表示电源效率

本公式可以进行变形,给出 $(P_O/L_P.f_S.\eta)$ 或功率比 (α_P) 的值,它是与初始感应或切换频率相独立的。对同一电源,本功率比 (α_P) 可用于计算电源的相对输出功率。

$$\alpha_P = \frac{P_0}{L_P.f_1.\eta} = \frac{({I_2}^2 - {I_1}^2)}{2}$$

观察打出的波形图我们可大致估算出初始电流(I_1)和最终峰值电流(I_2)。通过本公式,我们可以计算出(I_2)的值,它是电源在这些条件下输送的输出功率的相对值。我们可以看出波形 X 的功率比(I_1)在高压和低压区间基本恒定不变。然而,波形 Y 的功率比在高压时比在低压时提高了很多。恰恰相反,波形 Z 的功率比在高压时比在低压时则明显降低了。

波形	低压(85 VAC)			高压(265 VAC)		
	I_2	I ₁	α_{P}	I_2	I_1	α_{P}
X	0.90	0.50	0.28	0.80	0.20	0.30
Y	1.00	0.50	0.38	1.10	0.40	0.53
Z	0.90	0.45	0.30	0.65	0.00	0.21