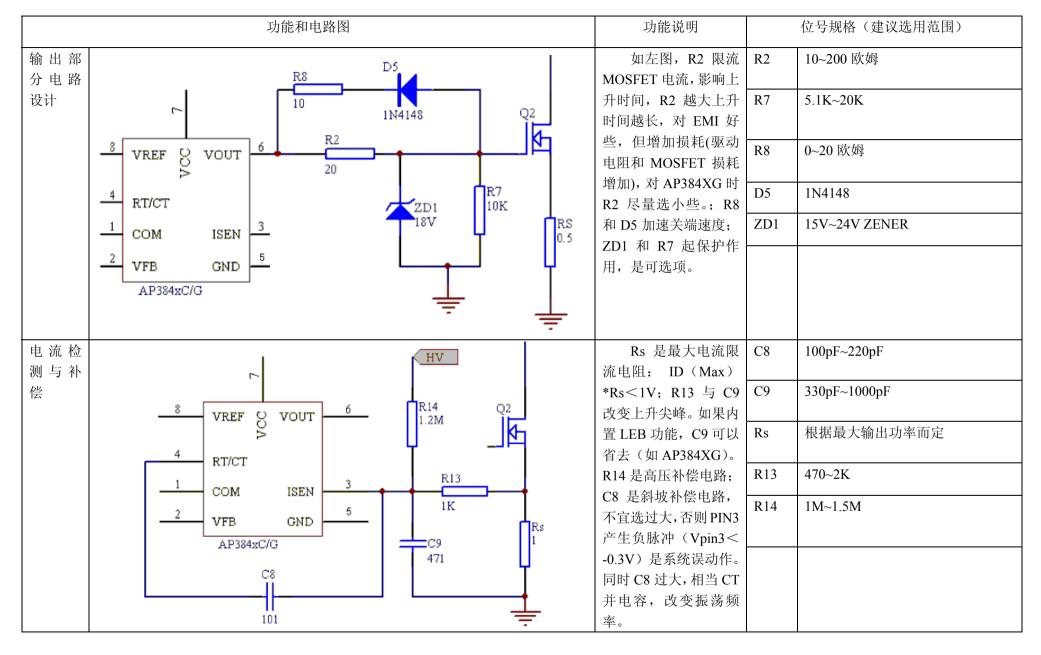
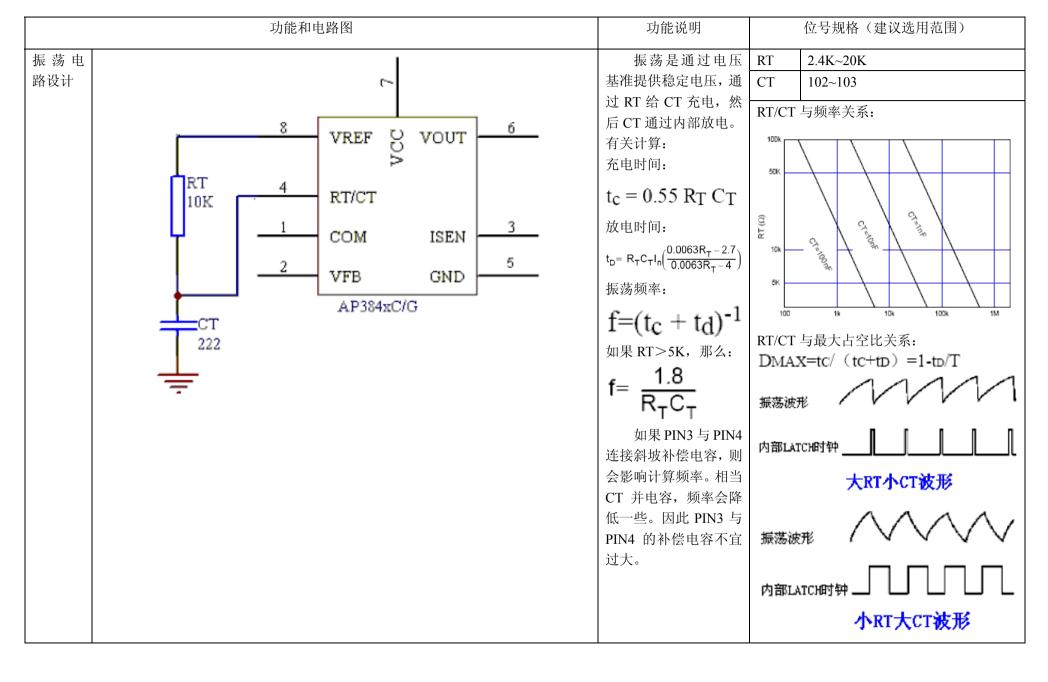


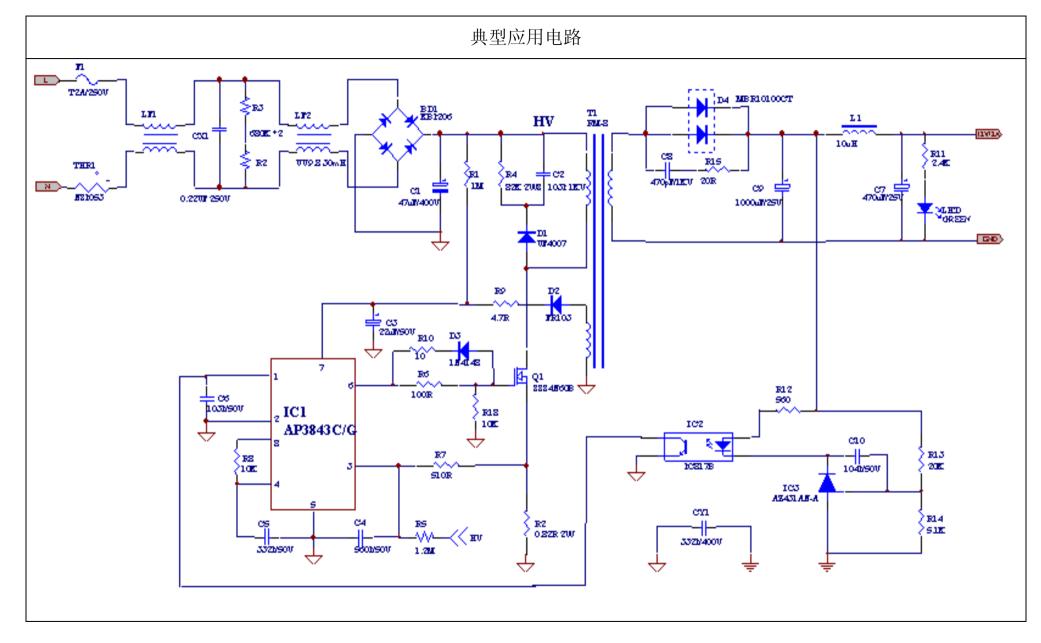
AP384XC/G 的电路设计参考:


FAE:jimzheng/2006-6-1

功能和电路图		功能说明	位号规格 (建议选用范围)	
VCC 电路设计(1)	R1 1M D1 R2 TRANS	一般 VCC 的接法 如左图,通过辅助绕组 经 R2(限流电阻)、D1、C2 给 VCC 供电。参数 选择时,注意 R1/C2 保证启动时间,同时保证 短路输出时系统能启动保护,建议 VCC 的最小值: AP3842/4 在10.5V~11V; AP3843/5 在 8.0V~8.5V,通过调整 R2、D1 或辅助供电绕组来达到。	C2 D1 R2	22uF~47uF FR 或 UF 等(注意恢复时间和压降) 0~100 欧姆,在保证 VCC 工作的情况下尽量选大些,这样保证短路输出系统能保护,但 R2 选大损耗也大。对 AP384XG 时 R2 应该选小些,这样损耗小一些,可以通过修改辅助供电绕组来达到。
VCC 电路设计(2)	R1 1M D2 R2 D1 RF107 VCC C3 10uF C2 47uF GND GND	如左图是针对新的设计,该电路既保证启动时间,同时保证启动损耗小。主要针对AP384XG系列产品。	D1 D2 C2 C3 R2	同上 IN4148 33uF~100uF 4.7uF~22uF 同上



功能和电路图		功能说明		位号规格 (建议选用范围)
反馈回路统设法(1)	8 VREF VOUT 6 4 RT/CT 1 COM ISEN 3 2 VFB GND 5 AP384xC/G	如左图是一般的 反馈接法,线路简单, 没有用内部运放。其中 C6 可以是系统更加稳 定,R9 是可选,一般 短路即可。	C6	103~473
反馈回路系统设计接法(2)	C7 R10 R11 R11 R11 AP384xC/G VCC/VREF O R12 2K 8 VREF D VOUT 6 RT/CT COM ISEN 3 5 AP384xC/G VFB GND 5	也有左图的接法, 线路复杂些,运用内部 的运放。通过光藕,R12 取得反馈电压输入运 放。R11、R10、C7 是 改变运放的闭环增益 和频率特性。	R10 R11 R12	102~104 4.7K~100K 4.7K~100K 510~3.3K



	功能说明		位号规格 (建议选用范围)	
短路保护电路 R4 10K R5 4.7uF	功能和电路图 VCC (7) (8) REF (7) CT (4) RT/CT (7) COMP (1) (6) OUTPUT (8) ENSE (8) AP384×C/G	一般短路保护通过 VCC 比较难调,特别是在宽电压范围输入系统。如左图可以使短路保护得以保证,其工作原理:短路输出时PIN1 的电压升高,Q1截止,关断振荡,从而关断输出。	R4 R5 Q1	1uF~10uF 5K~20K 5K~20K PNP 三极管
甘 仙 注 1 DINIS 与 DINI 不能控电影				

意事项

- 其 他 注 | 1、PIN8 与 PIN1 不能接电阻,否则容易引起短路输出时炸机或损坏系统。
 - 2、PIN2 接地时, PIN1 (或光藕) 对地电容不能少, 否则系统不容易稳定。
 - 3、VCC不能太高,否则短路输出时输入功率大(Pin大于10W),容易引起炸机或损坏系统。
 - 4、PIN3 与 PIN4 的补偿电容不宜过大,否则 PIN3 容易产生的负脉冲过大损坏 PIN3 或系统误动作。
 - 5、整个电源系统设计时注意光藕的电流工作范围,同时调整 431 或 358 的电流,使之工作在线性条件,这样系统更加稳定。
 - 6、针对采用 AP384XG 的系统,由于要求待机功率较低,因此必须减少相关的损耗:
 - (1) 启动损耗:启动电阻在保证启动时间的基础上尽量选大一些;AP3843/5的启动电阻比AP3842/4大;
 - (2) VCC 限流电阻在保证短路保护作用的条件下选小一些。
 - (3) PIN6 驱动电阻选小一些。
 - (4) MOSFET 的 DS 极不能并电容或电容尽可能小。
 - (5) PIN3 与 PIN4 的补偿电容选小一些, 高压补偿电阻选大一些。
 - (6) 选用 AP3843/5G 替代 AP3842/4G。
 - (7) 尽可能不要假负载或假负载的电阻大一些。
 - (8) 工作频率不宜过高,减少开关损耗。一般在 50KHz 左右;同时 RT 选大一些,电容选小一些,减少充电损耗。
 - (9) 整流吸收和变压器的损耗减少。

