第40卷第1期	电力电子技术	Vol.40, No.1				
2006年2月	Power Electronics	<u>February, 2006</u>				
大功率交流电子负载的研究						
	潘诗锋1,赵剑锋1,王 浔2					

(1.东南大学, 江苏 南京 210096; 2.五凌电力公司, 湖南 长沙 410007)

摘要:对大功率能量回馈式单相交流电子负载进行了深入研究,包括其主电路结构和控制方法。主电路采用 AC/DC/AC 结构,并用电压型 PWM 整流器构成其输入、输出变流器。给出了输入、输出变流器的控制策略。为了提高 电子负载的动态响应性能,采用滞环电流控制技术作为控制方式,并采用数值算法计算参考电流。用 PSCAD/EMTDC 软件对所提出的电子负载进行了仿真并研制了试验样机。仿真和实验结果表明,所提出的电流算法及控制方法是有 效的,实现了电子负载的恒定阻抗工作方式,输入端能准确模拟设定阻抗值且试验能量以单位功率因数回馈电网。 关键词:整流器;脉宽调制/电子负载;能量回馈;滞环电流控制;数值算法

文章编号:1000-100X(2006)01-0097-04 文献标识码:A 中图分类号:TM46

Study of High Power AC Electronic Load

PAN Shi-feng¹, ZHAO Jian-feng¹, WANG Xun²

(1.Southeast University, Nanjing 210096, China; 2.Wu Ling Power Co., Changsha 410007, China)

Abstract: AC electronic load is used in testing of AC power source. In this paper an advanced high-power energyfeedback AC electronic load is studied, including its main circuit and control strategy.AC/DC/AC converter is adopted as

the main topology structure, and the input and output converter all consists of voltage source PWM rectifier. The control strategies of input and output converter are given. To achieve good dynamic performance, hysteresis current control technology is adopted and the numerical algorithm is represented to calculate reference current.PSCAD/EMTDC is used to simulate the proposed electronic load and a prototype is researched and developed. Software simulation and experiment ALresults all show that the adopted algorithm and control strategy are effective. The fixed-impedance model of electronic load is implemented, in which model the input port of electronic load can accurately simulate the specified impedance and the testing energy can be fed back with unit power factor.

Key words: rectifier; PWM / electronic load; energy feedback; hysteresis current control; numerical algorithm Foundation Project:Supported by Teaching and Research Aided Plan for Southeast University Outstanding Young Instructors (No.4016001009)

1 言 引

交流电子负载(AC Electronic Load)是可以模拟 传统真实阻抗负载的电力电子装置, 它能模拟一个 固定或变化的负载,甚至将试验的电能反馈回电网, 其设计初衷是用于交流电源的出厂试验。交流电源 出厂试验通常采用电阻箱耗能的办法,它存在调节 不便、自动化程度低、耗电量大等缺点,而采用交流 电子负载进行试验可有效克服这些缺点,它可使试 验更加简单、灵活,且大大降低试验的成本,因此交 流电子负载具有广阔的使用价值和应用前景。文中 所称电子负载专指交流电子负载。

点。文献[1] 提出的电子负载以 UPS 中的 AC/DC 变 换器作为负载,因此只能对 UPS 进行试验,同时输 出功率的大小也与 AC/DC 变换器的结构和工作方 式有关,不具备通用性;文献[2] 提出的电子负载可 使 UPS 输出电流谐波畸变率 (Total Harmonic Distortion, THD)较小,但UPS输出电压必须与电网 电压同频;文献[3]提出的电子负载能补偿 UPS 输入 电流中的谐波,但 UPS 输出电流 THD 太大。文献[4] 则提出了对各种交流电源都适用的电子负载,并指 出、通过对试验电源输出电流的控制可以模拟各种 特性的负载,却又未给出详细方法。 本文将研究的适用于各种交流电源试验的电子 负载,电源的频率可以不同于电网的频率。它在输入 侧具有与真实阻抗负载相同的特性、因而可取得更 加"真实"的试验效果,同时还能将试验能量回馈至 电网,从而大大降低试验成本。文中将对电子负载的 拓扑结构和控制方法进行研究,再采用数字仿真和 试验样机进行验证。

文献[1~3]所提的电子负载是专用于不间断电 源(Uninterrupted Power Supply, UPS) 老化放电试验 的,它们都能实现试验能量的回馈,但均存在一些缺

基金项目:东南大学优秀青年教学科研计划资助

(4016001009)

定稿日期:2005-04-20

作者简介:潘诗锋(1980-),男,江苏南京人,硕士研究 生,研究方向为电力电子技术在电力系统中

的应用。

交流电子负载的拓扑结构 2 图 1 示出交流电子负载应用示意图。图中交流 97

第40卷第1期	电力电子	子技术	Vol.40, No.1
2006年2月	Power Ele	ectronics	February, 2006
电子负载的输入为待试验	检的交流电源,输出接低压	滤波电容中的	i_1 i_2 J_1 J_d $$
	电网 220/380V,也可以理	基波电流值 i ₃	
□守诋验 ~ 文流 交流电源 — 电子负载 ~220V	解为输入接低压电网,输	计算出参考电	$e_1 \bigotimes_{i_0} \left[\frac{1}{4} \right]_{i_0} \left[\frac{1}{4} \right$
图 1 交流电子负载	出接待测试的交流电源。	流 i ₂ *, 再将检测	$i_{\text{iref}} + \vec{b} = i_2^2 + \vec{b} = \vec{b}$
应用示意图	为了能够分开控制电	到的实际电流	
子负载的输入、输出电流	乱,以及使输入、输出工作于	i ₂ 与其进行滞	(a)整流环节滞环PWM电流控制原理图
不同频率,采用具有中国	间直流环节的 AC/DC/AC 两	环比较,控制	$\frac{i_4}{1}$
级变换电路构成电子负望	载主电路。图2示出交流电	IGBT 的导通和	
子负载主电路拓扑结构。	>	关断。只要满足	$U_{d} = \begin{bmatrix} U_{d} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
i_1 i_2 L_1 V_1 \mathbf{A} V_2 \mathbf{A}	V_5 \downarrow \downarrow V_6 \downarrow L_2 i_4 i_5	滞环控制的条	
$e_1 \bigotimes \stackrel{r}{\stackrel{r}{\stackrel{r}{\stackrel{r}{\stackrel{r}{\stackrel{r}{\stackrel{r}{\stackrel{r}$	$ \begin{array}{c} 1 \\ a \\ T \end{array} \begin{array}{c} u_{d} \end{array} \begin{array}{c} \vdots \\ c_{2} \\ c_{2} \end{array} \begin{array}{c} \vdots \\ c_{2} \\ c_{2} \end{array} \end{array} \begin{array}{c} \vdots \\ c_{2} \\ c_{2} \end{array} \begin{array}{c} \vdots \\ c_{2} \\ c_{2} \end{array} \end{array} \begin{array}{c} \vdots \\ c_{2} \\ c_{2} \end{array} \end{array} $	件,即直流电压	参考电流 /5ref +
		大于交流电压	(b) 逆变环节滞环PWM电流控制原理图变
图 2 交流电子	负载主电路拓扑结构	的峰值, i ₂ 就一	图 3 整流和逆变环节滞环 PWM
图中 e ₁ ——待试验交流电源	新出电压 e2——交流电网电压	定能跟踪 i ₂ *。	电流控制原理图
输入整流环节和输	出逆变环节均采用电压型	逆变环节的	控制方法是: 首先根据整流和逆变
PWM 整流器(Voltage So	urce Rectifier, VSR), PWM	功率平衡这一条	件计算出输出电流的参考有效值
PWM 整沉	urce Rectifier, VSR_{0} PWM	功率半衡这一条	件计算出输出电流的参考有效值

整流器能够实现网侧电流为正弦波、网侧单位功率 因数、电能双向传输和较快的动态控制响应等传统 整流器较难实现的功能^[5],因此文中采用双 VSR 构 成电子负载的输入、输出环节。另外,输入和输出都 增加了一个滤波电容,以滤除输入、输出电流中的部 分高频谐波,减小谐波污染。

3 控制方法

VSR 一般采用双闭环控制,在这样的控制系统 中,内环的电流控制是关键,因为外环电压的控制是 通过内环电流的控制而间接实现的。目前 VSR 电流 控制技术主要有两大类,即间接电流控制和直接电 流控制。前者的优点是控制简单,但其电流动态响 应不够快,且对系统参数变化较敏感;后者则直接以 快速反馈的电流为控制对象,能获得较高品质的电 流响应,缺点是控制结构和算法较复杂。综合比较, 文中采用直接电流控制技术中的滞环电流控制⁶。

采用了 AC/DC/AC 结构后,整流和逆变可以分 开控制。对于整流环节,其控制目标就是精确控制 *i*,使得电子负载对 *e*₁呈现的阻抗为设定值。而对于 逆变环节,除了控制输出电流 *i*₅ 为单位功率因数电 流外,还要控制直流电压使之恒定,以使整个系统稳 定。如果直接以 *i*₁ 和 *i*₅ 作为输入和输出滞环控制的 对象,则输入和输出的滤波电容将不能起到滤波作 用。只有以 *i*₂ 和 *i*₄ 作为滞环控制对象,才能经过滤 波电容滤除滞环控制电流中的部分高频谐波。为了 能通过控制 *i*₂ 和 *i*₄ 达到控制 *i*₁ 和 *i*₅ 的目的,在计算 参考电流值时须考虑滤波电容中流过的基波无功电 流*i*₃ 和 *i*₆。图 3 给出了整流和逆变环节控制原理图。 整流环节的控制方法是:根据设定的阻抗值及 *I*_{5ref};其次,将直流电压参考值 *U*^{*}_d 与实际直流电压 *U*_d 相减,再经过 PI 环节后作为调节量与 *I*_{5ref} 相加,其和 与 *e*₂ 的同步信号相乘,乘积再与电容基波电流 *i*₆ 相 加后作为逆变电流的参考值 *i*^{*};最后将 *i*^{*} 与实际输 出电流 *i*₄ 进行滞环比较,控制 IGBT 的导通和关断。 需要注意,*U*_d 中含有两倍基波频率的波动,所以需 使其先通过一个低通滤波环节再用于偏差计算。

采用滞环电流控制,只要满足直流侧电压大于 交流侧电压幅值这一条件,实际电流就能跟踪参考 电流。因此,在满足了上述电压条件后,电子负载能 否模拟设定的阻抗或电流,关键就在于参考电流的 计算是否准确。该参考电流包括整流环节的参考电 流 *i*^{*} 和逆变环节的参考电流 *i*^{*}。

4 参考电流 *i*₂* 和 *i*₄* 的算法

在恒定阻抗方式下,电子 负载将模拟给定的阻抗值 Z= R+jX,对待测试的交流电源而 言,相当于对一个恒定的阻抗 负载供电,图4示出电子负载 指

抗方式示意图

4.1 整流环节参考电流 i^{*} 的计算

i₂*由两部分组成:与所模拟阻抗相对应的输入 参考电流 i_{mf} 和电容无功电流 i₃:

- $i_2^*=i_{1ref}-i_3$ (1) i_3 的有效值应满足: $I_3=2\pi f_1 C_1 E_1$ (2) 式中 E_1--e_1 的有效值 f_1--e_1 的频率
 - C1——输入滤波电容值
 - i₃的相位超前 e₁ 90°。由于实际系统中很难保证

98

大功率交流电子负载的研究

电容值精确且交流电源也可能会有一些波动,因此为了获得更好的静态及动态效果,可采用硬件检测方式来获得 *i*₃ 的瞬时值。下面讨论 *i*_{1nd} 的计算方法。

(1)当 X>0 时,对于图 4 所示的电路,电子负载 呈阻感特性,根据电路方程有:

$$e_1 = Ri_1 + L \frac{\mathrm{d}i_1}{\mathrm{d}t} \tag{3}$$

式中 $L=X/2\pi f_1$

如果已知 E₁和相角,则可根据式(3)解出电流的解析解,从而得出任一时刻的 i_{lnfo}然而,如果由电子负载通过硬件方式测得 E₁和相角,则至少需要一个周波的延时;另一方面如果电源输出电压并不恒定,而是有一定波动,则需要在每个周波都进行检测计算,这样会大大降低电子负载的动态响应速度,而且准确性也会降低。为此,考虑采用数值计算方法。 对式(3)离散化,考虑输入电压在每个周波内平 (3)当 X < 0 时,电子负载呈阻容特性,因为不再 满足式(3),因而不能通过式(5)来求解。此时的电路 方程为: $e_1 = Ri_1 + \frac{1}{C} \int_0^t i_1 dt$ (7) 式中 $C = -1/2Nf_1 X$

对式(7)离散化,仍考虑输入电压在每个周波内 平均取 N 个点,则根据复化梯形公式可得:

$$e_{n} = Ri_{n} + \frac{\Delta t}{2C} \left(i_{0} + 2\sum_{k=1}^{n-1} i_{k} + i_{n} \right) \qquad (n = 1, 2, 3, \cdots) \qquad (8)$$

将 C 和 Δt 的表达式代入式(8)并化简,可得出 电流递推公式:

$$\begin{cases} i_{n} = \frac{N}{NR - \pi X} e_{n} + \frac{2\pi X}{NR - \pi X} \sum_{k=1}^{n-1} i_{k} \quad (n=1,2,3,\cdots) \quad (9) \\ i_{0} = 0 \end{cases}$$

复化梯形公式不存在收敛性问题,只有误差问题,其截断误差为 Δt² 的同阶无穷小。所以,只要采 样频率 Nf_i 足够高,该递推公式就能保证足够的精

均取 N 个点,以 i_n 代表输入电流 i₁ 在第 n 个时刻的 值,以 e_n 代表 e₁ 在第 n 个时刻的值(下同),则根据 欧拉公式可得:

$$\begin{cases} i_{n+1} = i_n + \frac{\Delta t}{L} (e_n - Ri_n) \\ i_0 = 0 \end{cases} \quad (n = 0, 1, 2, \cdots) \quad (4)$$

式中 $\Delta t = 1/Nf_1$

将 L 和 Δt 的表达式代入式(2)并整理,得出: $\begin{cases} i_{n+1} = \frac{2\pi}{NX} e_n + \left(1 - \frac{2\pi R}{NX}\right) i_n & (n=0,1,2,\cdots) \\ i_0 = 0 \end{cases}$ (5)

 e_n 和 i_n 的系数均为已知量,因此只要根据当前· 时刻的 e_n 和 i_n ,即可得出下一时刻电流参考值。而 e_n π_{i_n} 的值可通过以 Nf₁的采样频率对 e_1 和 i_1 进行采 样获得,因此在实际的硬件系统中,可通过这种离散。 化方法得到参考电流值。需要注意,只有在满足 $1-2\pi R/NX | <1 即 0 < R < NX/\pi 时, 式(5) 才 是 收 敛$ 的。当采样频率很高,即N很大时,R和X值很 容易满足上式。而当 R=0,即电子负载呈纯感性时, 按照式(5)进行迭代,如果迭代初值存在误差 Δe , 则该误差将是稳定的,既不衰减也不发散。但由 于实际电路初始状态下电流 i(0)=0,因此迭代计 算时只要取 i₀=0, 就不会存在初值的误差, 迭代计 算的结果将与解析解吻合。因此,X>0时,式(5)的 收敛域为 $0 \leq R < NX/\pi_{\circ}$ (2)当X=0时,电子负载呈纯电阻特性,不能通 过式(5)得出参考电流值。但此时的电路情况最简 单,因为根据电路方程有 $e_1 = Ri_1$,对其离散化,可得 $i_n = \frac{1}{R} e_n$ 电流递推公式: (6) 即根据当前的电压值即可计算出当前的电流参考 值。显而易见,该算法的收敛域为 $R \neq 0$ 。

度。然而,要注意式(7)解析解的收敛性。设 e_1 = $E_{m}\sin\omega_1 t$,则式(6)的解为:

$$i = \frac{\omega C E_{\rm m}}{\sqrt{1 + \omega_1^2 R C}} \cos(\omega_1 t - \varphi) - A e^{-t/RC}$$
(10)

式中 A——任意常数,其值可由电流初值确定

当 R < 0 且 $A \neq 0$ 时, 电流 i 解析解显然是发散的。虽然合理选择电流初始值可使 A = 0,但在硬件系统中由于处理器的截断误差,A 的值不会严格等于零,因而很难保证算法收敛。而 $R \ge 0$ 时式(10)显然是收敛的。因此 X < 0 时,式(9)的收敛域为 $R \ge 0$ 。

以上讨论了 X>0,X=0,X<0 三种情况下 i_{lef} 的 计算及其收敛性。得出 i_{lef} 后,再根据式(1)即可得 出参考电流 i^{*}。可以看出,采用这种数值算法,只要 在收敛范围内,不论输入电压是否有波动,都能保证 电子负载对交流电源的等效阻抗保持在设定值。

4.2 逆变环节

逆变环节的参考电流 i_4^* 也由两部分组成:单位 功率因数输出电流参考值 i_5^* 和电容的基波无功电 流 i_6 ,关系式为: $i_4^*=i_5^*+i_6$ (11) 式中 i_5^* ——电子负载输出电流 i_5 的参考值 i_5^* 由两部分构成,根据输入、输出有功平衡计算 得到 I_{5ref} 和直流电压偏差调节量 PI。其中 I_{5ref} 用以控 制输入、输出功率的平衡,而 PI 则用以控制直流电 压的稳定。 I_{5ref} 满足下式: $\frac{E_1^2 R}{R^2 + X^2} = E_2 I_{5ref}$ (12) 通过计算可得到 e_1 和 e_2 的有效值 E_1 和 E_2 ,而 R和 X 为已知的设定值。 I_{5ref} 的相位与 e_2 相同。直流 电压偏差调节量 PI 可通过下式求得:

 $\left(K_{\rm P} + \frac{1}{K_{\rm I}s}\right) \left(U_{\rm d}^{*} - U_{\rm d}^{\prime}\right)$ (13)

99

第40卷第1期	电力电子	技术	Vol.40, No.1
	Power Elec	tronics	February, 2006
式中 U_d' ——直流电压 U_d 经低通滤波得到的	的直流分量	的阻感负载。实验表明,在	输出侧均实现了单位功率
i_6 的有效值应满足: $I_6=2\pi f_2C_2$	E_2 (14)	因数逆变。	
式中 f ₂ —e ₂ 的频率 C ₂ —输出滤波电容 i ₆ 的相位超前 e ₂ 90°。同样,i ₆ 的 件检测方式获得。 对根据式(11)~(14)得出的参考电 就能保证输出电流 i ₅ 为单位功率因数 5 	容值 直亦可通过硬 血流进行控制,	r/10 $r/10$	容1001/20 401/50 <i>is</i> <i>is</i> <i>t/10ms/格</i> (b) e2, i5 实验波形
采用 PSCAD/EMTDC 对文中提出 载及其控制方法进行仿真,算例如下 Z=10+j10Ω。图 5 示出仿真波形,每组 线,分别为 e ₁ ,i ₁ ,e ₂ ,i ₅ 。	的交流电子负 $①Z=10\Omega;②$ 图中有4条曲 阻性($\varphi=0^\circ$)和	举/001/9 轾/01/9 轾/01/9 轾/01/9 捽/01/9 ኵ/01/9	r/10ms/格 (d) e_2, is 实验波形
阻感性(φ=45°)。由图可见,电子负载 成功地模拟了设定的阻抗值,而在电	在父流电源侧 网侧则实现了	图7 3	实验波形

6 实验研究

.

在理论研究和仿真研究的基础上研制了试验样机。样机中采用智能功率模块(Intelligent Power Module, IPM)构成电子负载的开关电路,采用 DSP 作为核心控制器。

由于时间的限制以及实验中存在的安全等问

7 结 论

本文采用 AC/DC/AC 的主电路结构对交流电子 负载进行了研究、提出了其控制方法,并重点分析了 参考电流的数值算法。该算法使得电子负载能够模 拟各种性质的阻抗负载,包括纯阻性、阻感性和阻容 性负载。仿真和实验结果表明,所提出的电子负载能 实现恒定阻抗工作方式,其输入侧能准确模拟设定 的阻抗值,而输出侧实现了试验能量的单位功率因 数逆变。

参考文献

- C L Chu, J F Chen. Self-load Bank for UPS Testing by Circulating Current Method[J].Proc.IEE Elect.Power Applicat., 1994, 141(4): 191~196.
- [2] Ayres C A, Barbi I. A Family of Converters for Power Recycling during UPS's Burn-in Test[A].Proc.of IEEE 26th Annual Meeting of Power Electronics Special-ists Conference, PESC[C]'95.1995:1.486~492.
- [3] Shyh-Jier Huang, Fu-Sheng Pai. Design and Operation of Búrn-in Test System for Three-phase Uninterruptible Power Supplies [J].IEEE Trans.on Industrial Electronics, 2002, 49

题,实验中电子负载输入、输出电压都降为 50V(交流),输入、输出电流小于 10A。图 6 示出实验波形。 图 6a,b 为 Z=10Ω 时的实验波形;图 6c,d 为 Z= 5+j5Ω 时的实验波形,每组图中有 4 条曲线,分别为 e₁,i₁,e₂,i₅。由图 6a,b 可见,电子负载输入电压为 50V,输入电流为 5A,且为同相位,在输入侧模拟了 10Ω 的电阻负载;图 7c,d 中,输入电压为 50V,输入 电流为 7A 且落后电压 45°,在输入侧模拟了 5+j5Ω $(1):256\sim 263.$

- [4] Ming-Tsung Tsai, Charles Tsai. Energy Recycling for Electrical AC Power Source Burn-in Test[J].IEEE Trans. on Industrail Electronics, 2000, 47(4):974~976.
- [5] 张崇巍,张 兴.PWM 整流器及其控制[M].北京:机械工 业出版社,2003.
- [6] Gatlan C, Gatlan L. AC to DC PWM Voltage Source Converter under Hysteresis Current Control [A].IEEE Proc.of ISIE'97[C].1997,2:7~11.

100