor

EMControl User Guide
EMControl Predicates

January 2002 176 Product Version 14.2

getPin2PlaneResistance
value getPin2PlaneResistance(pin, planeShape)

Returns the resistance between pin and the supply plane specified by planeShape.

getPropertyValue
value getPropertyValue(pin, propertyName)

Returns the value of propertyName attached to pin. Returns nil if propertyName is
not found.

getReferenceArea
value getReferenceArea(pin)

Returns the reference area of the IC with respect to the specified power pin. The reference
area is calculated as follows:

■ The nearest ground pin for this power pin on the IC is identified.

■ C is taken to specify the distance between this ground pin and the power pin.

■ A right-angled isosceles triangle is constructed, with C as the hypotenuse.

■ The area of this triangle defines the reference area.

See **** for a description of the rule check_loop_area, which uses this predicate.

getShapesConnToPin
shape getShapesConnToPin(pin)

Returns all shapes physically connected to pin through thermal-relief clines.

getSpectralContent
value getSpectralContent(pinDriver, val_lengthl, valDuty, valCycle, valClassNum)

Performs pulse simulations for all the drivers on the xnet that connect to pinDriver.
Returns the result of the simulation.

■ pinDriver is a driver pin

■ valLengthl is the trace length in meters:

EMControl User Guide
EMControl Predicates

January 2002 177 Product Version 14.2

❑ When valLengthl = 0, the waveform at the driver pin is transformed to the
frequency domain by means of a DFT.

❑ When valLengthl > 0, the emission level caused by the net is computed using a
closed-form equation and a list of frequencies.

■ valDuty is a parameter containing the clock frequency and duty cycles.

For example, valDuty could be the EMControl variable PULSE_DUTY_CYCLE. For
example:

#define PULSE_DUTY_CYCLE “300MHz:50%, 75MHz:50%, 50MHz:50%”

■ valCycle is the maximum number of cycles the circuit simulator would simulate.

■ valClassNum is the class of the net (for example, CLASS1).

getVoltageSwing
value getVoltageSwing(pin)

Returns the voltage swing for pin.

hasProperty
pin hasProperty(pin, propertyName)

Returns t if the property specified by propertyName is attached to pin. Otherwise, it
returns nil.

isLoopRouted
value isLoopRouted(pin, byp_cap_prop, sens_distance)

Returns t if the loop is routed. Otherwise, it returns nil. A loop is considered to be routed if
there is real etch between the power pin and the bypass capacitor pin or between the bypass
capacitor pin and the ground pin.

matchObjectByPropertyValue
pin matchObjectByPropertyValue(pin, propertyName, propertyValue)

Returns t if pin has the specified propertyName attached, with the value specified by
propertyValue. Otherwise, it returns nil.

EMControl User Guide
EMControl Predicates

January 2002 178 Product Version 14.2

name
value name(pin)

Returns the name of the specified pin

Via Predicates

This section describes predicates that you can apply to an object that is a via.

getShapesConnToVia
shape getShapesConnToVia(via)

Returns all shapes physically connected to via through thermal-relief clines.

getViaLayer
value getViaLayer(via)

Returns layers that are connected by via.

name
value name(via)

Returns the coordinates of via.

Shape Predicates

This section describes predicates that you can apply to an object that is a shape.

getClass
value getClass(shape)

Returns the class of the shape object.

getIntersectAngle
value getIntersectAngle(shape, net)

Returns the list of angles of intersection of the shape with a cline segment.

EMControl User Guide
EMControl Predicates

January 2002 179 Product Version 14.2

getNet
net getNet(shape)

Returns the net of which shape is a part.

getPolygon
polygon getPolygon(shape)

Returns a polygon representing the geometry of the shape.

getPropertyValue
value getPropertyValue(shape , value)

Returns the value of the property of shape.

getShapeSegments
shape getShapeSegments(shape)

Returns the list of boundary segments that make up shape.

getSubClass
value getSubClass(shape)

Returns the subclass of shape.

getUnbypassedRegionSegments
shape getUnbypassedRegionSegments(shape, value, value, value, value)

Returns the boundary segments of an EMC region that do not have enough decoupling
capacitors. A decoupling capacitor is identified by having the property EMC_COMP_TYPE =
BYPASS_CAP attached.

■ The second argument is the sensitive distance.

■ The third argument is the maximum separation allowed between decoupling capacitors
along the boundary.

■ The fourth argument is the bypass capacitor property value (that is, BYPASS_CAP).

■ The fifth argument is the critical classes of regions defined (for example, “CLASS1
CLASS2 CLASS3 CLASS4 CLASS5”).

EMControl User Guide
EMControl Predicates

January 2002 180 Product Version 14.2

getUnfencedRegionSegments
shape getUnfencedRegionSegments(shape, value, value, value, value)

Returns the boundary segments of an EMC region that are not fenced properly.

■ The second argument is the fence-sensitive distance.

■ The third argument is the minimum overlap required between a fence and the boundary
segment of the room.

■ This value is given as a fraction.

■ The fourth argument is the fence component type (that is, EMC_COMP_TYPE =
FENCE).

■ The fifth argument is the critical classes of regions defined (for example, “CLASS1
CLASS2 CLASS3 CLASS4 CLASS5”).

hasProperty
shape hasProperty(shape , value)

Returns shape if the object has the property given by value. Otherwise, it returns nil.

isCleanGround
shape isCleanGround(shape)

Returns shape if the object is a clean ground shape. Otherwise, it returns nil. A clean ground
shape is a plane ground shape enclosed by a void.

isEmcRegion
shape isEmcRegion(shape)

Returns shape if the object is an EMC region. Otherwise, it returns nil. EMC regions reside
in BOARD_GEOMETRY/ [TOP/BOTTOM/BOTH]_ROOM and have segments parallel to the
x or y axis of the layout plane.

isPlaneGroundShape
shape isPlaneGroundShape(shape)

Returns shape if the object is a plane ground shape. Otherwise, it returns nil. Plane ground
shapes lie in ETCH class with a PLANE subclass type. They are part of a net with VOLTAGE
= 0.

EMControl User Guide
EMControl Predicates

January 2002 181 Product Version 14.2

isRectangle
shape isRectangle(shape)

Returns shape if the object is an Allegro rectangle element. Otherwise, it returns nil.

name
value name(shape)

Returns the name of the shape.

Polygon Predicates

This section describes predicates that you can apply to an object that is a polygon.

getArea
value getArea(polygon)

Returns the area of the polygon.

getCenter
value getCenter(polygon)

Returns the center of the bounding box of the polygon.

getClineSegsInArea
net getClineSegsInArea(polygon)

Returns all cline segments that lie fully or partially inside the polygon.

getCompInArea
component getCompInArea(polygon)

Returns all components that lie fully or partially inside the polygon.

getIntersectionPolygon
polygon getIntersectionPolygon(polygon , polygon)

Returns the intersection of the polygons.

EMControl User Guide
EMControl Predicates

January 2002 182 Product Version 14.2

getLength
value getLength(polygon)

Returns the length of the polygon bounding box.

getRectangle
polygon getRectangle(value ,value, value ,value ,value)

Returns a rectangular polygon with the dimensions specified by the arguments.:

■ The first argument is x1.

■ The second argument is y1.

■ The third argument is x2.

■ The fourth argument is y2.

■ The fifth argument is b.

The getRectangle predicate constructs a rectangle whose center line runs from point (x1,
y1) to point (x2, y2) and whose width equals b.

getShapesInArea
shape getShapesInArea(polygon,value,value)

Returns all shapes in the area defined by the polygon that have a class matching the second
argument and a subclass matching the third argument.

getUnionPolygon
polygon getUnionPolygon(polygon , polygon)

Returns the union of the polygons.

name
value name(polygon)

Returns the name of the polygon as poly:Bbox.

splitPolygon
polygon splitPolygon(polygon)

EMControl User Guide
EMControl Predicates

January 2002 183 Product Version 14.2

Returns a list of four polygons representing the four quadrants of the bounding box of the
polygon.

EMControl User Guide
EMControl Predicates

January 2002 184 Product Version 14.2

EMControl User Guide

January 2002 185 Product Version 14.2

Index

Symbols
[] in syntax 11

A
aborting check run 65
adding

rule files to browser 60
advisor messages

displayed in results report 64, 77
ALL_BYPASS_CAP_TYPE

used by bypass_cap_type 119
Allegro

initializing for EMControl 24
append predicate 156
area

checking loop 125
atof predicate 156
atoi predicate 156

B
BIDIR_TRANS

used by bypass_drvr_rcvr_bidir 122
BOARD_EMI_REGULATION

used by sum_diff_mode_EMI 153
brackets in syntax 11
BYP_CAP_SENS_DIST

parameterized variable 51
used by bypass_critical_IC 121
used by bypass_drvr_rcvr_bidir 122
used by

bypass_fast_sw_transistor 123
used by critical_IC_loop_area 127
used by decouple_emc_regions 129

BYP_CAP_SEP_DIST
used by decouple_emc_regions 129

bypass capacitors
checking component bypassing 121
checking critical ICs 120
checking distance to critical ICs 123
checking power-ground loop area 125
specifying minimum number 121

verifying same type 119
bypass rules 118
BYPASS_CAP

used by bypass_cap_type 119
used by bypass_critical_IC 120
used by bypass_drvr_rcvr_bidir 122
used by

bypass_fast_sw_transistor 123
used by bypass_pwr_trace 133
used by

critical_IC_3caps_C_2C_4C 12
4

used by critical_IC_loop_area 127
used by decouple_emc_regions 128

bypass_cap_type rule 119
bypass_critical_IC rule 120
bypass_drvr_rcvr_bidir rule 121
bypass_fast_sw_trans rule 122
bypass_pwr_trace rule 132

C
CAP1_DIST_FROM_PWR_PIN

parameterized variable 51
used by

critical_IC_3caps_C_2C_4C 12
4

CAP2_DIST_FROM_PWR_PIN
parameterized variable 51
used by

critical_IC_3caps_C_2C_4C 12
4

CAP3_DIST_FROM_PWR_PIN
parameterized variable 51
used by

critical_IC_3caps_C_2C_4C 12
4

central_clock rule 114
classes

assigning membership 53
parameterized variables listed 51

CLOCK_GEN
used by central_clock 115
used by clock_spectral_content 148
used by

EMControl User Guide

January 2002 186 Product Version 14.2

gnd_screw_between_clock_and_
conn 118

used by gnd_under_clock 130, 131
used by shield_clock_nets 144

clock_spectral_content rule 147
COMP_COMP_MIN_DISTANCE

used by comp_not_conn_dist 115, 116
COMP_CONN_MIN_DISTANCE

used by comp_not_conn_dist 115
comp_not_conn_dist rule 115
comp_to_conn_dist rule 116
compareProfile predicate 156
component object 155
component predicate 157, 161
component predicates 162 to 166
components

assigning classes to critical ICs 53
check bypassing 121
checking distance to connectors of

connected 116
checking distance to connectors of

unconnected 115
conn_in_low_freq_regions rule 117
conventions

for user-defined arguments 11
convertUnits predicate 157
count predicate 157
critical ICs

assigning classes 53
checking bypassing 120
checking distances to 123
parameterized variable defaults 51

critical nets
assigning classes 53
checking distance to card edge 137
checking for crosstalk between

neighbors 141
checking for ringing 149
checking the via count 139
checking the via-pin ratio 140
not through IO devices 143
parameterized variable defaults 51
verifying exposed length 138
verifying length 138

critical_IC_3caps_C_2C_4C rule 123
CRITICAL_IC_BYP_CAP_TYPE

parameterized variable 51
used by bypass_critical_IC 121

critical_IC_loop_area rule 125
critical_net_card_edge_dist rule 137
critical_net_exp_length rule 138

critical_net_man_ratio rule 138
critical_net_ringing rule 149
critical_net_termination rule 150
critical_net_via_count rule 139
critical_net_via_pin_ratio rule 140
CRITICAL_TO_MHATTAN_LEN_RATIO

parameterized variable 51
used by critical_net_man_ratio 139
used by filters_to_clean_ground 143

crosstalk, checking critical net 141

D
DC routing rules 132
decouple_emc_regions rule 128
deleting

hidden messages from markers file 76
design

checking 16
selecting portion to check 62

design object 155
design predicates 160 to 162
DF/EMControl

capabilities 16
defining run parameters 58
defining the scope of the check 62
described 15
initializing 24
physical environment objects 155
required properties 27
rule descriptions 113
saving results 66
use overview 16
verifying setup 65

DF/SigNoise
rules requiring data from 26

directories
EMControl, structure 21
initializing EMControl 24

displaying
help for a rule in rule browser 61
rule files in rule browser 60
rules in a rule file 61

distances
bypass capacitors to critical ICs 123
component bypassing 121
components not connected to

connectors 115
components to connectors 116
critical net to card edge 137

EMControl User Guide

January 2002 187 Product Version 14.2

power-to-ground separation 131

E
electromagnetic compatibility

described 13
strategy 13

EMC menu
using Audit 63
using Audit Report 63
using Initialize 24

EMC. See electromagnetic compatibility.
emc_allegro.env

default runtime mapping file 25
emc_bypass.rle 118
EMC_BYPASS_CAP_PWR_PIN_DIST

used by bypass_drvr_rcvr_bidir 122
EMC_COMP_CONN_DISTANCE

used by comp_to_conn_dist 117
EMC_CRITICAL_EXPOSED_LEN

parameterized variable 51
used by critical_net_exp_length 138

EMC_CRITICAL_IC
used by bypass_critical_IC 120
used by conn_in_low_freq_regions 117
used by

critical_IC_3caps_C_2C_4C 12
4

used by critical_IC_loop_area 127
EMC_CRITICAL_NET

used by clock_spectral_content 148
used by

critical_net_card_edge_dist 137
used by critical_net_exp_length 138
used by critical_net_man_ratio 139
used by critical_net_ringing 149
used by critical_net_termination 150
used by critical_net_via_count 139
used by critical_net_via_pin_ratio 140
used by max_critical_net_xtalk 142
used by

no_critical_net_thru_IO_comps
143

used by single_diff_mode_EMI 152
used by sum_diff_mode_EMI 153

EMC_CRITICAL_REGION
used by conn_in_low_freq_regions 117
used by decouple_emc_regions 129
used by fence_off_emc_regions 130

emc_dc_routing.rle 132

emc_placement.rle 114
emc_pwr_gnd_dist.rle 130
emc_rules.arl

contents described 113
emc_rules.rle

rules described 113
emc_sig_qual.rle 146
emc_sig_route.rle 136
EMC_VIA_COUNT

parameterized variable 51
used by critical_net_via_count 139

EMControl. See DF/EMControl.
EMI. See electromagnetic interference.
Execute Report, reading 76
expressions, using to filter 74
EXT_NET_EDGE_CRITICAL_DIST

parameterized variable 51
used by

critical_net_card_edge_dist 137

F
FAST_SWITCH_TRANSISTOR

used by
bypass_fast_sw_transistor 123

fast-switching transistors 122
FENCE

used by fence_off_emc_regions 130
FENCE_BOUNDARY_DIST

used by fence_off_emc_regions 130
FENCE_BOUNDARY_RATIO

used by fence_off_emc_regions 130
fence_off_emc_regions rule 129
files

adding to rule browser 60
mapping, identifying 25

FILTER
used by filtered_IO_signals 141
used by filters_to_clean_ground 134,

143
filtered_IO_signals rule 140
filters_to_clean_ground rule 133
float predicate 157
format predicate 157

G
general-purpose predicates 156 to 160
getActualArea predicate 172

EMControl User Guide

January 2002 188 Product Version 14.2

getAllegroPinUse predicate 173
getAllSubstrings predicate 157
getArea predicate 181
getCenter predicate 162, 181
getClass predicate 178
getClineLength predicate 167
getClineOfSeg predicate 167
getClineSegsInArea predicate 181
getComp2CompDistance predicate 162
getCompC1eqTwiceC2eqTwiceC3

predicate 162
getCompInArea predicate 164, 167, 173,

181
getComponent predicate 174
getComponentType predicate 164
getCompsConnToComp predicate 164
getCompsConnToNet predicate 167
getDelayTimeUnits predicate 167
getDesign predicate 165, 168
getDiffPSegs predicate 161
getDistance predicate 158, 174
getEtchLength predicate 168
getGroundNet predicate 161
getIntersectAngle predicate 178
getIntersectionPolygon predicate 181
getLayer predicate 165
getLayerSeparation predicate 161
getLength predicate 182
getListSumMerge predicate 158
getLoopDistance predicate 174
getManhattanLen predicate 168
getManhattanLength predicate 168
getMaxOverUnderShoot predicate 168
getMaxPropDelay predicate 168
getMaxRiseTime predicate 168
getMinDistance predicate 169
getMinNetWidth predicate 169
getMinRiseFallTime predicate 175
getMinWaveLength predicate 169
getNet predicate 179
getNetCapacitance predicate 169
getNetLenOnLayer predicate 169
getNetName predicate 175
getNetOfPin predicate 175
getNetOfSeg predicate 169
getNetOnLayer 169
getNetsConnToComp predicate 165
getNetSegOnLayer predicate 169
getNetShape predicate 170
getNetsInArea predicate 165, 170
getNetSourceImpedance predicate 170

getNominalNetWidth predicate 161
getNthListOfSkillList predicate 158
getParallelNetsToSeg predicate 170
getParallelTraces predicate 170
getPin predicate 165
getPin2PinResistance predicate 175
getPin2PlaneResistance predicate 176
getPinsOnNet predicate 170
getPolygon predicate 165, 179
getPowerNet predicate 161
getPropertyValue predicate 165, 171, 176,

179
getRectangle predicate 182
getReferenceArea predicate 176
getSegLength predicate 171
getShapeOutline predicate 158
getShapesConnToPin predicate 176
getShapesConnToVia predicate 178
getShapeSegments predicate 179
getShapesInArea predicate 182
getSpectralContent predicate 176
getSubClass predicate 179
getTraceLengthInWindow predicate 171
getUnbypassedRegionSegments

predicate 179
getUnfencedRegionSegments

predicate 180
getUnionPolygon predicate 182
getValueOneOfList predicate 158
getViaLayer predicate 178
getViasOnCline predicate 171
getViasOnNet predicate 171
getVoltageSwing predicate 177
getXtalkBetweenNets predicate 171
GND_PWR_TRACE_WIDTH

used by pwr_gnd_trace_width 136
GND_SCREW

used by
gnd_screw_between_clock_and_
conn 118

gnd_screw_between_clock_and_conn
rule 118

GND_SCREW_SENS_DIST_RATIO
used by

gnd_screw_between_clock_and_
conn 118

gnd_under_clock rule 130
ground plane rules 130
GROUND_PLANE_NAME

used by
pwr_gnd_plane_separation 132

EMControl User Guide

January 2002 189 Product Version 14.2

GUARD_TRACE_VIAS_PER_LAMBDA
used by shield_clock_nets 145

GUARDING_DISTANCE
used by shield_clock_nets 145

H
hasProperty predicate 165, 172, 177, 180

I
ICs

assigning classes to critical 53
calculating power-ground loop

area 125
checking bypassing of high-speed 120
checking distance from bypass

capacitors to critical 123
index predicate 159
Initialize, in EMC menu 24
initializing EMControl

described 24
INT_NET_EDGE_CRITICAL_DIST

parameterized variable 51
used by

critical_net_card_edge_dist 137
integer predicate 159
IO devices, checking routing 143
isCleanGround predicate 180
isCompClass predicate 166
isConnectedToNet predicate 166
isConnector predicate 166
isEmcRegion predicate 180
isLoopRouted predicate 177
isNetTerminated predicate 172
isNull predicate 159
isPlaneGroundShape predicate 180
isRectangle predicate 181
isSeriesResistor predicate 166
isTrue predicate 159
italics in syntax 11

L
lengths

checking bypassing of power
traces 132

checking critical net 138

exposed, checking critical net 138
LINE_DRIVER

used by bypass_drvr_rcvr_bidir 122
LINE_RECEIVER

used by bypass_drvr_rcvr_bidir 122
loading

rule files in rule browser 60
loop area, calculating for ICs 125
LOOP_AREA_COEFFICIENT

parameterized variable 51
used by critical_IC_loop_area 127

M
mapping files

described 22
emc_allegro.env 25
identifying 25
message severity declarations 22

matchCapType predicate 159
matchObjectByPropertyValue

predicate 177
max predicate 159
MAX_CLOCK_SPECTRAL_CONTENT

staircase limit 147
used by clock_spectral_content 147,

149
max_critical_net_xtalk rule 141
MAX_OVER_UNDER_SHOOT

used by critical_net_ringing 150
MAX_OVER_UNDERSHOOT

parameterized variable 52
MAX_PEAK_XTALK

parameterized variable 52
used by max_critical_net_xtalk 142

max_pwr_gnd_resistance rule 134
MAX_PWR_GND_SEPARATION

used by
pwr_gnd_plane_separation 132

MAX_SIMULATION_CYCLE
used by clock_spectral_content 147,

149
used by sum_diff_mode_EMI 152, 153

MAX_VIA_PIN_RATIO
parameterized variable 52
used by critical_net_via_pin_ratio 140

messages
advisor

displayed in results report 64, 77
reading results report 64, 77

EMControl User Guide

January 2002 190 Product Version 14.2

severity classes 22
short

displayed in results report 64, 77
messages browser

filtering contents 73
saving contents to markers file 76

min predicate 160
MIN_BYPASS_CAPS

parameterized variable 51
used by bypass_critical_IC 121

MIN_PWR_GND_SEPARATION
used by

pwr_gnd_plane_separation 132

N
name predicate 161, 166, 172, 178, 181,

182
net object 155
net predicate 162
net predicates 167 to 172
NET_EMI_REGULATION

used by sum_diff_mode_EMI 152
nets

assigning classes to critical 53
nets_over_clean_gnd rule 142
no_critical_net_thru_IO_comps rule 143
nth predicate 160
ntoa predicate 160

O
objects

component 155
described 155
design 155
net 155
pin 155
polygon 155
shape 155
via 155

P
parameters

defining runtime 58
parameterized variables

listed 51

physical environment objects 155
pin

checking pin-to-pin/plane
resistance 134

pin predicate 162
pin predicates 172 to 178
PIN_PIN_RESISTANCE

used by max_pwr_gnd_resistance 135
PIN_PLANE_RESISTANCE

used by max_pwr_gnd_resistance 135
PINUSE

used by rules 115, 122, 124, 125, 127,
144, 152, 153

values reported by
critical_net_via_pin_ratio 140

planes
checking distance to card edge 137
checking resistance, pin-to-plane 135
power-ground separation 131

polygon object 155
polygon predicates 181 to 182
power plane rules 130
POWER_PLANE_NAME

used by
pwr_gnd_plane_separation 132

POWER_TRACE_BYPASS_DIST
used by bypass_pwr_trace 133

POWER_TRACE_SENS_DIST
used by bypass_pwr_trace 133

predicates
component 162 to 166
described 155
design 160 to 162
general-purpose 156 to 160
listed 155 to 182
net 167 to 172
pin 172 to 178
polygon 181 to 182
shape 178 to 181
via 178

properties
identifying critical nets/ICs 53

PULSE_DUTY_CYCLE
used by clock_spectral_content 147,

148
used by sum_diff_mode_EMI 152, 153

pwr_gnd_plane_separation rule 131
pwr_gnd_trace_width rule 135

EMControl User Guide

January 2002 191 Product Version 14.2

R
report

header 64, 76
message contents 64, 77

resistance, checking maximum power-
ground 134

results
saving check 66
updating markers file 76

routing rules
DC routing 132
signal routing 136

rule
writing 84

rule browser
changing file display 60
getting help on a rule 61
modifying display 61

rules
adding rule files 60
bypass 118 to 130
changing files in browser 60
DC routing 132 to 136
defined 13
displaying 61
placement 114 to 118
power and ground plane 130 to 132
sample check_via_count 89
sample unconnected_critIC_pins 87
signal quality 146 to 153
signal routing 136 to 145
system, described 113

rules checking
detailed placement checks 56
during routing 57
initial placement check 56

run directory
EMC 24

running
EMControl

aborting 65
property requirements 27
saving results 66
scope of check 62

S
sample rules

check_via_count 89
unconnected_critIC_pins 87

Save button, in EMC Results form 76
saving

run results 66
selecting

all rules 62
separation, power to ground 131
setup

verifying rule
described 63

severity, message
defined in mapping file 22

shape object 155
shape predicate 162
shape predicates 178 to 181
shield_clock_nets rule 144
short messages

displayed in results report 64, 77
signal quality rules 146
signal routing rules 136
SIGNAL_MODEL property

used by check_net_termination 26
single_diff_mode_EMI rule 151
splitPolygon predicate 182
stripWhiteSpaces predicate 160
sum_diff_mode_EMI rule 152

T
terminator resistors 150
TERMINATOR_PACK

used by critical_net_termination 150
TOL

used by rules 119, 121
tolerance, identifying 121

U
unique predicate 160
upperCase predicate 160
using EMControl 16

V
VALUE

used by rules 119, 121, 124
variables, user

EMControl User Guide

January 2002 192 Product Version 14.2

defining 58
properties described 30

verifying rule setup
described 65

vertical bars in syntax 11
via object 155
via predicate 162
via predicates 178
vias

checking the number per critical
net 139

checking the pin ratio per critical
net 140

violations
reading the results report 64, 77

VOLTAGE
used by rules 130, 131, 133, 134, 135,

136, 143
VOLTAGE_SOURCE_PIN

used by max_pwr_gnd_resistance 135

W
widths, checking power/ground trace 135
writing a rule 84

X
XTALK_WINDOW

used by max_critical_net_xtalk 142

	Contents
	Preface
	About This Guide
	How to Use This Guide
	Brief Outline of Different Chapters
	Typographic and Syntax Conventions

	Introduction to EMControl
	EMControl Overview
	EMControl Users
	EMControl Tasks
	Checking for EMC Rule Violations
	Tasks to be Performed

	Using SigNoise with EMControl

	Setting Up the EMControl Environment
	Default EMControl Installation Directory Structure
	The EMControl Mapping File
	EMControl Basics
	Accessing EMControl
	Initializing EMControl
	Initializing SigNoise

	EMControl Properties
	Assigning EMControl Property Values
	Automatically Attaching Properties to Design Objects
	Viewing the Log File for Automatic Property Tagging
	Header Information
	Information About Critical Nets
	Information About Components on Critical Nets
	Information About Critical Regions
	Summary of Tagging

	Manually Attaching Properties to Selected Design Objects
	Component Properties
	Net Properties
	Room Properties

	EMControl Variables
	Customizing EMControl Rule Variable

	Performing EMControl Rule Checking
	EMC Rules
	Checking for EMC During Placement
	Initial Placement Checks
	Detailed Placement Checks

	Checking for EMC While Routing
	Checking for EMC After Routing
	Rule Checking Tasks
	Setting Up the EMControl Run
	Defining the Scope of the Check
	Auditing EMControl Rules
	Executing EMControl Rules
	Viewing Results
	Saving Run Results

	Resolving EMC Rule Violations in Your Design
	Overview of Rule-Checking
	Viewing the Results of Rule-Checking
	Viewing a Violation
	Highlighting Objects
	Filtering Violations
	Cross-Probing Multiple Violations

	Loading a Markers File
	Hiding a Violation Message
	Saving a Markers File
	Reading an Execute Report
	Header Information
	Rule-Specific Information

	Writing Rules
	Overview
	Developing Rules in EMC
	Predicates
	Adding a New Predicate
	Deleting a Predicate
	Editing a Predicate

	Parameters
	Adding a Parameter
	Deleting a Parameter
	Exporting a Parameter

	Rules
	Editing a Rule File
	Compiling a Rule File
	Writing a Rule
	Sample unconnected_critIC_pins Rule
	Sample check_via_count Rule

	Setting Violation Severity Levels of Rules
	To specify objects to associate with a violation

	Creating a Help File for a Rule
	Running New Rules

	ARL Training Guide
	Introduction
	Language Highlights
	EMControl Objects
	EMControl Predicates

	Getting a Feel for the Language
	Basic Language Constructs
	Variables and Base Objects
	Base Objects and Implied Looping
	Predicate Calls
	Variable Typing
	ARL Operators
	Exercises

	List Manipulation
	What are Lists
	List Manipulation Routines
	Foreach Construct
	Saving Intermediate Results Within a Foreach construct
	If Construct
	Exercise

	Dissection of an existing rule
	Rule critical_net_via_count
	Rule conn_in_low_freq_regions

	Laboratory Exercises
	Basic Rules
	Modifying existing EMControl rule (conn_in_low_freq_regions)
	Custom EMC rule writing

	EMControl Rules
	Overview
	Placement Rules
	central_clock
	comp_not_conn_dist
	comp_to_conn_dist
	conn_in_low_freq_regions
	gnd_screw_between_clock_and_conn

	Bypass Rules
	bypass_cap_type
	bypass_critical_IC
	bypass_drvr_rcvr_bidir
	bypass_fast_sw_trans
	critical_IC_3caps_C_2C_4C
	critical_IC_loop_area
	decouple_emc_regions
	fence_off_emc_regions

	Power and Ground Plane Rules
	gnd_under_clock
	pwr_gnd_plane_separation

	DC Routing Rules
	bypass_pwr_trace
	filters_to_clean_ground
	max_pwr_gnd_resistance
	pwr_gnd_trace_width

	Signal Routing Rules
	critical_net_card_edge_dist
	critical_net_exp_length
	critical_net_man_ratio
	critical_net_via_count
	critical_net_via_pin_ratio
	filtered_IO_signals
	max_critical_net_xtalk
	nets_over_clean_gnd
	no_critical_net_thru_IO_comps
	shield_clock_nets
	return_path_near_signal_via

	Signal Quality Rules
	clock_spectral_content
	critical_net_ringing
	critical_net_termination
	single_diff_mode_EMI
	sum_diff_mode_EMI

	EMControl Predicates
	Overview
	Physical Environment Objects and Predicates
	General-Purpose Predicates
	Design Predicates
	Component Predicates
	Net Predicates
	Pin Predicates
	Via Predicates
	Shape Predicates
	Polygon Predicates

	Index

